用户名: 密码: 验证码:
山羊草属sitopsis组物种LMW-GS及Gliadin编码基因鉴定及系统进化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦低分子量谷蛋白和醇溶蛋白是重要的种子贮藏蛋白,与小麦的加工品质和面团特性紧密相关。前人从分子水平对小麦及其A、D染色体组二倍体原始供体物种中的这两类蛋白的编码基因进行了广泛地研究,本文以B染色体组的可能供体种,山羊草属Sitopsis组中的5个物种Aegilops longissima(2n=2x=14,S~lS~l),Aegilopssharonensis(2n=2x=14,S~(sh)S~(sh)),Aegilops searsii(2n=2x=-14,S~sS~s),Aegilops bicornis(2n=2x=14,S~bS~b)以及Aegilops.speltoides(2n=2x=-14,SS)为研究对象,分离其中的LMW-GS(low-molecular-weight glutenin subunits,LMW-GS)和gliadin编码基因,并进行系统进化分析,主要取得了以下结果:
     1.山羊草属Sitopsis组LMW-GS基因鉴定及系统进化分析
     从山羊草属Sitopsis组的5个物种中共得到69个LMW-GS基因。根据N-末端推导氨基酸序列,可将其主要划分成5种类群,其中MENSHIPGLERP-与小麦中B基因组特异的LMW-GS基因类群属于一类。而METSCIPSLER-、METSHILSLEK-和METSHIPSLEKSL-是A、B、D、G染色体组中没有的新型LMW-GS基因类型,该结果进一步丰富了对LMW-GS多基因家族的认识。系统进化表明,N-末端为METSCIPSLER-的基因与来自A和D染色体组的基因聚为一类,而N-末端为METSHILSLEK-和METSHIPSLEKSL-则与来自小麦B染色体组的LMW=GS基因类群紧密相关。这些结果支持Sitopsis组做为小麦B染色体组供体的观点。然而,这3类基因涵盖了Sitopsis组中除Ae.speltoides的其余4个物种,无法提供究竟哪一个物种更可能是B染色体组的供体种的有力证据。本研究结果显示,Ae.speltoides与其余4个物种的遗传关系可能较远。
     2.山羊草属Sitopsis组α-醇溶蛋白基因鉴定及系统进化分析
     从山羊草属Sitopsis组3个物种中分离了40个α-醇溶蛋白基因,并与来自Ae.speltoide和Ae.longissima的基因进行比较,发现山羊草属Sitopsis组的α-醇溶蛋白基因存在丰富的多样性,可以划分成12类,其中,Ae.speltoides中的类型最多,有6种,且4种为Ae.speltoides特有。这表明Ae.speltoides与其他4个物种的遗传差异较大。某些(或可能)位于B染色体的α-醇溶蛋白与类型group S3、group S8和group S6聚为1类,表明这些B染色体特异的基因可能来自Sitopsis组物种。此外,某些基因类型与来自A染色体组和D染色体组的基因聚为1类,类似现象也同样在LMW-GS中发现,但出现频率更高,这表明α-醇溶蛋白基因家族更加复杂。
     3.山羊草属Sitopsis组γ-醇溶蛋白基因鉴定及系统进化分析
     从山羊草属Sitopsis组的5个物种中分离得到55个γ-醇溶蛋白基因。序列比对显示,这些基因与已知γ-醇溶蛋白基因具有很高的序列相似性,但又确实存在差异,具有典型的γ-醇溶蛋白一级结构。根据半胱氨酸残基数目将这些基因分为两类:1类具有8个保守的半胱氨酸残基,另一类在重复区存在1个自由的半胱氨酸残基,可能参与到谷蛋白的多聚物的聚合当中。将本研究所得γ-醇溶蛋白基因与已知来自Sitopsis和A、B、D染色体组的基因进行分类比较和系统进化分析。结果显示,第1类即重复区无半胱氨酸的基因可进一步聚为3类:1类为D基因组特异类型;而定位于1B的基因与部分来自5个Sitopsis物种的基因聚为1类,表明这类基因可能为B基因组特异,且Sitopsis物种可能是其初始来源;而第3类来自AABB和AABBDD基因组物种的基因与3个来自Ae.longissima和Ae.sharonesis的基因与聚为1类,不能断定该类型所属基因组。
     来自Ae.bicornis、Ae.longissima和Ae.sharonesis的第2类重复区内有半胱氨酸的基因聚为1类,而来自Ae.searsii和Ae.speltoides的基因分别单独聚为1类。同时,分别与部分来自4倍体(AABB)和(或)6倍体(AABBDD)小麦的基因聚为1类,无1A或1D染色体的基因聚于此类。这些结果可能暗示其为B染色体组特异类型,Ae.searsii或Ae.Speltoides可能是其类基因的原始供体。
The low-molecular-weight glutenin subunits and gliadins are major seed storage proteins of wheat, and closely related to the wheat quality and processing properties. Their coding genes at molecular level had been extensively conducted in wheat and its wild diploid progenitors of A and D genomes. In the present study, the characterization and phylogenetic analysis of LMW-GS (low-molecular-weight glutenin subunits, LMW-GS) and gliadin genes were conducted in the Aegilops sect. sitopsis species, Aegilops longissima (2n=2x=14, S~lS~l), Aegilops. sharonensis (2n=2x=14, S~(sh)S~(sh)), Aegilops searsii (2n=2x=14, S~sS~s), Aegilops bicornis (2n=2x=14, S~bS~b) and Aegilops speltoides (2n=2x=14, SS). The main results obtained were the following:
     1. Characterization and phylogenetic analysis of the LMW-GS genes in Aegilops sect. sitopsis species
     A total of 69 LMW-GS genes were obtained and could be divided into 5 groups based on the deduced amino acids of the N-terminal domain, in which the MENSHIPGLERP- could belong to a B genome specific gene group in wheat, while the others METSCIPSLER, METSHILSLEK-, and METSHIPSLEKSL were proved to be novel gene groups which had not been observed in the A, B, D, and G genomes, by PCR assaying. Phylogenetic analysis indicated the genes with N-terminal domain of METSCIPSLER were grouped with those from A and D genomes, and METSHIPSLEKSL- and METSHIPSLEKSL were highly homologous to the genes in the B genome. These results supported the Sitopsis, but none of the five species, should be assigned as the donors of B genome of wheat. It was also be speculated that the Ae. Speltoides was more divergent with the other 4 species.
     2. Characterization and Phylogenetic analysis of a-gliadin genes in Aegilops sect, sitopsis species
     Forty a-gliadin genes were obtained from 3 species in the sect, sitopsis. Sequence comparison with known genes from Ae. speltoide and Ae. longissima indicated that the a-gliadin genes in Aegilops sect, sitopsis could be divided into 12 groups. The genes from Ae. speltoide were involved in 6 groups, among which 4 groups were Ae. Speltoide specific, indicating that Ae. speltoide might be divergent from other 4 species. Some a-gliadin genes in B genome from wheat were clustered with groups of group S3, groupS8, and group S6, indicating that these genes might originate from the species in the sitopsis section. Further more, group S7-1 and group S7-2 were clustered with that from A and D genomes, which was similar in LMW-GS genes.
     3. Characterization and Phylogenetic analysis ofγ-gliadin genes in Aegilops sect, sitopsis species
     Fifty fiveγ-gliadin genes were obtained from 5 species of Aegilops sect. sitopsis. Sequence analysis showed that these genes were high similar, but not identical to the known genes. Two groups of y-gliadin genes were apparently classified based on the number of the cysteines: group 1 with 8 conserved cysteines and group 2 with an additional free cysteine in the repetitive domain which might be involved in the formation of the glutenin polymer. The phylogenetic analysis showed that the genes with 8 cysteines could be clustered into 3 sub-groups: a distinct sub-group specific to the D genome, a sub-group of B genome specific genes and that from 5 Aegilops sect, sitopsis species, indicating that sitopsis should be considered as the origin of this B-genome specific sub-group, and the 3nd sub-group of genes from species with ABD and AB genomes and sitopsis species Ae. longissima and Aesharonesis, however, it could not be concluded that which genome could be assigned to the this sub-group.
     The genes of group 2 from Ae.bicornis, Ae. longissima and Ae. Sharonesis were distinctly clustered from the species, indicating it was a specific sub-group. The genes from Ae.searsii and Ae. Speltoides were clustered with some genes from species with AABBDD and AABB genomes, respectively, and no A and D genome specific genes were present in the two sub-groups, indicating that these two subgroups in wheat might be B genome specific and originate from the Ae.searsii snd Ae. speltoides, respectively.
引文
[1] Alvarez, J.B., Campos, L.A.C., Martin, A., Martin, L.M. Influence of HMW and LMW glutenin subunits on gluten strength in hexaploid tritordeum. Plant Breeding 1999, 118: 456-458
    
    [2] Anderson O D, Greene F C. The α-gliadin gene family. II. DNA and protein sequence variation, subfamily structure, and origins of pseudogenes. Theor. Appl. Genet., 1997b, 95: 59-65.
    [3] Anderson O D, Hisa C C, Torres V. The wheat γ-gliadin genes: characterization of ten new sequences and further understanding of γ-gliadin gene family structure. Theor. Appl. Genet, 2001,103: 323-330.
    [4] Anderson O D, Lifts J C, Gautier M F, Greene F.C.. Nucleic acid sequence and chromosome assignment of a wheat storage protein gene. Nucleic Acids Res., 1984, 12: 8129-8144.
    [5] Anderson, O.D., Greene, F.C. The α-gliadin gene family. II DNA and protein sequence variation, subfamily structure, and origin of pseudogenes. Theoretical and Applied Genetics 1997, 95: 59-65
    [6] Andrews, J.L., Hay, R.L., Skerritt, J.H., Sutton, K.H. HPLC and immunoassay-based glutenin subunit analysis: screening for dough properties in wheats grown under different environmental conditions. Journal of Cereal Science 1994,20: 203-215
    [7] Aniol A.. A serological investigation of wheat evolution. In Proc. 4th Internat. Wheat Genet. Symp., Missouri, U.S.A. 1973.59
    [8] Aniol A. A serological investigation of wheat evolution. Z. pflanzenzuchtg. 1974 73:194-203.
    [9] Atienza, S.G., Alvarez, J.B., Villegas, A.M., Gimenez, M. J., Ramirez, M.C., Martin, A., Martin, L.M. Variation for the low-molecularweight glutenin subunits in a collection of Hordeum chilense. Euphytica 2002, 128: 269-277
    [10] Autran, J.C., Laignelet, B., Morel, M.H. Characterization and quantification of low molecular weight glutenins in durum wheats. Biochimie 1987, 69: 699-711
    [11] Badaeva, E.D., Friebe, B., Gill, B.S.. Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome, 1996a 39:293-306.
    [12] Badaeva, E.D., Friebe, B., Gill, B.S.. Genome differentiation in Aegilops. 2 Physical mapping of 5S and 18S-26S ribosomal RNA gene families in diploid species. Genome, 1996b 39:1150-1158
    [13] Bartels D. Thompson R.D. The characterization of cDNA clones coding for wheat storage proteins. Nucl Acids Res 1983,11: 2961-2977
    [14] Beckwith A.C., Nielsen H.C., Wall J.S. Huebner F.R. Isolation and characterization of a high-molecular-weight protein from wheat gliadin. Cereal Chem., 1966,43: 14-28
    [15] Bekes F, Gras P W, Gupta R B, Hickman D.R., Tatham A.S.. Effects of the high Mr glutenin subunits (1Bx20) on the dough mixing properties of wheat flour. J. Cereal Sci., 1994, 19:3-7.
    [16] Benmoussa M, Louis-P, Vezina, Page M, Yell S, Laberge S. Genetic polymorphism in low- molecular-weight glutenin genes from Triticum aestivum, variety Chinese Spring. Theor Appl Genet, 2000, 100: 789-793
    [17] Bietz J.A, Huebner F.R., Sanderson J.E., Wall J.S. Wheat gliadin homology revealed through N-terminal amino acid sequence analysis. Cereal Chem., 1977, 54: 1070-1083.
    [18] Bietz J.A. Wall J.S. Isolation and characterization of gliadin-like subunits from glutenins. Cereal Chem., 1973, 50: 537-547
    [19] Blanco, A., Resta, P., Simeone, R., Parmar, S., Shewry, P.R., Sabelli, P., Lafiandra, D. Chromosomal location of seed storage protein genes in the genome of Dasypyrum villosum. Theoretical and Applied Genetics 1991, 82: 358-362
    [20] Boggini, G., Pogna, N.E. The breadmaking quality and storage protein composition of Italian durum wheat. Journal of Cereal Science 1989,9: 131-138
    [21] Breimand A., Bogher M, Sternberg H., Graur D. Variability and uniformity of mitochondrial DNA in populations of putative diploid ancestors of common wheat. Theoretical and Applied Genetics, 1991, 82:201 -208 .
    [22] Bushuk W., Zillman R.R. Wheat cultivar identification by gliadin-electrophore- grams. I. Apparatus, method, and nomenclature. Can. J. Plant Sci., 1978,58: 505-515.
    [23] Caldwell K.A.D., Kasarda D. Assessment of genomic and species relationship in Triticum and Aegilops by PAGE and differential staining of seed albumins and globulins. Theoretical and Applies Genetics, 1978, 52:273-280.
    [24] Cassidy B G, Dvorak J, Anderson 0 D. The wheat low-molecular-weight glutenin genes: characterization of six new genes and progress in understanding gene family structure. Theor. Appl. Genet., 1998, 96: 743-750.
    [25] Cassidy B.G, Dvorak J, Anderson O.D. The wheat low-molecular-weight glutenin genes: characterization of six new genes and progress in understanding gene family structure. Theor Appl Genet 1998, 96: 743-750
    [26] Cassidy B.G., Dvorak J. Molecular characterization of a low-molecular-weight glutenin cDNA clone from Triticum durum. Theor Appl Genet 1991, 81: 653-660
    [27] Cassidy B.G., Dvorak J., Anderson O.D. The wheat low-molecular-weight glutenin genes: characterization of six new genes and progress in understanding gene family structure. Theor Appl Genet 1998, 96: 743-750
    [28] Chardot T, Do T, Perret L, Lauriere, M. Heterogeneity of genes encoding the low molecular weight glutenin subunits of bread wheat. Plant Biopolymer Science 2002, 24-30
    [29] Chen Q F. Inquisition about the origin and evolution of wheat genomes. Guhaia, 1997, 17 (3) :276-282.
    [30] Ciaffi M., Lee Y.K., Tamas L., Gupta R., Skerritt J., Appels RThe low-molecular-weight glutenin subunit proteins of primitive wheats III. The genes from D-genome species. Theor Appl Genet 1999, 98:135-148
    [31] Ciaffi, M., Benedettelli, S., Giorgi, B., Porceddu, E., Lafiandra, D. Seed storage proteins of Triticum turgidum ssp. dicoccoides and their effect on the technological quality of durum wheat. Plant Breeding 1991, 107: 309-319
    [32] Ciaffi, M., Lafiandra, D., Porceddu, E., Benedettelli, S. Storage protein variation in wild emmer wheat (Triticum turgidum ssp. dicoccoides) from Jordan and Turkey. I. Electrophoretic characterization of genotypes. Theoretical and Applied Genetics, 1993, 86: 474-480
    [33] Clarke B C, Phongkham T, Gianibelli M C, Beasley H., Bekes F. The characterization and mapping of a family of LMW-gliadin genes: effects on dough properties and bread volume. Theor. Appl. Genet., 2003, 106: 629-635.
    [34] Cloutier, S., Rampitsch, C., Penner, G.A., Lukow, O.M. Cloning and expression of a LMW-i glutenin gene. Journal of Cereal Science 2001, 33: 143-154
    [35] Colot V, Bartels D, Thompson R, Flavell R. Molecular characterization of an active wheat LMWglutenin gene and its relation to other wheat and barley prolamin genes. Mol Gen Genet 1989, 216: 81-90
    [36] Corbellini, M., Empilli, S., Vaccino, P., Brandolini, A., Borghi, B., Heun, M., Salamini, F. Einkom characterization for bread and cookie production in relation to protein subunit composition. Cereal Chemistry 1999, 76: 727-733
    [37] Cornish, G..B., Bekes, F., Allen, H.M., Martin, D.J. Flour proteins linked to quality traits in an Australian doubled haploid wheat population. Australian Journal of Agricultural Research 2001, 52: 1339-1348
    [38] D'Ovidio R, Simeone M, Masci S, Porceddu E. Molecular characterization of a LMW-GS gene located on chromosome 1B and development of primers specific for the Glu-B3 complex locus in durum wheat. Theor Appl Genet 1997, 95: 1119-1126
    [39] D'Ovidio R, Tanzarellao O.A, Porceddu E. Nucleotide sequence of a low-molecular-weight glutenin from Triticum durum. Plant Mol Biol 1992, 18: 781-784
    [40] D'Ovidio R., Marchitelli C., Ercoli Cardelli L., Porceddu E. Sequence similarity between allelic Glu-B3 gene related to quality properties of durum wheat. Theor Appl Genet 1999, 89: 455-461
    [41] D'Ovidio R., Masci S. The low-molecular-weight glutenin subunits of wheat gluten. Journal of Cereal Science, 2004, 39: 321-339
    [42] D'Ovidio, R., Masci, S., Mattei, C., Tosi, P., Lafiandra, D., Porceddu, E., 2000. Characterization of the LMW-GS Gene Family in Durum Wheat, Special Publication, Wheat Gluten, vol. 261. Royal Society of Chemistry, UK, pp. 113-116.
    [43] D'Ovidio, R., Simeone, M., Masci, S., Porceddu, E., Kasarda,D.D. Nucleotide sequence of a γ-gliadin type gene from a durum wheat: correlation with a γ-type glutenin subunit from the same biotype. Cereal Chemistry 1995, 72: 443-449
    [44] Dubcovsky, J., Echaide, M., Giancola, S., Rousset, M., Luo, M.C., Joppa, L.R., Dvorak, J. Characterization of high molecular weight gliadin and low-molecular-weight glutenin subunits of wheat seedstorage-protein loci in RFLP maps of diploid, tetraploid, and hexaploid wheat. Theoretical and Applied Genetics 1997, 95: 1169-1180.
    [45] DuPont F M, Vensel W, Encarnacao T, Chan R., Kasarda D.D. Similarities of omega gliadins from Triticum urartu to those encoded on chromosome 1A of hexaploid wheat and evidence for their post-translational processing. Theor. Appl. Genet., 2004, 108: 1299-1308.
    
    [46] DuPont F, Vensel W H, Chan R, Kasarda D.D. Characterization of the IB-type omega gliadins from Triticum aestivum cultivar Butte. Cereal Chem., 2000, 77: 607-614.
    [47] Dvorak J, Pantaleo D T, Zhang H B, Resta P. The evolution of polyploid wheats: identification of the A genome donor species.Genome, 1993, 36:21-31.
    [48] Dvorak J, Zhang H B, Kota R S, Lassner M. Organiation and evolution of the 5S ribosomal RNA gene family in wheat and related species. Genome , 1989, 32:1003-1016.
    [49] Dvorak, J., Zhang, H.B. Reconstruction of the phylogeny of the genus Triticum from variation in repeated nucleotide sequences. Theor. Appl. Genet. 1992, 84: 419—429.
    [50] Egorov, T., Odintsova, T., Musolyamov, A., Tatham, A., Shewry, P., Hojrup, P., Roepstroff, P., 2000. Biochemical analysis of alcohol soluble polymeric glutenins, D-subunits and omega gliadins from wheat CV-Chinese spring. In: Shewry, P.R., Thatam, A.S. (Eds.), Wheat Gluten, Royal Society of Chemistry, UK, pp. 166-170
    [51] Egorov, T., Odintsova, T., Musolyamov, A., Tatham, A., Shewry, P., Hojrup, P., Roepstroff, P., 2000. Biochemical analysis of alcohol soluble polymeric glutenins, D-subunits and omega gliadins from wheat CV-Chinese spring. In: Shewry, P.R., Thatam, A.S. (Eds.), Wheat Gluten, Royal Society of Chemistry, UK, pp. 166-170
    [52] Elmorjani K, Thievin M, Michon T, Popineau Y., Hallet J.N., and Gueguen J. Synthetic genes specifying periodic polymers modeled on the repetitive domain of wheat gliadins: conception and expression. Biochemical and Biophysical Research Communications, 1997,239:240-246.
    [53] Elton G.A.H. Ewart J.A.D. Glutenins and gliadins Electrophoretic studies. J. Sci. Food Agric, 1966, 17: 34-38
    [54] Feldman M. New evidence on the origin of the B genome of wheat In:Ramanujan S (ed) Proc 5th Int Wheat Genet Symp,vol. 1. Kapoor Art Press, New Delhi, 1978. 120-152
    [55] Feldman, M., and Kislev, M. Ae. searsii, a new species of section Sitopsis (Platystachys). Israel J. Bot. 1977, 26: 190-201.
    [56] Filatenko A, Hammer K. New descriptions of hulles wheats on the infraspecific level. Genetic Resources and Crop Evolution, 1997,44:285-288.
    [57] Friebe, B., Badaeva, E.D., Hammer, K., Gill, B.S. 1996a. Standard karyotypes of Aegilops uniaristata, Ae. mutica and Ae.comosa ssp. comosa and ssp. heldreichii (Poaceae). Pl. Syst. Evol. 202: 199-210.
    [58] Galterio, G., Cardarilli, D., Codianni, P., Acquistucci, R. Evaluation of chemical and technological characteristics of new lines of Triticum turgidum ssp dicoccum. Nahrung 2001,45:263-266
    [59] Gianibelli M C, Larroque O R, MacRitchie F, Wrigley C.W. Biochemical, genetic, and molecular characterization of wheat endosperm proteins. Am. Assoc. Cereal Chem., Inc. Online review, 2001: 1-20.
    [60] Gianibelli M.C, Larroque O. R, MacRitchie F, Wrigley C W. Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal Chem, 2001, 76(6): 635-644
    [61] Gianibelli, M.C., Gupta, R.B., MacRitchie, F., 2000. HMW and LMW subunits of glutenin of Triticum tauschii, the D genome donor to hexaploid wheat. In: Schofield, J.D., (Ed.), Wheat Structure, Biochemistry and Functionality, The Royal Society of Chemistry, UK, pp. 139-145
    [62] Gianibelli, M.C., Masci, S., Larroque, O.R., Lafiandra, D., MacRitchie, F. Biochemical characterisation of a novel polymeric protein subunit from bread wheat {Triticum aestivum L.). Cereal Chemistry 2002a, 35: 265-276
    [63] Gianibelli, M.C., Masci, S., Larroque, O.R., Lafiandra, D., MacRitchie, F. Biochemical characterisation of a novel polymeric protein subunit from bread wheat (Triticum aestivum L.). Cereal Chemistry 2002a. 35: 265-276
    [64] Gianibelli, M.C., Wrigley, C.W. MacRitchie, F. Polymorphism of low Mr Glutenin subunits in Triticum tauschii. Cereal Chemistry 2002b, 35: 277-286
    [65] Gianibelli, M.C., Wrigley, C.W., MacRitchie, F. Polymorphism of low Mr Glutenin subunits in Triticum tauschii. Cereal Chemistry 2002b, 35: 277-286
    [66] Gill, B. S., Kimberg. Giemsa C-banding and the evolution of wheat. Proc. Natl. Acad. Sci. US. 1974 71:4086-4090.
    [67] Giorgi, B., Bozzini, A. Karyotype analysis in Triticum: HI. Analysis of the presumed diploid progenitors of polyploidy wheats. Caryologia, 1969 22(3): 279-287.
    [68] Gu Y Q, Coleman D D, Kong X, Anderson O.D. Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four Triticeae genomes. Plant Physiol., 2004b, 135: 459-470.
    
    [69] Gu Y.Q., Crossman C., Kong X.Y., Luo M.C., You F.M., Coleman-Derr D., Dubcovsky J., Anderson O.D.. Genomic organization of the complex α-gliadin gene loci in wheat. Theor. Appl. Genet, 2004a, 109: 648-657.
    [70] Gupta R B, Shepherd K W. Production of multiple wheat-rye IRS translocation stocks and genetic analysis of LMW subunits of glutenin and gliadins in wheat using these stocks. Theor. Appl. Genet., 1993, 85: 719-728.
    [71] Gupta, R.B., MacRitchie, F. Allelic variation at gluten subunit and gliadin loci, Glu-1, Glu-3 and Gli-1 of common wheats. II. Biochemical basis of the allelic effects on dough properties. Cereal Chemistry 1994, 19: 19-29
    [72] Gupta, R.B., Paul, J.G., Cornish, G. B., Palmer, G. A., Bekes, F., Rathjen, A.J. Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3 and Gli-1, of common wheats. I. Its additive and interaction effects on dough properties. Journal of Cereal Science 1994, 19:9-17
    [73] Gupta, R.B., Shephard, K.W. Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutelin. 2. Genetic control of the subunits in species related to wheat. Theoretical and Applied Genetics 1990, 80: 183-187
    [74] Gupta, R.B., Singh, N.K., Shepherd, K.W. The cumulative effect ofallelic variation in LMW and HMW glutenin subunits on dough properties in the progeny of two bread wheats. Theoretical and Applied Genetics 1989, 77: 57-64
    [75] Hadlaczky, G.Y, Koczka, K. C-banding karyotype of rye from hexaploid triticale. Cereal Res Com, 1974 2 (4), 193-197.
    [76] Hassan, M.D., Gustafson, J.P. Molecular evidence for the Triticum speltoides as a B- genome progenitor of wheat {Triticum aestivum) 1. Genome, 1996 39: 543-548.
    [77] Heun M., Schafer R.P., Klawan D. Site of Einkorn wheat domestication identified by DNA fingerprinting. Science, 1997,278:1312-1314.
    [78] Hisa C C, Anderson O D. Isolation and characterization of wheat ω-gliadin genes. Theor. Appl. Genet., 2001, 103: 37-44.
    [79] Hsam, S.L.K., Kieffer, R., Zeller, F.J. Significance of Aegilops tauschii glutenin genes on breadmaking properties of wheat. Cereal Chemistry 2001, 78: 521-525
    [80] Ikeda, T.M., Nagamine, T., Fukuoka, H., Yano, H. Identification of new low-molecular-weight glutenin subunit genes in wheat. Theoretical and Applied Genetics 2002, 104: 680-687
    
    [81] Jaaska V. Electrophoretic survey of seedling esterases in wheats in relation to their phylogeny. Theoretical and Applies Genetics , 1980, 56:273-284.
    
    [82] Jaaska V. Electrophoretic survey of seedling esterases in wheats in relation to their phylogeny. Theor. Appl. Genet., 1980 56:273-284
    
    [83] Jackson E A, Morel M H, Sontag S T, Branlard G., Metakovsky E.V., Redaelli R. Proposal for combination the classification system of alleles of Gli-1 and Gli-3 loci in bread wheat (Triticum aestivum L.). J. Genet. Breed, 1996,50: 321-336.
    
    [84] Jackson E.A., Holt L.M., Payne P.I. Characterization of high-molecular-weight gliadin and low-molecular-weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and the chromosomal localization of their controlling genes. Theor. Appl. Genet., 1983,66:29-37
    [85] Jackson, E.A., Holt, L.M., Payne, P.I. Glu-B2, a storage protein locus controlling the D group of LMW glutenin subunits in bread wheat {Triticum aestivum). Genetical Research 1985,46: 11-17
    
    [86] Jaroslava, O., Irena, N., Ladislav, K., Ladislav, D. Characterisation of variability at Glu-3 oci in some European wheat obsolete cultivars and landraces using PCR. Cereal Research Communications 2001,29: 205-213
    [87] Jenkins, J.A.. Chromosome homologies in wheat and Aegilops. Am. J. Bot. 1929 16: 238-245.
    
    [88] Johal J., Gianibelli M.C., Rahman S., Morell M.K., Gale K.R. Characterization of low- molecular- weight glutenin genes in Aegilops tauschii. Theor Appl Genet 2004, 109: 1028-1040
    [89] Johansson, E. Quality evaluation of D-zone omega gliadins in wheat. Plant Breeding 1996,115:57-62
    [90] Johnson B. L. Protein electrophoretic profiles and the origin of the B genome of wheat. Proc. Natl. Acad. Sci. USA 1972 69: 1398-1402.
    [91] Kasarda D D, Autran J C, Lew E J L, Nimmo C.C., Shewry P.R. N-terminal amino acid sequences of ω-gliadins and ω-secalins; implications for the evolution of prolamin genes. Biochim. Biophys. Acta., 1983,747: 138-150.
    [92] Kasarda D D, Bernardin J E, Nimmo C C. Wheat proteins in Advances in Cereal Science and Technology. Eds. Promeranz Y. St. Paul, MN. Am. Assoc. Cereal Chem., 1976, 1: 158-236.
    [93] Kasarda D D. Glutenin structure in relation to wheat quality. In: Wheat is unique. Eds. Pomeranz Y. Am. Assoc. Cereal Chem., 1989: 277-302.
    [94] Kasarda, D.D., 1989. Glutenin structure in relation to wheat quality. In: Pomeranz, Y., (Ed.), Wheat is Unique, American Association of Cereal Chemistry, St Paul, MN, pp. 277-302
    [95] Kasarda, D.D., Tao, H.P., Evans, P.K., Adalsteins, A.E., Yuen, S.W. Sequencing of protein from a single spot of a 2-D gel pattern: Nterminal sequence of a major wheat LMW-glutenin subunit. Journal of Experimental Botany 1988, 39: 899-906
    [96] Keck, B., Kohler, P., Wieser, H. Disulphide bonds in wheat gluten. Cystine peptides derived from gluten proteins following peptic and thermolytic digestion. Zeitschrift fur Lebensmittel-Untersuchung und-Forschung 1995,200: 432-439
    [97] Kerby K, Kuspira J. Cytological evidence bearing on the origin of the B genome in polyploid wheats. Genome 1988, 30: 36-43
    [98] Kerby K, Kuspira J. Cytological evidence bearing on the. origin of the B genome in polyploid wheats. Genome 1988 30 : 36—43.
    [99] Kerby, K., Kuspira, J. The phylogeny of the polyploidy wheats Triticum aestivum (bread wheat) and Triticum turgidum (macaroni wheat). Genome, 1987,29: 722-737.
    [100] Khatkar B S, Fido R J, Tatham A S, Schofield J.D. Functional properties of wheat gliadins. I. effects on mixing characteristics and bread making quality. J. Cereal Sci., 2002a, 35: 299-306.
    [101] Kihara H.. Considerations on the evolution and distribution of Aegilops species based on the analyser-method. Cytologia 1954 19: 336-357.
    [102] Kihara H,. Discovery of the DD-analyzer in wheat (in Japanese). Agr. Hort. Tokyo 1944 19: 889-890.
    [103] Kihara H., Cytologische und genetische Studien bei wichtigen Getreidearten mit besonderer Riicksicht auf das Verhalten der Chromosomen und. die Sterilitat in den Bastarden. Mem. Coll. Sci. Kyoto Imp. Univ. Series B1 1924:1-200.
    [104] Kihara, H. Consideration on the evolution and the distribution of Aegilops based on the analyser method. Cytologia, 1954 19: 336-357.
    [105] Kimber G, Athwal R S. A reassessment of the course of evolution of wheat. Proc Natl Acad Sci USA. 1972 69:912-915.
    [106] Kimber G., Sallee.P.J,. Bates L.S. A polyhaploid of Triticum turgidum. Cereal Research Commun. Vol. 1978 6: 149-155.
    [107] Kimber, G., Feldman, M. Wild wheat. An introduction. Special report of the College of Agriculture. University of Missouri, Columbia, Mo. 1987.
    
    [108] Kitchen K.A. Ramesside Inscriptions: Historical and Biographical VI. Oxford 1983
    [109] Kohler, P.,Belitz, H.D.,Wieser H., Disulphide bonds in wheat gluten. Further cystine peptides from high molecular weight (HMW) and low molecular weight (LMW) subunits of glutenin and from γ-gliadins. Zeitschrift fu¨r Lebensmittel-Untersuchung und -Forschung 1993,196: 239-247
    [110] Kreis M., Shewry P.R, Forde B.G., Forde J., Miflin B.J. Structure and evolution of seed storage proteins and their genes with particular references to those of wheat, barley and rye. In: Oxford Surveys of Plant and Molecular Cell Biology. Miflin BJ, ed. Oxford University Press: London. 1985. pp: 253-317
    [111] Kushinir.U., Halloran G.M. Evidence for Aegilops sharonensis Eig as the donor of the B genome of wheat. Genetics 1981 99: 495-512.
    [112] Kyoko Y., Taihachi K. Intra- and interspecific phylogenetic relationship among diploid triticum-aegilops species (poaceae) based on base-pair substitutions, indels, and microsatellites inchloroplast noncoding sequences. American Journal of Botany 92(11): 2005.1887-1898.
    [113] Ladogina, M.P., Pomortsev, A.A., Netsvetaev, V.P., Sozinov, A.A. Identification of three loci for low-molecular-weight glutenin subunits in barley Hordeum vulgare L. Genetika 1989,25:1818-1826
    [114] Lafiandra D, Kasarda D D, Morris R. Chromosomal assignment of genes coding for the wheat gliadin protein components of the cultivars 'Cheyenne' and 'Chinese Spring' by two-dimensional (two-pH) electrophoresis. Theor. Appl. Genet., 1984, 68: 531-539.
    
    
    
    [115] Lafiandra, D., Margiotta, B., Colaprico, G., Masci, S., Roth, M.R., MacRitchie, F., 2000.Introduction of the D-genome related highand low-Mr glutenin subunits into durumwheat and their effect on technological properties. In: Shewry, P.R., Thatam, A.S. (Eds.),Wheat Gluten, Royal Society of Chemistry, UK, pp. 51-54
    
    [116] Lee Y. K., Ciaffi M., Appels R., Morell M.K. The low-molecular-weight glutenin subunitproteins of primitive wheats. II. The genes from A-genome species. Theor Appl Genet1999b, 98: 126-134
    
    [117] Lee Y-K, Ciaffi M, Appels R, Morell MK. The low-molecular-weight glutenin subunitproteins of primitive wheats. II. The genes .from A-genome species. Theor Appl Genet1999b, 98: 126-134
    
    [118] Lee, Y.K., Bekes, F., Gras, P., Ciaffi, M., Morell, M.K., Appels, R. Thelow-molecular-weight glutenin subunit proteins of primitive wheats. IV. Functionalproperties of products from individual genes. Theoretical and Applied Genetics 1999a, 98:149-155
    
    [119] Leon A, Rosell C M, de Barber C B. A differential scanning calorimetry study of wheatproteins. Eur. Food Res. Technol., 2003. Vol. 217, p. 13-16.
    
    [120] Lew E J L, Kuzmicky D D, Kasarda D D. Characterization of low-molecular- weightglutenin subunits by reversed-phase high-performance liquid chromatography, sodiumdodecyl sulfate-polyacrylamide gel electrophoresis, and N-terminal amino-acidsequencing. Cereal Chem., 1992, 69: 508-515.
    
    [121] Lew, E.J.L., Kuzmicky, D.D., Kasarda, D.D. Characterization of low- molecular- weightglutenin subunits by reversed-phase highperformance liquid chromatography, sodiumdodecyl sulfate-polyacrylamide gel electrophoresis, and N-terminal amino acidsequencing. Cereal Chemistry 1992, 69: 508-515
    
    [122] Lilienfeld FA and Kihara H. Genomeanalyse bei Triticum und Aegilops. V. Triticumtimopheevi Zhuk.Cytologia 1934 6: 87-122.
    
    [123] Liu, C.-Y. Identification of a new low-Mr glutenin subunit locus on chromosome 1B ofdurum wheat. Journal of Cereal Science 1995,21: 209-213
    
    [124] Liu, C.-Y, Shepherd, K.W. Inheritance of B-subunits of glutenin and ω-and γ-gliadins intetraploid wheats. Theoretical and Applied Genetics 1995, 90: 1149-1157
    
    [125] Liu, C.-Y., Shepherd, K.W. Variation of B subunits of glutenin in durum, wild and less-widely cultivated tetraploid wheats. Plant Breeding 1996,115: 172-178
    [126] Long H., Wei Y.M., Yan Z.H., Baum B., Nevo E. and Zheng Y.L. Classification of wheat Low-molecular-weight glutenin subunit genes and its chromosome assignment by developing group-specific primers. Theor. Appl. Genet., 2005,111(7): 1251-1259
    [127] Long H., Wei Y.M., Yan Z:H., Zheng Y.L. Molecular cloning of a novel low-molecular-weight glutenin subunit gene from wheat (Triticum aestivum L.) variety "chuannong 16". Acta Agro. Sin., 2004, 30: 1179-1184
    [128] Long, H, Wei, Y.M, Yan, Z.H., Baum B., Nevo E. and Zheng Y.L , Analysis and Validation of Genome-Specific DNA Variations in 5' Flanking Conserved Sequences of Wheat Low-Molecular-Weight Glutenin Subunit Genes, Sci. China Ser. C, 2006,vol. 49, pp. 322-331.
    [129] Maan.S, Lucken K.A. Nucleo-cytoplasmic interaction involving Aegilops cytoplasms and Triticum genomes. J. Heredity 1971 62: 149-152.
    [130] Maestra B, Naranjo T. Homoeologous relationships of Aegilops speltoides chromosomes of bread wheat. Theor Appl Genet. 1998. 97:181-186
    [131] Maestra B., Naranjo T. Homoeologous relationships of Triticum sharonense Chromosomes to T. aestivum. Theor Appl Genet. 1997 94 : 657-663
    [132] Maruyama N., Ichise K., Katsube T., Kishimoto T., Kawase S., Matsumura Y., Takeuchi Y., Sawada T., Utsumi S.. Identification of major wheat allergens by means of the Escherichia coli expression system. J Bio chem 1998,255: 739-745
    [133] Masci S, Egorov T A, Ronchi C, Kuzmicky D., Kasarda D.D., Lafiandra D. Evidence for the presence of only one cysteine residue in the D-type low-molecular-weight subunits of wheat glutenin. J. Cereal Sci., 1999,29: 17-25.
    [134] Masci S, Rovelli L, Kasarda D D, Vensel W.H., Lafiandra D. Characterization and chromosomal localization of C-type low-molecular-weight glutenin subunits in the bread wheat cultivar Chinese Spring. Theor. Appl. Genet., 2002,104: 422-428.
    [135] Masci S, Rovelli L, Kasarda D D, Vensel W.H., Lafiandra D. Characterization and chromosomal localization of C-type low-molecular-weight glutenin subunits in the bread wheat cultivar Chinese Spring. Theor. Appl. Genet, 2002,104:422-428.
    [136] Masci, S., D'Ovidio, R., Lafiandra, D., Kasarda, D.D. Characterization of a low-molecular-weight glutenin subunit gene from bread wheat and the corresponding protein that represents a major subunit of the glutenin polymer. Plant Physiology, 1998, 118: 1147-1158.
    [137] Masci, S., D'Ovidio, R., Scossa, E, Patacchini, C., Lafiandra, D., Anderson, O.D., Blechl, A.E. Production and characterization of a transgenic bread wheat line over-expressing a low-molecular-weight glutenin subunit gene. Molecular Breeding 2003, 12: 209-222
    [138] Masci, S., Egorov, T.A., Ronchi, C., Kuzmicky, D.D., Kasarda, D.D., Lafiandra, D. Evidence for the presence of only one cysteine residue in the D-type low molecular weight subunits of wheat subunits of wheat glutenin. Journal of Cereal Science 1999, 29: 17-25
    [139] Masci, S., Lafiandra, D., Porceddu, E., Lew, E.J.L., Tao, H.P., Kasarda, D.D. D-glutenin subunits: N-terminal sequences and evidence for the presence of cysteine. Cereal Chemistry 1993,70:581-585
    [140] Masci, S., Lew, E.J.L., Lafiandra, D., Porceddu, E., Kasarda, D.D. Characterization of low-molecular-weight glutenin subunits in durum wheat by RP-HPLC and N-terminal sequencing. Cereal Chemistry 1995, 72: 100-104
    [141] Masci, S., Rovelli, L., Kasarda, D.D., Vensel, W.H., Lafiandra, D. Characterisation and chromosomal localization of C-type low-molecular-weight glutenin subunits in the bread wheat cultivar Chinese Spring. Theoretical and Applied Genetics 2002, 104: 422-428
    [142] Masci, S., Rovelli, L., Monari, A.M., Pogna, N.E., Boggini, G., Lafiandra, D., Characterization of a LMW-2 type durum wheat cultivar with poor technological properties. In: Shewry, P.R., Thatam, A.S. (Eds.), Wheat Gluten, The Royal Society of Chemistry, UK, 2000a. pp. 16-19
    [143] Masci, S.M., Porceddu, E., Colaprico, G., Lafiandra, D. Comparison of the B and D subunits of glutenin encoded at the Glu-D3 locus in two biotypes of the common wheat cultivar Newton with different technological characteristics. Journal of Cereal Science 1991, 14: 35-46
    [144] McFadden E.S , Sears E.R. The origin of T. spelta and its free-threshing hexaploid relatives. J. Hered. 1946 37: 81-89,107-116.
    [145] McFadden, E.S., Sears, E.R. The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 1946.37:81-89,107-116.
    [146] Metakovskii, E.V., Wrigley, C.W., Bekes, F., Gupta, R.B. Gluten polypeptides as useful genetic markers of dough quality in Australian wheats. Australian Journal of Agricultural Research 1990,41: 289-306
    [147] Metakovsky E V, Branlard G. Genetic diversity of French common wheat germplasm based on gliadin alleles. Theor. Appl. Genet., 1998, 96: 209-218.
    [148] Metakovsky E V, Branlard G., Chernakov V M, Upelniek V.P., Redaelli R., Pogna N.E.Recombination mapping of some chromosome 1A-, 1B-, 1D- and 6B-controlled gliadins and low-molecular-weight glutenin subunits in common wheat. Theor. Appl. Genet, 1997, 94: 788-795.
    [149] Metakovsky E.V, Branlard G., Chernakov V.M, Upelniek V.P., Redaelli R., Pogna N.E. Recombination mapping of some chromosome 1A-, 1B-, 1D- and 6B-controlled gliadins and low-molecular-weight glutenin subunits in common wheat. Theor. Appl. Genet, 1997, 94: 788-795.
    [150] Mori, N, Liu, Y.G., Tsunewaki, K. Wheat phylogeny determined by RFLP analysis of nuclear DNA. 2 Wild tetraploid wheats. Theor. Appl. Genet. 1995 90: 129-134.
    [151] Mtiller S W, Wieser H. The location of disulphide bonds in a-type gliadins. J. Cereal Sci., 1995,22:21-27
    [152] Nakai Y. Isozyme variations in Aeglops and Triticum, IV the origin of the common wheats revealed from the study on esterase isozymes in synthesized hexaploid wheats[J]. Jpn. J.Genet, 1979, 54(3): 175-189
    [153] Naoki M, Naohiko T. Miyashita, Toru T., Chiharu N. Variation in COXII intron in the wild ancestral species of wheat. Hereditas 1997 126: 281-288
    
    [154] Nielson H.C., Beckwith A.C. Wall J.S. Effect of disulphide bond cleavage on wheat gliadins fractions obtained by gel filtration. Cereal Chem, 1968,45: 37-47
    [155] Nieto-Taladriz, M.T, Rodriguez-Quijano, M, Carrillo, J.M. Biochemical and genetic characterization of a D glutenin subunit encoded at the Glu-B3 locus. Genome 1998, 41: 215-220
    [156] Nieto-Taladriz, M.T, Ruiz, M, Martinez, M.C., Vazquez, J.F, Carrillo, J.M. Variation and classification of B low-molecular-weight glutenin subunit alleles in durum wheat. Theoretical and Applied Genetics 1997, 95: 1155-1160
    [157] Nishikawa K, Furuta Y, Yamada T. Genetic studies of α-amylase isozymes in wheat VII. Variation in diploid ancestral species and phylogeny of tetraploid wheat. Japan Journal of Genetics, 1992, 67:1-15.
    [158] Nishikawa K, Tatsuo O. Chain dimension and effective potential energy of globular proteins macromolecules. 1978; 11(4); 644-647
    [159] Nishikawa K. Species relationship of wheat and its putative ancestors as viewed from isozyme variation. Proc 6th Intl Wheat Genet Symp, 1983, Kyoto, 59-63.
    [160] Obukhova, L.V., Generalova, G.V., Agafonov, A.V., Kumarev, V. P., Popova, N.A., Gulevich, V.V. A comparative molecular genetic study of glutelins in wheat and Elymus. Genetika 1997, 33: 1001-1004
    [161] Odintsova, T., Egorov, T., Musolyamov, A., Tatham, A., Shewry, P., Hojrup, P., Roepstorff, P., 2000. Isolation and characterization of the HMW glutenin subunits 17 and 18 and D glutenin subunits from wheat isogenic line L88-31. In: Shewry, P.R., Thatam, A.S. (Eds.), Wheat Gluten, Royal Society of Chemistry, UK, pp. 171-174
    [162] Ogihara Y, Tsunewaki K. Diversity and evolution of chloroplast DNA in Triticum and Aegilops as revealed . Japan Journal of Genetics, 1982, 57: 371-396.
    [163] Okita T.W. Identification and DNA sequence analysis of a γ - gliadin cDNA plasmid from winter wheat. Plant Mol Biol 1984, 3: 325-332
    [164] Okita, T., Cheesbrough, V., Reeves, C.D. Evolution and heterogeneity of the alpha-/beta-type and gamma-type gliadin DNA sequences. Journal of Biological Chemistry 1985,260: 8203-8213
    [165] Ornebro J, Nylander T, Eliasson A C, Shewry P.R., Tatham A.S., Gilbert S.M.. Adsorption of the high molecular weight glutenin subunit 1Dx5 compared to the 58-kDa central repetitive domain and α-gliadins. J. Cereal Sci., 2001, 34: 141-150.
    [166] Ovesna, J., Novakova, I., Kucera, L., Dotlacil, L. Characterisation of variability at Glu-3 loci in some European wheat obsolete cultivars and landraces using PCR. Cereal Research Communications 2001,29: 205-213.
    [167] Pagnotta, M.A., Nevo, E., Beiles, A., Porceddu, E. Wheat storage proteins: glutenin diversity in wild emmer, Triticum dicoccoides, in Israel and Turkey. 2. DNA diversity detected by PCR. Theoretical and Applied Genetics 1995, 91: 409-414
    [168] Patacchini, C., 2003. Structural characteristics of low molecular weight glutenin subunits and their influence in determining technological properties of durum wheat. PhD Dissertation Thesis. University of Verona, Italy.
    [169] Payne P I, Jackson E A, Holt L M, Law C.N. Genetic linkage between endosperm storage protein genes on each of the short arms of chromosomes 1A and 1B in wheat. Theor. Appl. Genet., 1984, 67: 235-243.
    [170] Payne P I. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu. Rev. Plant Physiol, 1987, 38:141-153.
    [171] Payne P. Corfield K.G. Subunit composition of wheat glutenin proteins, isolated by gel filtration in a dissociating medium. Planta, 1979,145: 83-88
    [172] Payne, P.I., Holt, L.M., Jarvis, M.G., Jackson, E.A. Twodimensional fractionation of the endosperm proteins of bread wheat (Triticum aestivum): biochemical and genetic studies. Cereal Chemistry 1985, 62: 319-326
    [173] Payne, P.I., Jackson, E.A., Holt, L.M. The association between γ-gliadin 45 and gluten strength in durum wheat varieties. A direct causal effect on the result of genetic linkage. Journal of Cereal Science 1984,2: 3-81
    [174] Payne, P.I., Seekings, J.A., Worland, A.J., Jarvis, M.G., Holt, L.M. Allelic variation of glutenin subunits and gliadins and its effect on breadmaking quality in wheat: Analysis of F5 progeny from Chinese Spring X Chinese Spring (Hope 1A). Journal of Cereal Science 1987a, 6: 103-118
    [175] Pena, R.J., Zarco-Hernandez, J., Amaya-Celis, A., Mujeeb-Kazi, A. Relationships between chromosome 1B-encoded glutenin subunit compositions and bread-making quality characteristics of some durum wheat (Triticum turgidum) cultivars. Journal of Cereal Science 1994,19: 243-249
    [176] Pestsova E.G., Goncharov N.P., Salina E.A. Elimination of a tandem repeat of telomeric heterochromatin during evolution of wheat. Theor. Appl. Genet. 1998. V. 97. P. 1380-1386.
    [177] Pfluger, L.A., D'Ovidio, R., Margiotta, B., Pena, R., Mujeeb-Kazi, A., Lafiandra, D. Characterisation of high- and low-molecular weight glutenin subunits associated to the D genome of Aegilops tauschii in a collection of synthetic hexaploid wheats. Theoretical and Applied Genetics 2001,103: 1293-1301
    [178] Pitts, E.G., Rafalski, J.A., Hedgcoth, C. Nucleotide sequence and encoded amino acid sequence of a genomic gene region for a low molecular weight glutenin. Nucleic Acids Research 1988,16: 11376
    [179] Pogna, N.E., Autran, J.C., Mellini, F., Lafiandra, D., Feillet, P. Chromosome IB-encoded gliadins and glutenin subunits in durum wheat: genetics and relationship to gluten strength. Journal of Cereal Science 1990, 11: 15-34
    [180] Pogna, N.E., Lafiandra, D., Feillet, P., Autran, J.C., Evidence for a direct causal effect of low molecular weight glutenin subunits on gluten viscoelasticity in durum wheats. Journal of Cereal Science 1988, 7: 211-214
    [181] Qi P F, Wei Y M, Yue Y W, Yan Z.H., Zheng YL. Biochemical and molecular characterization of gliadins. Mol. Biol., 2006,40(5): 713-723.
    [182] Riley R, Unrau J, Chapman V. Evidence on the origin of the B genome of wheat. J. Hered.,1958,49:91-98
    [183] Riley, John G. Optimal residential density and road transportation, Journal of Urban Economics, Elsevier, 1974, 1(2), 230-249.
    [184] Riley, R ., Uurau J. and Chapman V. Evidence on the origin of the B genome of wheat. J. Heredity 1958, 49: 91-98.
    [185] Romanova Y.A., Gubareva N.K., Konarev A.V., Mitrofanova O.P., Lyapunova O.A., Anfilova N.A., Strel'chenko. Analysis of gliadin polymorphism in a Triricum spelta L. collection. Rus. J. Genet., 2001, 37(9): 1054-1060. Translated from Genetika, 2001, 37(9): 1258-1265.
    [186] Ruiz, M., Carrillo, J.M. Gli-B3/Glu-B2 encoded prolamins do not affect selected quality properties in the durum wheat cross 'Abadia' X 'Mexicali 75'. Plant Breeding 1996, 115:410-412
    [187] Ruiz, M., Carrillo, J.M. Linkage relationships between prolamin genes on chromosomes 1A and 1B of durum wheat. Theoretical and Applied Genetics 1993, 87: 353-360
    [188] Ruiz, M., Carrillo, J.M. Relationships between different prolamin proteins and some quality properties in durum wheat. Plant Breeding 1995,114: 40-44
    [189] Sabelli, P., Shewry, P.R. Characterization and organization of gene families at the Gli-1 loci of bread and durum wheat. Theoretical and Applied Genetics 1991, 83: 428-434
    [190] Sakamura T. Kurze Mitteilung iiber die Chromosomenzahlen und die Verwands chafts verhaltnisse der Triticum-Arten. Bot. Mag. Tokyo 1918 32:I51 -154.
    [191] Salcedo G.., Prada J., Aragoncillo C. Low-molecular-weight gliadin-like proteins from wheat endosperm. Phytochemistry, 1979,18: 725-727.
    [192] Sarkar P, Stebbins G.L. Morphological evidence concerning the origin of the B genome in wheat. Am J Bot 1956,43: 297-304.
    [193] Sasanuma, T., Miyashita, N.T., and Tsunewaki, K. Wheat phylogeny determined by RFLP analysis of nuclear DNA. 3. Intra and interspecific variations of five Aegilops Sitopsis species.Theor. Appl. Genet. 1996, 92: 928-934.
    
    [194] Sax K,. The behavior of the chromosomes on fertilization.Genetics 1918, 3: 309-327.
    [195] Scheets, K., Hedgcoth, C. Nucleotide sequence of a γ-type gene: comparison with other γ-type sequences show the structure of γ-gliadin genes and the general primary structure of γ-gliadins. Plant Science 1988, 57: 141-150
    [196] Schofield J D, Bottomley R C, Timms M F, Booth M.R. The effect of heat on wheat gluten and the involvement of sulphydryl-disulphide interchange reactions. J. Cereal Sci., 1983,1,241-253.
    
    [197] Sear E.R. 1956 Neatby's virescent. Wheat information Service 3:5
    [198] Sears E. R. Wheat Cytogenetics. Ann. Rev. Genet. 1969, 3:451-468
    [199] Shands H, Kimber G, Reallocation of the genome of Triticum timopheevi Zhuk. Proc. IV Int.Wheat Genet. Symp. Missouri. 1973,101-108.
    [200] Shewry P.R., Tatham A.S., Lazzeri P. Biotechnology of wheat quality. J. Sci. Food Agric, 1997, 73: 397-406.
    [201] Singh, N.K., Shepherd, K.W. Linkage mapping of genes controlling endosperm storage proteins in wheat. 1. Genes on the short arms of group 1 chromosomes. Theoretical and Applied Genetics 1988, 75: 628-641
    [202] Sreeramulu, G., Singh, N.K. Genetic and biochemical characterization of novel low molecular weight glutenin subunits in wheat (Triticum aestivum L.). Genome 1997, 40: 41-48
    [203] Takumi S. Nulclear genome differentiation between species of einkom wheat as revealed by RFLP analyses. Japan Journal of Breeding, 1991,41:464-465.
    [204] Tanaka R. Matsuda T. A highoccurrence of accessory ahromosomal type in tainia laxiflora, Orchidaceae. Bot. Mag. Tokyo 1972, 85: 43-49
    [205] Tao, H.P., Kasarda, D.D. Two-dimensional gel mapping and Nterminal sequencing of LMW-glutenin subunits. Journal of Experimental Botany 1989, 40: 1015-1020
    [206] Tatham A S, Shewry P R. The S-poor prolamins of wheat, barley and rye. J. Cereal Sci., 1995,22:1-16.
    [207] Tranquilli, G., Cuniberti, M., Gianibelli, M.C., Bullrich, L., Larroque, O.R., MacRitchie, F., Dubcovsky, J. Effect of Triticum monococcum glutenin loci on cookie making quality and on predictive tests for bread making quality. Journal of Cereal Science 2002, 36: 9-18
    [208] Tsujimoto, H. Gametocidal genes in wheat and its relatives.IV. Functional relationships between six gametocidal genes. Genome, 1995, 38: 283-289.
    [209] Tsunewaick I, Ocihara Y. The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops species. II .On the origin of polyploidy wheat cytoplasms as suggested by chloroplast DNA restriction fragment patterns. Genetics. 1983, 104:155-171.
    [210] Upadhya, M., Swaminathan M. S.. Deoxyribonucleic acid and the ancestry of wheat. Nature 1963, 200: 713-714.
    [211] Upadhyal M. D., Swaminathanl M. S. Genome analysis in Triticum zhukovskyi, a new hexaploid wheat. Chromosoma 1963 (6) 14: 589-600
    [212] Van Campenhout S, Vander Stappen J, Sagi L, Volckaert G. Locus-specific primers for LMW glutenin genes on each of the group 1 chromosomes of hexaploid wheat. Theor Appl Genet 1995, 91:313-319
    [213] Van Slageren, M.W. Wild wheats: a monograph of Aegilops L., and Amblyopyrum (Jaub & Spach) Eig. (Poaceae).Wageningen Agricultural University Papers. 1994.
    [214] Vensel, W.H., Adalsteins, A.E., Kasarda, D.D. Purification and characterization of the glutenin subunits of Triticum tauschii, progenitor of the D genome in hexaploid bread wheat. Cereal Chemistry 1997, 74: 108-114
    [215] Vittozzi L., Silano V. The phylogenesis of protein-amylase inhibitors from wheat seed and speciation of polyploidy wheat. Theoretical Applied Genetics, 1976,48:279-284.
    [216] Wagenaar, E.B. Studies on the genome constitution of Triticum timopheevi Zhuk. I. Evidence for genetic control of meiotic irregularities in tetraploid hybrids. Can. J. Genet. Cytol. 1961, 3: 47-60.
    [217] Waines J.G., Johnson B.L. Genetic differences between Aegilops longissima, A. sharonensis, and A. bicornis. Can. J. Genet. Cytol. 1972, 14: 411-416.
    
    
    
    [218] weight glutenin subunits by reversed-phase high-performance liquid chromatography,sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and N-terminal amino-acidsequencing. Cereal Chem., 1992,69: 508-515.
    
    [219] Wicker, T., Yahiaoui, N., Guyot, R., Schlagenhauf, E., Liu, Z.D., Dubcovsky, J., Keller, B.Rapid genome divergence at orthologous low molecular weight glutenin loci of the A andA~(m) genomes of wheat. The Plant Cell, 2003, 15: 1186-1197
    
    [220] Wieser, H., Kieffer, R. Correlation of the amount of gluten protein types to thetechnological properties of wheat flours determined on a micro-scale. Journal of CerealScience 2001,34: 19-27
    
    [221] Woychik J.H., Boundy J.A., Dimler R.J. Starch gel-electrophoresis of wheat glutenproteins with concentrated urea. Arch. Biochem. Biophys., 1961, 94:477-482.
    
    [222] Zhang W, Gianibelli M.C, Rampling L.R., Gale K.R. Characterization and markerdevelopment for low molecular weight glutenin genes from Glu-A3 alleles of breadwheat (Triticum aestivum L). Theor Appl Genet 2004, 108: 1409-1419
    
    [223] Zhukovsky P.M.. A critical systematic survey of the species of the genus Aegilops LBulletin of Applied Botany and Selection Plant Breeding 1928,18: 497-609.
    
    [224]安祝平, 宋文芹, 李秀兰, 陈瑞阳.山羊草属核型分析及其与小麦属的进化关系 武汉植物学研究1985 3(4):313-318
    
    [225]陈瑞阳,宋文芹,安祝平.小麦属核型分析和BG染色体组及4A染色体的起源武汉 植物学研究1985 3(4):303-312
    
    [226]董玉琛、郑殿升。中国小麦遗传资源[M]。北京:中国农业出版社,1998。
    
    [227]黄卓,龙海,颜泽洪,魏育明,郑有良具有5+12优质亚基节节麦的低分子量浮蛋 白基因序列分析。高技术通讯,2005,15(7):67-72
    
    [228]蒋华仁,戴大庆,肖世和.小麦B染色体组起源的新探讨.四川农业大学学报.1990 8(2)1:81-86
    
    [229]颜济,小麦属的分类,植物分类学报,1983,21(3):285-296。
    
    [230]晏月明,刘广田,Prodanovic S等.小麦醇溶蛋白的遗传与品质改良.麦类作物,1998, 18(1):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700