用户名: 密码: 验证码:
金属矿山尾矿高浓度管道输送技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据统计,我国尾矿年排放量占工业固体废弃物的40%左右。尾矿除极小部分被利用外,绝大部分存放在地表尾矿库中。目前在我国已形成一定规模的尾矿库约1500座,其中有色和冶金行业占80%。并且大多数企业仍采用传统的低浓度排放方式,传统的低浓度排放存在着基建投资大,经营费用高,占地多,回水困难,污染环境,安全性较差等问题。传统低浓度尾矿排放方式加剧了我国土地资源日趋紧张的问题,这种排放方式在经济和政策以及安全上越来越不适应今后矿山发展的需要。因此,探寻金属矿山尾矿的排放与处置的新途径仍然是矿山急待解决的问题之一。本文针对这一问题,提出了金属矿山尾矿高浓度排放。
     金属矿山尾矿高浓度排放与传统的低浓度排放相比具有占地面积小、基建(经营)费用低、安全性高等优点。在管道输送方面也存在着本质的不同,传统的低浓度管道输送的浆体属于两相流体范畴,而高浓度管道输送属于结构流体。本文以金岭铁矿全尾砂高浓度管道输送为研究背景,运用工程流体力学、流变学理论,较为系统、全面的阐述了金属矿山高浓度管道输送中的关键技术,其研究结论如下:
     1、通过对金岭铁矿全尾砂的物理化学性质测定,以及试验测定不同浓度料浆的流变特性,从而确定金岭铁矿全尾砂料浆从两相流体转变为结构流体的临界重量浓度,研究结果表明:金岭铁矿料浆的临界重量浓度为68%,重量浓度范围在68%—74%之间时全尾砂料浆流体属于非牛顿流体的宾汉体,并可进行管道输送。
     2、以工程流体力学、流变学理论为基础,理论分析了影响浆体管道输送阻力损失的影响因素,并结合试验结果得到影响浆体管道输送阻力损失的主要因素包括:料浆性质、粒级组成、输送流速v、管径D、以及输送浓度Cw等主要因素。并运用计算机编程技术进行试验数据处理,最终建立了金岭铁矿高浓度料浆浓度与流变参数之间的函数关系式。
     3、自主设计一套测试高浓度尾砂料浆流变参数的试验——L型管道流变参数测定试验,并通过试验测算出金岭铁矿全尾砂高浓度料浆不同浓度下的流变参数,试验结果表明:此方法原理正确、方法适当、结果可靠。与环管试验相比较具有耗时短、费用低、且方法简单、易于操作等优点。
     4、运用计算机程序设计语言C++编制了一套实验数据处理软件,此软件具有试验数据回归拟合、拟合结果的相关性检验、图形绘制、与一般数据表格的链接、试验数据的编辑计算、存储等功能。
     5、经相关理论分析推导,建立了金岭铁矿尾砂高浓度料浆管道输送阻力损失理论计算模型,并结合建立的浓度与料浆流变参数的数学关系式,从而建立适用于金岭铁矿全尾砂高浓度管道输送阻力损失计算的经验公式。
According to statistics, China's annual emissions is about 40 percent of the industrial solid tailings waste. Except for the very small proportion of the tailings is to be used, the vast majority of surface tailings is stored in the database. At present in China it has formed a certain scale tailings of about 1500, and non-ferrous and metallurgical industry account for 80 percent. And most enterprises are still using the traditional method of low concentrations emissions, Which has a large investment in infrastructure, high operating costs, difficulty backwater, environmental pollution, poor security and other issues. And it exacerbated the growing tension of the issue of land resources. This discharge methods, in the policy and economic and security, no longer meet the needs of the future mine development. Therefore, searching for metal mine tailings'discharge and disposal's new ways need to be solved. This paper is mainly to the problem and propose a high concentration of metal mine tailings discharge.
     Compared with the traditional way of low concentrations emissions, the high concentrations of metal mine tailings emissions has small floor coverage, low infrastructure (operating) costs, high security and so on. In the pipeline there are also essentially different from the traditional way of low concentrations slurry pipeline which are two-phase body areas, while high concentration of structural fluid is piped. This article take Jinling Irion Ore high concentration of full-tailing pipeline as the research background. Useing fluid mechanics and rheology theory would be more systematic and comprehensive to expound the key technology of the metal mines high concentration of pipeline. Its contents are as follows:
     1. By the determination of physical and chemical properties of unclassified tailing in Jinling Iron, and testing different concentrations of the rheological properties, determine the tailings slurry transform a two-phase fluid into the fluid structure of critical weight concentration. The results show that:The critical concentration of the Jinling Iron slurry was 68%, and the weight concentration range from 68% to 74%, between which the tailing slurry fluid is non-Newtonian Bingham fluid and it can transport in the pipeline.
     2. Based on fluid mechanics and rheology theory, theoretical analysis the impact factor of the loss of slurry pipeline transportation resistance and combined with results to get the main factors of slurry pipeline transportation resistance losses. It includes:the very nature of the slurry, the grain size composition of the slurry, stock trough v. diameter D and the transportation concentration Cw and other key elements. Computer program built by functional relationship between high concentration of slurry and rheological parameters in Jinling Iron. Its mathematical expression is: t0=4E-04e0.1584Cwη=0.62Cw-41.37
     3. Design a high concentration testing of tailings slurry rheological parameters independently -- L-type mensurating experiment rheological parameters, and measure rheological parameters by experiment high concentration and unclassified tailing slurry of Jinling Iron in different concentrations. The experimental results show that:The principle of the method is correct, appropriate and reliable. Compared with the loop test, it has a short time-consuming, low cost, a simple method and easy to operate and so on.
     4. Useing computer programming language C++build a experimental data processing software, which has regression test data, fitting the results of correlation tests, graphics rendering, and general data table links, computing editor of the experimental data, storage and other functions.
     5. After a derivation of relevantive theoretical analysis, establishing a pipeline pressure drop calculation model of high concentration of Jinling Iron tailings slurry, and establishing the mathematical relationship between concentration and slurry rheological parameters. So as to Jinling Iron high concentrations of the whole tailings pipeline empirical formula for calculating resistance loss. jm=(16/3D)×4E-04·e0.1584Cw+(0.62·C-41.37)×32v/D2
引文
[1]延吉生.矿山生态环境综合整治是矿业面临的重要任务[J].金属矿山,2002(12):5-7
    [2]解伟.隋利军,何哲祥.基于采矿充填的尾矿处置技术应用前景[J].工业安全与环保,2008(8):37-39
    [3]何哲祥,田守祥.隋利军等.矿山尾矿排放现状与处置的有效途径[J].采矿技术.2008(3):78-80
    [4]解伟.尾矿充填挤压输送过程中重力-机械力耦合作用的料浆流动特性研究[D]:硕士学位论文.长沙:中南大学,2008
    [5]Spearing A J S.Millette D and Gay F.The potential use of foam technology in underground backfilling and surface tailings disposal.Proc[J]. of MassMin 2000,Brisbane.Australia.Australasian Institute of Mining and Metallurgy Publication Series.2000:193-197
    [6]杨爱民,李永祥.多金属尾矿高浓度输送技术改造及生产实践[J],甘肃冶金.2008.30(2):29-33.
    [7]时炜.高浓度尾矿浆体输送技术的应用[J],有色冶金节能,2002.19(5):9-12.
    [8]覃大国,杨宣兴.魏其昌等.粗粒尾矿浆体高浓度输送实践[J],金属矿山,1996.6(6):21-25
    [9]魏书祥.尾砂固结排放技术研究[D]:博士学位论文.北京:中国矿业大学.2010
    [10]金大安.撰山子金矿尾矿压滤新工艺的应用[J].有色矿山.1998.5.22-25
    [11]白金禄.赵连全.尾矿压滤干式堆存处理工艺[J].黄金.2000(5):40-41
    [12]彭续承.充填理论与应用[M].中南工业大学山版社.长沙.1998
    [13]周爱民.泵送充填的发展应用与展望.首届全国青年采矿学术会议论文集.1991.11:17-19
    [14]PatersonAJ C and Cooke R, Geficke D. Design ofhydraulic backfill distribution systems--Lessons from case studies[J]. In:Bloss M, eds. Proceedings of the Sixth international symposium on mining with backfill. Queensland:The Australasian Institute ofMining and Metallurgy.1998.121-127.
    [15]Iigner HJ and Kramers C P. Developments in backfill technology in South Africa. In:Bloss M, eds. Proceedings of the Sixth international symposium on mining with backfill[J]. Queensland:The Australasian Institute of Mining and Metallurgy.1998.129.135.
    [16]何哲祥.谢开维.周爱民.尾砂胶结充填技术研究与实践[J].中国有色金属学报.1998,8(4):739-744
    [17]周爱民.中国充填技术概述.中国有色金属学会.第八届国际充填采矿会议论文集.北京,2004:1-7
    [18]郭金峰.狮子山铜矿东西山空区改建尾矿库的可行性研究[J].金属矿山.1999.(增1):172-174
    [19]王方汉.缪建成.曹维勤.矿山固体废物综合利用的研究与实践[J].矿业快报,2003.(8):12-14
    [20]钱金平.西石门矿地下尾矿库安全回填项目环境影响及对策[J].农业环境保护,2001,20(3):180~182.
    [21]解伟.隋利军,何哲祥.我国尾矿处置技术的现状及设想[J].矿业快报.2008.5(5):10-12
    [22]张云国.尾矿综合利用研究[J].有色金属,2010.62(5):48-52
    [23]陈小星.膏体充填管道自流输送系统分析[J].有色金属.2002(2).88-91
    [24]何哲祥,古德生.矿山充填管道水力输送研究进展[J].有色金属.2008(8),80-83
    [25]Landriault D.Goard B. Research into High Density Backfill Placement Methods by the Ontario Division of lnco Limited. [J].CIM Bull. Jan.1987:46-50.
    [26]Richard Brummer and Allan Moss.Paste:The Fill of the Future[J].Canadian Mining Journal, Nov. Dec.1991:31-35
    [27]Helms W. The development of backfill techniques in German metal mines during the past decade[J]. MINEFILL 93. Johannesburg. SAIMM,1993:323-331
    [28]RiiheA一种用于稠料液力输送的新型四活塞泵的研制与开发[J].国外金属矿山充填采矿技术的研究与应用.1997:285-289
    [29]金川工程考察组.尾砂膏体泵送充填及其在格隆德矿的应用与发展,有色矿山.1990(2):1-12
    [30]Lerche R, Renetzeder H. The Development of Pumped fill at Grund Mine. Erzmetall.1984. 37:494-501
    [31]金川公司技术考察组.金川公司赴德、法泵送充填技术考察报告.中国矿业,1995(5):37-40
    [32]Hollinderbaeumer E W, Kraemer U. Waste disposal backfilling, technology in the German hard coal mining industry. Bulk Solids Handling, Oct—Dec 1994,14:795-798
    [33]Paste Fill.Supplement to Canadian Mining Journal[J],April 1995
    [34]Jurgen Kronenberg.Backfilling and mine drainagetll KOS pumps[J].Mining Magazine,Jan.1995:37-38
    [35]Pump it up;Pump it down[J]..E & Mj,April 1995:44
    [36]Brackebusch FW.Basic of paste backfill system[J].Mining EngineeringV01.46.Oct.1994:1175-1178
    [37]He Zhexiang, Zhou Aiming, Shi Shengyi.eta.Research and application of total millings backfill at Zhangrnatun Iron Mine[J].In:Bloss M.eds.Proceedings of the Sixth international symposium on mining with backfill.Queensland:The Australasian Institute of Mining and Metallurgy,1998.22 1-225
    [38]康建华.张马屯铁矿全尾砂胶结充填试验[J].山东冶金.2001.23(2):39-41
    [39]刘乃锡.铜绿山矿膏体泵送充填工艺的实施及其设备.第四届全国充填采矿会议论文集.]999:16-20
    [40]何哲祥,鲍侠杰,董泽振.铜绿山铜矿不脱泥尾矿充填试验研究[J].金属矿山,2005(1):15-17
    [41]何哲祥.高浓度充填料浆管道挤压输送理论与应用研究[D]:博士学位论文,长沙;中南大学.2008
    [42]中南大学.全尾砂一水淬渣膏体充填技术研究报告.长沙:2006(8)
    [43]长沙矿山研究院.长沙有色冶金设计研究院.长沙矿冶研究所[M].充填采矿法.北京:冶金工业出版社.1978.
    [44]丁德强,矿山地下采空区膏体充填理论与技术研究[D]:博士学位论文,长沙;中南大学.2007
    [45]解海卫.粉煤灰浓浆管道流动特性与阻力特性研究[D]:硕士论文,石家庄:华北电力大学,2004
    [46]屠大燕,流体力学与流体机械[M].中南建筑工业出版社,北京.2005
    [47]田锋,尹连庆.王海龙.粉煤灰浓浆管道输送阻力计算的选择优化[J].内蒙古电力技术2006,10(6):47-50
    [48]刘同有等.充填采矿技术与应用[M].北京:冶金工业出版社.2001
    [49]蔡嗣经.充填采矿技术的应用现状及发展方向[J].国外金属矿山.1989,6:25-32
    [50]胡华,孙恒虎.矿山充填工艺技术的发展及似膏体充填新技术田.中国矿业,2001.10(6):47-50
    [51]李翁然.杨耀亮,罗元新.我国地下金属矿山全尾砂胶结充填技术述评[J].矿业研究与开发,1996.16(9):72-75
    [52]FARSANGI.P and HARA.A.Conslidated Rockfill design and quality control at kidd Creek Mines[J],CIMBulletin,1993.86(972):68-70
    [53]刘同有.金川全尾砂膏体物料流变特性的研究[J].中国矿业.2001,10(1):14-21
    [54]刘同有.蔡嗣经.国内外膏体充填技术的应用与研究现状[J].中国矿业,998.,7(5):1-4
    [55]李云武.膏体泵送充填技术在金川二矿区的试验研究及应用闭.有色金属(矿山部分).2004.56(5):9-11
    [56]王新民.肖卫国,张钦礼.深井矿山充填理论与技术[M].长沙:中南大学出版社,2005
    [57]许毓海,许新启.高浓度(膏体)充填流变特性及自流输送参数的合理确定[J].矿冶,2004,13(3):16-19
    [58]徐慧芳,高压水煤浆锅炉燃烧、传热、积灰结渣及污染物排放特性的试验研究[D]:硕士论文.杭州:浙江大学.2005
    [59]余斌,张绍才.李政等.高浓度尾砂充填料浆管道输送性能试验[J].河北冶金,,2003.3:7-10
    [60]王新民,肖卫国.王小卫等.金川全尾砂膏体充填料浆流变特性研究明.矿冶工程.2002,22(3):13-16
    [61]白晓宁.胡寿根.浆体管道输送的阻力特性及其影响因素分析[J].水力采煤与管道运输2000,20(07):30-33
    [62]尹连庆,原永涛.输灰工程[M].保定:华北电力学院出版社.1994
    [63]日本浆体输送研究会编.浆体与密封容器输送技术手册.北京:冶金工业出版社.1990
    [64]钱桂华.浆体管道输送设备实用选型手册.北京:冶金工业出版社.1995
    [65]陈立.高含沙水流流变参数和阻力的变化规律[D]:博士学位论文,武汉;武汉水力电力学院.1988
    [66]R.M.Turian.G.Mouri.Pressure drop correlation for pipeline flow of solid-liquid suspension[J].AICHE Joural,1971.17(4):801
    [67]D.M.Ne witt.Hydraulic conveying of solids in vertical pipe[J] Inst Chem Engrs.1961.39(2):93-100
    [68]M.Toda.Hydraulic conveying of solids through horizontal an dvertical pipes[J]. Inst Chem Engrs. 1969,9(3):553-559
    [69]H.Hashimoto,K.Noda,T.Masuyama.Influence of pipe inclination on deposit velocity[J].Proc.Hydro transport,1980,(7):231-244
    [70]D.T.Kao.Critical slope for slurry pipeline transporting coal and other solid particles[J]. Proc.Hydrotransport,1979,(6).57-74
    [71]王劫,杨超,初道忠等.膏体充填管道输送阻力损失计算方法[J].金属矿山,2010(12):45-48
    [72]付宇斌.最小二乘法在混合梁斜拉桥施工控制中的应用[D]:硕士学位论文,重庆:西南交通大学.2010
    [73]韩永利.最小二乘法在混凝土斜拉桥施工控制中的应用[D]:硕士学位论文,重庆;西南交通大学,2004
    [74]黄跃.悬臂拼装曲线连续梁桥施工控制研究[D]:硕士学位论文.重庆;西南交通大学.2008
    [75]李晓斌.大跨度钢筋混凝土拱桥悬臂浇注施工控制与模型试验研究[D]:博士学位论文,重庆;西南交通大学.2008
    [76]唐云清.大跨度连续箱梁桥施工监控技术研究[D]:硕士学位论文,南京:河海大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700