用户名: 密码: 验证码:
人工合成小麦群体的微卫星分子标记研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在自然界,由不同物种杂交后经染色体组加倍产生的异源多倍体植物非常普遍。普通小麦(Triticum aestivum L.,染色体组为AABBDD,2n=6x=42)是异源多倍体物种的一个典型代表,它是由栽培四倍体小麦为母本与节节麦(Aegilops tauschii)为父本天然杂交,然后通过染色体自然加倍形成的新兴异源六倍体物种。模拟小麦起源过程可以合成新六倍体小麦(人工合成小麦)。近年围绕人工合成小麦进行的相关研究,已为异源多倍化起源机制探讨和异源多倍体作物种质资源开发及遗传育种研究提供了十分重要的参考信息。本研究以新合成的人工小麦群体为材料,对微卫星(SSR)产物进行了详细的比较研究,主要研究结果如下:
     利用四倍体硬粒小麦(T.turgidum L.ssp.durum)Langdon(LDN)与节节麦AS60远缘杂交,不使用幼胚培养处理获得的4个F_1杂种自交分别自发产生了20,19,23,19株具有42条染色体的F_2植株,构建了遗传研究群体。运用108对核基因组SSR引物,对4个F_1杂种、81个F_2株系及其亲本的SSR产物进行比较研究发现:(1)有105对引物得到可以辨别的扩增产物。其中,55引物对来自普通小麦或节节麦的D-基因组,46对分别来自普通小麦的A或B基因组,1对来自普通小麦的A/B/D基因组,1对来自普通小麦的A/D基因组,2对来自普通小麦的B/D基因组。在55对D-基因组引物中,18对从LDN扩增出SSR产物,表现出可转移性或非D基因组特异性,占18/55=32.7%;但是,在46对A/B基因组引物中,仅6对从Ae.tauschii AS60的D基因组扩增出SSR产物,表现出A/B基因组非特异性的占6/46=13.04%,大大低于前者;(2)105对SSR引物中,9对引物的SSR产物在合成小麦群体中发生了变异,占9/105=8.57%。其中,在55对D-基因组引物中,5对揭示了变异(5/55=9.09%),包括2对引物在四倍体小麦LDN的SSR片段在合成小麦中丢失,2对引物在合成小麦中产生新片段(2/55=3.64%),1对引物在部分F_1植株中的SSR产物消失,但在其F_2群体中又出现;在46对A/B基因组引物中,3对揭示了变异(3/46=6.52%),包括2对引物在合成小麦中产生新片段,1对引物在合成F_2群体中的一些植株带纹变小。D基因组SSR的变异高于A/B基因组的SSR变异。此外,1对A/D基因组引物从Ae.tauschii扩增的产物在部分合成的F_2植株中消失;(3)杂交世代和加倍世代都可能引起SSR变异,这样的变异可能导致新六倍体小麦群体的SSR遗传多样性增加。但是从本研究结果看,杂交世代和加倍世代引起SSR变异的频率并不高。相反,现存普通小麦存在非常高的SSR遗传多样性。根据本研究结果,讨论了现存普通小麦大量SSR遗传变异的产生等问题。
     运用24对叶绿体基因组SSR引物,对上述杂种4个F_1、81个F_2及其亲本的SSR产物进行的比较,未观察到SSR大小上的差异、新带出现或亲本带纹丢失等变异。我们对其中的4对SSR引物的扩增产物进行测序,却发现有2对引物在F_1代的部分植株发生了碱基突变,而且该突变传递到其F_2代植株。这表明,细胞质基因组在合成小麦后代出现了变异。
     因为人工合成六倍体小麦与栽培普通小麦之间存在高的多态性,所以人工合成六倍体小麦已被广泛用于遗传研究分离群体的构建。许多从普通小麦开发的特异SSR分子标记可以从供体四倍体小麦和节节麦及它们的人工合成小麦中扩增出SSR产物,表现出可转移性,这暗示对普通小麦来说是单一位点的SSR产物,在人工合成六倍体小麦可能在两个或两个以上位点存在SSR产物,表现出非特异性。在用人工合成小麦群体和SSR进行遗传分析时,这是一个容易被忽略的重要问题。但是,目前还缺乏更为有效的遗传学证据证明这种“非特异性”。本研究利用SSR标记GWM261作为一个例子,详细探讨了该问题。GWM261在普通小麦中国春扩增出了一个192 bp片段,该片段只存在于中国春的2D染色体上。该标记在具有D基因组的节节麦AS60上扩增出了一个176 bp片段。但是,染色体定位和DNA测序表明一个完全相同的176 bp片段也存在于四倍体硬粒小麦Langdon 2B染色体上。用Langdon和AS60合成的人工小麦Syn-SAU-5也出现176 bp片段。推测Syn-SAU-5的176 bp片段包含两个不同的位点,其中一个来自AS60的2D染色体,另一个来自Langdon 2B染色体上,这一推测通过Syn-SAU-5和中国春杂交产生的185个F_2分离群体得到证实。根据上述结果,如果遗传分析中把Syn-SAU-5上的Xgwm261看成一个基因位点,结果就会产生偏分离或得出不正确的结论。为避免该问题,在用人工合成小麦进行SSR多态性检测时,应将其供体四倍体小麦和节节麦也包括进来,如果四倍体小麦和节节麦不存在多态性,则这样的标记不要被采用。
Allopolyploid,derived from the duplication of diverged genomes with homoeologous relationships,has been found to be very common in plants. Common wheat(Triticum aestivum L.,2n=6x=42,genome AABBDD)is a good example of allopolyploid,which was formed by the intercrossing between T. turgidum(2n=4x=28,genome AABB)and Ae.tauschii(2n=2x=14,genome DD) followed by chromosome doubling.Common wheat has been an interesting model for the study of the organization and evolution of plant genomes.By the mimic of common wheat origination,many synthetic hexaploid wheats have been produced.In this study,we analyzed microsatellite(SSR)products of newly synthetic wheat populations.The results were as follows:
     Four F_1 hybrid plants were obtained from the cross of T.turgidum L.ssp. durum cv.Langdon(LDN)with Ae.tauschii accession AS60 without embryo rescue and hormone treatment.By selfing,20,19,23 and 19 F_2 plants with 42 chromosomes were spontaneously produced from the four F_1 plants,respectively. By comparison of nuclear SSR products among the four F_1,81 F_2 plants and their parents LDN and AS60,it was indicated that:(1)105 SSR primers can reveal useful information for further analysis,including in 55 developed from D-genome of common wheat or Ae.tauschii,46 from A or B genome,one from A/B/D genome and two from B/D genome of common wheat.Among the 55 primers developed from D-genome,18(18/55=32.7%)showed transferability and amplified SSR products from A or B genome in LDN;however,a lower transferability was shown in the 46 primers developed from A or B genome. Among the 46 primers,only 6(6/46=13.04%)amplified SSR products from D-genome of Ae.tauschii AS60;(2)most SSR markers were conserved during polyploidization events of newly synthetic wheat.Among 105 primers,only 9 (9/105=8.57%)revealed variations.Of which,five(5/55=9.09%)out of 55 primers developed from D-genome revealed variations.Two primers amplified products from LDN,which were disappeared in newly synthetic wheat.Extra products amplified by two primers were found in newly synthetic wheat. Amplified products from one primer that had disappeared in some F_1s appeared in their F_2 plants.Three(3/46=6.52%)out of 46 primers developed from A or B genome revealed variations.Extra products amplified by two primers were found in newly synthetic wheat.A smaller amplified fragment from one primer was appeared in some F_2 plants.It seemed that the variations revealed by D-genome primers were higher than A or B genome primers.In addition, amplified products from parents by one A/D primer,which were disappeared in F_2 plants;(3)SSR variations can happen in F_1 or F_2,which can lead to a higher polymorphism in newly synthetic wheat population.However,the low variation caused by the allopolyploidization process is not agreed with the very high polymorphism existed in current common wheat cultivars.Based on present results,the origin of high polymorphism in current common wheat was discussed.
     We also compared SSR patterns revealed by 24 pairs of primers from chloroplast among the four F_1,81 F_2 plants and their parents LDN and AS60. However,there were no variations in SSR patterns.Furthermore,we sequenced and then analyzed the SSR products amplified by four primers.Single base mutation from WCT4 and WCT23 was respectively found in some F_1 and corresponding F_2 plants,thus indicating that varations happened in the LDN×AS60 hybrid process.
     Due to the high polymorphisms between synthetic hexaploid wheat(SHW) and common wheat,SHW has been widely used in genetic studies.The transferability of SSRs among common wheat and its donor species,Triticum turgidum and Aegilops tauschii,and their SHW suggested the possibility that some SSRs,specific for a single locus in common wheat,will appear in two or more loci in SHWs.This is an important genetic issue when using synthetic hexaploid wheat population and SSR for mapping,however,it is largely ignored and not well verified empirically before.The present study addressed this issue by using the well-studied SSR marker GWM261 as an example.The GWM261 produced a 192 bp fragment specific to chromosome 2D in common wheat Chinese Spring,but generated a 176 bp fragment in the D genome of Ae. tauschii AS60.Chromosomal location and DNA sequence data revealed that the176 bp fragment was also donated by 2B chromosome of durum wheat Langdon.These results indicated that although synthetic hexaploid wheat Syn-SAU-5 between Langdon and AS60 appeared a single 176 bp fragment,the fragment contained two different loci,one from chromosome 2D of AS60 and the other from 2B of Langdon,and were further confirmed by the segregating analysis of SSR GWM261 in 185 plants from a F_2 population between Syn-SAU-5 and Chinese Spring.If GWM261 in Syn-SAU-5 was considered as single locus in genetic analysis,distorted segregation or incorrect conclusions would be yielded.A proposed strategy to avoid this problem is to include SHW's parental T.turgidum and Ae.tauschii in SSR analysis as control for polymorphism detection.
引文
1.陈锋,夏先春,王德森等2006.CIMMYT人工合成小麦与普通小麦杂交后代籽粒硬度puroindoline基因等位变异检测.中国农业科学,39:440-447
    2.孔令让,董玉琛,贾继增1999.小麦-山羊草双二倍体抗白粉病基因定位及其遗传转移.植物保护学报,26:116-120
    3.兰秀锦,颜济1992.中国四倍体地方小麦品种矮兰麦与中国产节节麦的双二倍体及其在育种上的利用.四川农业大学学报,10:581-585
    4.李根英,夏先春,何中虎等2007.CIMMYT新型人工合成小麦Pina和Pinb基因等位变异.作物学报,33:242-249
    5.刘登才,兰秀锦,杨足君等2002.远缘杂交不需幼胚培养的节节麦基因型.植物学报,44:708-713
    6.颜济,杨俊良主编1999.小麦生物系统学 第一卷 小麦-山羊草复合群.北京:中国农业出版社,pp102-104
    7.张连全2007.小麦异源六倍化过程及其在遗传育种中的应用.四川雅安,四川农业大学博士学位论文
    8.朱振东,周荣华,董玉琛等 2003.几个四倍体小麦-山羊草双二倍体及其部分亲本的抗小麦白粉病基因分析.植物遗传资源学报,4:137-143
    9.Adams KL,2007.Evolution of duplicate gene expression in polyploid and hybrid plants.J Hered,98:136-141
    10.Adams KL,Percifield R,Wendel JF,2004.Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid.Genetics,168:2217-2226
    11.Adams KL,Wendel JF,2005.Novel patterns of gene expression in polyploid plants.Trends Genet,21:539-543
    12.Adonina IG,Salina EA,Pestsova EG,et al.,2005.Transferability of wheat microsatellites to diploid Aegilops species and determination of chromosomal localizations of microsatellites in the S genome.Genome,48:959-970
    13.Ahmad M,Sorrells ME,2002.Distribution of microsatellite alleles linked to Rht8 dwarfing gene in wheat.Euphytica,123:235-240
    14.Assefa S,Fehrmann H,2000.Resistance to wheat leaf rust in Aegilop,s tauschii Coss.and inheritance of resistance in hexaploid wheat.Genet Resour Crop Evol,47:135-140
    15. Axelsson T, Bowman CM, Sharpe AG, et al., 2000. Amphidiploid Brassica juncea contains conserved progenitor genomes. Genome, 43: 678-688
    
    16. Ayal S, Ophir R, Levy AA, 2005. Genomics of tetraploid wheat domestication. In: Tsunewaki K, (ed). Frontiers of wheat bioscience, the 100~(th) memorial issue of wheat information service, Kihara memorial foundation for the advancement of life sciences, Yokohama, Japan, pp 185-203
    
    17. Baumel A, Ainouche ML, Levasseur JE, 2001. Molecular investigations in populations of Spartina anglica C.E. Hubbard (Poaceae) invading coastal Brittany. Mol Ecol, 10: 1689-1701
    
    18. Bento M, Pereira S, Rocheta M, et al., 2008. Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in Triticale. PLoS ONE, DOI: 10.137 I/journal, pone.0001402
    
    19. Blanc G, Wolfe KH, 2004. Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell, 16: 1679-1691
    
    20. Blanco IA, Rajaram S, Kronstad WE, et al., 2000. Physiological performance of synthetic hexaploid wheat-derived populations. Crop Sci, 40: 1257-1263
    
    21. Borner A, Schumann E, Furste A, et al., 2002. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 105: 921-936
    
    22. Brooks SA, See DR, Brown-Guedira G, et al., 2006. SNP-based improvement of a microsatellite marker associated with Karnal Bunt resistance in wheat. Crop Sci, 46: 1467-1470
    
    23. Bryan GJ, Collins AJ, Stephenson P, et al., 1997. Isolation and characterization of microsatellites from hexaploid bread wheat. Theor Appl Genet, 94: 557-563
    
    24. Burger JC, Chapman MA, Burke JM, 2008. Molecular insights into the evolution of crop plants. Am J Bot, 95: 113-122
    
    25. Butruille DV, Botteux LX, 2000. Selection-mutation balance in polysomic tetraploids: impact of double reduction and gametophytic selection on the frequency and subchromosomal location of deleterious mutations. Proc Natl Acad Sci USA, 97: 6608-6613
    
    26. Caldwell KS, Dvorak J, Lagudah ES, et al., 2004. Sequence polymorphism in polyploidy wheat and their D-genome diploid ancestor. Genetics, 167: 941-947
    
    27. Chebotar SS, Korzun VN, Sivolap YM, 2001. Allele distribution at the locus WMS261 marking the dwarfing gene Rht8 in common wheat cultivars of Southern Ukraine. Russ J Genet, 37: 1075-1080
    
    28. Chen ZJ, Ni ZF, 2006. Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. Bioessays, 28: 240-252
    
    29. Cloutier S, Cappadocia M, Landry BS, 1997. Analysis of RFLP mapping inaccuracy in Brassica napus L. Theor Appl Genet, 95: 83-91
    30. Comai L, Tyagi AP, Winter K, et al., 2000. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell, 12: 1551-1567
    
    31. Deka R, Chakrabokp R, Ferreij RE, 1991. A population genetic study of six VNTR loci in three ethnically defined populations. Genomics, 11: 83-92
    
    32. Dhaliwal HS, Singh H, Gill KS, et al., 1993. Evaluation and cataloguing of wheat germplasm for disease resistance and quality. In: Damania AB, (ed). Biodiversity and wheat improvement. John Wiley and Sons pub, Chichester, UK, ppl03-109
    
    33. Dong YZ, Liu ZL, Shan XH, et al., 2005. Allopolyploidy in wheat induces rapid and heritable alterations in DNA methylation patterns of cellular genes and mobile elements. Genetica, 41: 1089-1095
    
    34. Dvorak J, Akhunov ED, 2005. Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics, 171: 323-332
    
    35. Dvorak J, Luo MC, Yang ZL, et al., 1998. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet, 97: 657-670
    
    36. Dvorak J, Pantaleo DT, Zhang HB, et al., 1993. The evolution of polyploid wheats: identification of the A genome donor species. Genome, 36: 21-31
    
    37. Eckardt NA, 2001. A sense of self: the role of DNA sequence elimination in allopolyploidization. The Plant Cell, 13: 1699-1704
    
    38. Ellis MH, Bonnett DG, Rebetzke GJ, 2007a. Borlaug, Strampelli and the worldwide distribution of Rht8. Buck HT et al., (eds), Wheat production in stressed environments, Springer press, pp787-791
    
    39. Ellis MH, Bonnett DG, Rebetzke GJ, 2007b. A 192bp allele at the Xgwm261 locus is not always associated with the Rht8 dwarfing gene in wheat (Triticum aestivum L.). Euphytica, 157: 209-214
    
    40. Ellegren H, 2000. Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet, 16:551-558
    
    41. Ellegren H, 2002. Microsatellite evolution: a battle between replication slippage and point mutation. Trends Genet, 18: 70
    
    42. Ellegren H, 2004. Microsatellite: simple sequences with complex evolution. Nat Rev Genet, 5: 435-445
    
    43. Feldman M, Levy AA, 2005. Allopolyploidy-a shaping force in the evolution of wheat genomes. Cytogenet Genome Res, 109: 250-258
    44. Feldman M, Liu B, Segal G, et al., 1997. Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics, 147: 1381-1387
    
    45. Feldman M, Lupton FGH, Miller TE, 1995. In: Wheats, in evolution of crops, 2~(nd) ed., Smartt J, Simmonds NW, (eds). Longman Scientific, London, ppl84-192
    
    46. Feuillet C, Penger A, Gellner K, et al., 2001. Molecular evolution of receptor-like kinase genes in hexaploid wheat: independent evolution of orthologs after polyploidization and mechanisms of local rearrangements at paralogous loci. Plant Physiol, 125: 1304-1313
    
    47. Foisset N, Delourme R, 1996. Segregation distortions in androgenic plants. In: Jain SM, Sopory SK, Veilleux RE, (eds). In vitro haploid production in higher plants, Vol. 2. Kluwer Acad Publ, Dordrecht, Netherlands, pp 189-201
    
    48. Forster BP, Heberle-Bors E, Kasha KJ, et al., 2007. The resurgence of haploids in higher plants. Trends Plant Sci, 12: 368-375
    
    49. Gaeta RT, Pires JC, Iniguez-Luy F, et al., 2007. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. The plant cell, DOI: www.plantcell.org/cgi/doi/10.1105/tpc.107.054346
    
    50. Ganal MW, R6der MS, 2007. Microsatellite and SNP markers in wheat breeding. In: Varshney RK, Tuberosa R, (eds). Genomics assisted crop improvement. Vol. 2: Genomics applications in crops, Springer Press, pp1-24
    
    51. Gaut BS, Doebley JF, 1997. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA, 94: 6809-6814
    
    52. Genc Y, McDonald GK, 2004. The potential of synthetic hexaploid wheats to improve zinc efficiency in modern bread wheat. Plant and Soil, 262:23-32
    
    53. Gernand D, Rutten T, Varshney A, 2005. Uniparental chromosome elimination at mitosis and interphase in wheat and Pearl Millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. The Plant Cell, DOI: 10.1105/tpc. 105.034249
    
    54. Giles RJ, Brown TA, 2006. GluDy allele variations in Aegilops tanschii and Triticum aestivum: implications for the origins of hexaploid wheats. Theor Appl Genet, 112: 1563-1572
    
    55. Gu YQ, Salse J, Coleman-Derr D, et al., 2006. Types and rates of sequence evolution at the high-molecular-weight glutenin locus in hexaploid wheat and its ancestral genomes. Genetics, 174: 1493-1504
    
    56. Guo M, Davis D, Birchler JA, 1996. Dosage effects on gene expression in a maize ploidy series. Genetics, 142: 1349-1355
    
    57. Gupta PK, Balyan HS, Edwards KJ, et al., 2002. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet, 105: 413-422
    
    58. Guyomare'h H, Sourdille P, Charmet G, et al., 2002a. Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D genome of bread wheat. Theor Appl Genet, 104: 1164-1172
    
    59. Guyomare'h H, Sourdille P, Edwards KJ, et al., 2002b. Studies of the transferability of microsatellites derived from Triticum tauschii to hexaploid wheat and to diploid related species using amplification, hybridization and sequence comparisons. Theor Appl Genet, 105: 736-744
    
    60. He P, Friebe BR, Gill BS, et al., 2003. Allopolyploid alters gene expression in the highly stable hexaploid wheat. Plant Mol Biol, 52: 401-414
    
    61. Hilu KW, 1993. Polyploidy and the evolution of domesticated plants. Am J Bot, 80: 1491-1499
    
    62. Ho KM, Kasha KJ, 1975. Genetic control of chromosome elimination during haploid formation in barley. Genetics, 81: 263-275
    
    63. Hoisington D, Khairallah M, Reeves T, et al, 1999. Plant genetic resources: What can they contribute toward increased crop productivity? Proc Natl Acad Sci USA, 96: 5937-5943
    
    64. Huang XQ, Borner A, R6der MS, et al., 2002. Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet, 105: 699-707
    
    65. Huang XQ, C5ster H, Ganal MW, et al., 2003. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet, 106: 1379-1389
    
    66. Huang XQ, Kempf H, Ganal MW, et al., 2004. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet, 109: 933-943
    
    67. Innes RL, Kerber ER, 1994. Resistance to wheat leaf rust and stem rust in Triticum tauschii and inheritance in hexaploid wheat of resistance transferred from T. tauschii. Genome, 37: 813-822
    
    68. Ishii T, Mori N, Oghihara Y, 2001. Evaluation of allelic diversity at microsatellite loci among common wheat and its ancestral species. Theor Appl Genet, 103: 896-904
    
    69. Jantasuriyarat C, Vales MI, Watson CJW, et al., 2004. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor Appl Genet, 108:261-273
    
    70. Jauhar PP, 2003. Formation of 2n gametes in durum wheat haploids: sexual polyploidization. Euphytica, 133: 81-94
    
    71. Jauhar PP, Dogramaci-Altuntepe M, Peterson TS, et al., 2000. Seedset on synthetic haploids of durum wheat: cytological and molecular investigations. Crop Sci, 40: 1742-1749
    72. Jones K, 1998. Robertsonian fusion and centric fission in karyotype evolution of higher plants. Bot Rev, 64: 273-289
    
    73. Joppa LR, Williams ND, 1983. The Langdon durum disomic-substitutions: development, characteristics and uses. Agron Abstr, 68
    
    74. Kasha KJ, 2005. Chromosome doubling and recovery of doubled haploid plants, In: Biotechnology in agriculture and forestry. Palmer CE, Keller WA, Kasha KJ, (eds). Haploids in crop improvement II Springer-Verlag, pp 123-152
    
    75. Kashkush K, Feldman M, Levy AA, 2002. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics, 160: 1651-1659
    
    76. Kashkush K, Feldman M, Levy AA, 2003. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet, 33: 102-106
    
    77. Kazi M, van Ginkel M, 2004. Wild wheat relatives help boost genetic diversity, CIMMYT, www.cimmyt.org/english/wps/news/wild_wht.htm
    
    78. Kellogg EA, 2003. What happens to genes in duplicated genomes? Proc Natl Acad Sci USA, 100: 4369-4371
    
    79. Kema GHJ, Lange W, Silfhout CH, 1995. Differential suppression of stripe rust resistance in synthetic wheat hexaploids derived from Triticum turgidum ssp. dicoccoides and Aegilops squarrosa. Phytopathology, 85:425-429
    
    80. Kihara H, 1944. Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric Hortic (Tokyo), 19: 889-890
    
    81. Kilian B, Ozkan H, Deusch O, et al., 2007. Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biol Evol, 24: 217-227
    
    82. Korzun V, Roder M, Ganal M, et al., 1998. Genetic analysis of the dwarfing gene Rht8 in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet, 96: 1104-1109
    
    83. Kruglyak S, Durrett RT, Schug MD, et al., 1998. Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc Natl Acad Sci USA, 95: 10774-10778
    
    84. Kuleung C, Baenziger PS, Dweikat I, 2004. Transferability of SSR markers among wheat, rye, and triticale. Theor Appl Genet, 108: 1147-1150
    
    85. Lagercrantz U, Lydiate D, 1996. Comparative genome mapping in Brassica. Genetics, 144: 1903-1910
    
    86. Lagudah ES, Halloran GM, 1988. Phylogenetic relationships of Triticum tauschii, the D genome donor to hexaploid wheat. Theor Appl Genet, 75: 592-598
    87. Lan XJ, Liu DC, Wang ZR, 1997. Inheritance in synthetic hexaploid wheat 'RSP' of sprouting tolerance derived from Aegilops tauschii Cosson. Euphytica, 95: 321-323
    
    88. Langridge P, Lagudah ES, Holton TA, et al, 2001. Trends in genetic and genome analyses in wheat: a review. Aust J Agric Res, 52: 1043-1077
    
    89. Lee HS, Chen ZJ, 2001. Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. Proc Natl Acad Sci USA, 98: 6753-6758
    
    90. Leitch IJ, Bennett MD, 1997. Polyploidy in angiosperms. Trends Plant Sci, 2: 470-476
    
    91. Lelley T, Stachel M, Grausgreber H, et al., 2000. Analysis of relationships of between Ae. tauschii and the D genome of wheat utilizing microsatellites. Genome, 43: 661-668
    
    92. Levy AA, Feldman M, 2004. Genetic and epigenetic reprogramming of wheat genome upon allopolyploidization. Biol J Linn Soc, 82: 607-613
    
    93. Li GQ, Li ZF, Yang WY, et al., 2006. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. 112: 1434-1440
    
    94. Litt M, Luty JA, 1989. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet, 44: 397-401
    
    95. Liu B, Vega JM, Segal G, et al., 1998a. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low-copy noncoding DNA sequences. Genome, 41: 271-277
    
    96. Liu B, Vega JM, Feldman M, 1998b. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. II. Changes in low-copy coding DNA sequences. Genome, 41: 535-542
    
    97. Liu B, Wendel JF, 2002. Non-Mendelian phenomena in allopolyploid genome evolution. Curr Genomics, 3: 489-506
    
    98. Liu DC, Lan XJ, Yang ZJ, et al., 2002. A unique Aegilops tauschii genotype needless to immature embryo culture in cross with wheat. Acta Bot Sin, 44: 708-713
    
    99. Liu SB, Zhou RH, Dong YC, et al., 2006. Development, utilization of introgression lines using a synthetic wheat as donor. Theor Appl Genet, 112: 1360-1373
    
    100. Liu Y, Liu DC, Zhang HY, et al., 2005. Allelic variation, sequence determination and microsatellite screening at the Xgwm261 locus in Chinese hexaploid wheat (Triticum aestivum) varieties. Euphytica, 145: 103-112
    
    101. Lorieux M, Goffinet B, Perrier X, et al., 1995a. Maximum likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross population. Theor Appl Genet, 90: 73-80
    
    102. Lorieux M, Perrier X, Goffinet B, et al., 1995b. Maximum likelihood models for mapping genetic markers showing segregation distortion. 2. F_2 population. Theor Appl Genet, 90: 81-89
    103.Lukens LN, Pires JC, Leno E, et al., 2006. Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus alloployploids. Ploant Physiol, 140: 336-348
    
    104. Lyttle TW, 1991. Segregation distorters. Annu Rev Genet, 25: 511-557
    
    105. Morgante M, Hanafey M, Powell W, 2002. Microsatellites are preferentially associated with the non-repetitive DNA in plant genomes. Nat Genet, 30: 194-200
    
    106. Ma ZQ, Roder MS, Sorrells ME, 1996. Frequencies and sequence characteristics of di-, tri-, and tetra-nucleotide microsatellites in wheat. Genome, 39: 123-130
    
    107. Manifesto MM, Suarez EY, 2002. Microsatellite screening of the Rht8 dwarfing gene in Argentinian wheat cultivars. Annul Wheat Newsletter, 48: 23-24
    
    108. Marino CL, Nelson JC, Lu YH, et al., 1996. RFLP-based linkage maps of the homoeologous group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell.). Genome, 39: 359-366
    
    109. Masterson J, 1994. Stomal size in fossil plants: evidence for polyploidy in majority of angiosperm. Science, 264:421-424
    
    110. Matsuoka Y, Nasuda S, 2004. Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F_1 hybrid with Aegilops tauschii Coss. Theor Appl Genet, 109: 1710-1717
    
    111. May CE, Lagudah ES, 1992. Inheritance in hexaploid wheat of Septoria tritici blotch resistance and other characteristics derived from Triticum tauschii. Aust J Agric Res, 43: 433-442
    
    112. McFadden ES, Sears ER, 1944. The artificial synthesis of Triticum spleta. Rec Genet Soc Am, 13: 26-27
    
    113. McFadden ES, Sears ER, 1946. The origin of Triticum spelta and its freethreshing hexaploid relatives. J Hered, 37: 81-116
    
    114. McIntoch RA, Wellings CR, Park RF, 1995. Wheat rusts: an atlas of resistance genes. CSIRO publications, Australia
    
    115. Mittelsten O, Jakovleva L, Afsar K, et al., 1996. A change in ploidy can modify epigenetic silencing. Proc Natl Acad Sci USA, 93: 7114-7119
    
    116. Multani D, Dhaliwal HS, Singh P, et al., 1988. Synthetic amphiploids of wheat as a source of resistance to Karnal Bunt (Neovossia Indica). Plant Breed, 101: 122-125
    
    117. Murray MG, Thompson WF, 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 8:4321-4325
    
    118. Narasimhamoorthy B, Gill BS, Fritz AK, et al., 2006. Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet, 112: 787-796
    119. Nassar N, 2004. Wild crop species boost genetic diversity. In: crop biotech update, China advances in non-GM biotechnology, www.isaaa.org/kc
    
    120. Nelson JC, Andreescu C, Breseghello F, et al., 2006. Quantitative trait locus analysis of wheat quality traits. Euphytica, 149: 145-159
    
    121. Nelson JC, Sorrels ME, Van Deynze AE, et al., 1995a. Molecular mapping of wheat: Major genes and rearrangements in homoeologous groups 4,5, and 7. Genetics, 141: 721-731
    
    122. Nelson JC, Van Deynze AE, Autrique E, et al., 1995b. Molecular mapping of wheat. Homoeologous group 2. Genome, 38: 516-524
    
    123. Nelson JC, Van Deynze AE, Autrique E, et al., 1995c. Molecular mapping of wheat. Homoeologous group 3. Genome, 38: 525-533
    
    124. Nesbitt M, Samuel D, 1996. From staple crop to extinction? The archaeology and history of hulled wheats. In: Padulosi S, Hammer K, Heller J, et al., (eds). Hulled Wheats, promoting the conservation and use of underutilized and neglected crops. Proceedings of the 1st International Workshop on Hulled Wheats. International Plant Genetic Resources Institute, Rome, pp41-100
    
    125. Nicholson P, Rezanoor HN, Worland AJ, et al., 1993. Chromosomal location of resistance to Septoria nodorum in a synthetic hexaploid wheat determined by the study of chromosomal substitution lines in Chinese Spring wheat. Plant Breed, 110: 177-184
    
    126. Niemirowicz-Szczytt K, 1997. Excessive homozygosity in doubled haploids-advantages and disadvantages for plant breeding and fundamental research. Acta Physiol Plant, 19: 155-167.
    
    127. Ogbonnaya FC, Halloran GM, Lagudah ES, 2005. D genome of wheat-60 years on from Kihara, Sears and McFadden. In: Tsunewaki K, (ed). Frontiers of wheat bioscience, the 100th memorial issue of wheat information service, Kihara memorial foundation for the advancement of life sciences, Yokohama, Japan, pp205-220
    
    128. Osbom TC, Pires JC, Birchler JA, et al., 2003. Understanding mechanisms of novel gene expression in polyploids. Trends Genet, 19: 141-147
    
    129. Ozkan H, Levy AA, Feldman M, 2001. Allopolyploidy induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell, 13: 1735-1747
    
    130. Palmer CE, Keller WA, 2005. Challenges and limitations to the use of haploidy in crop improvement. In: Biotechnology in Agriculture and Forestry. Palmer CE, Keller WA, Kasha KJ, (eds). Haploids in crop improvement II. Springer-Verlag Berlin Heidelberg Publ, pp295-303
    
    131.Pestsova E, Borner A, Roder MS, 2006. Development and QTL assessment of Triticum aestivum-Aegilops tauschii introgression lines. Theor Appl Genet, 112: 634-647
    
    132. Pestsova EG, Ganal MW, Roder MS, 2000. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 43: 689-697
    133. Petersen G, Seberg O, Yde M, et al., 2006. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol, 39: 70-82
    
    134. Ramsey J, Schemske DW, 2002. Neopolyploidy in flowering plants. Annu Rev Ecol Syst, 33: 589-639
    
    135. Reif JC, Zhang P, Dreisigacker S, et al., 2005. Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet, 110: 859-864
    
    136. Riede CR, Francl LJ, Anderson JA, et al., 1996. Additional sources of resistance to tan spot of wheat. Crop Sci, 36: 771-777
    
    137. Rieseberg LH, Willis JH, 2007. Plant speciation. Science, 317: 911-914
    
    138. Roder MS, Huang XQ, Ganal MW, 2004. Wheat microsatellites in plant breeding potential and implications. In: Loertz H, Wenzel G, (eds). Molecular markers in plant breeding. Springer- Verlag, Germany, pp255-266
    
    139. Roder MS, Korzun V, Wendehake K, 1998. A microsatellite map of wheat. Genetics, 149: 2007-2023
    
    140. Shaked H, Kashkush K, Ozkan H, et al., 2001. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell, 13: 1749-1759
    
    141. Sharma S, Balyan HS, Kulwal PL, et al., 2002. Study of interspecific SSR polymorphism among 14 species from Triticum-Aegilops group. Wheat Inf Serv, 95: 23-28
    
    142. Shoemaker RC, Polzin K, Labate J, et al., 1996. Genome duplication in soybean (Glycine subgenus soja). Genetics, 144: 329-338
    
    143. Simon MR, Worland AJ, Cordo CA, et al., 2001. Chromosomal location of resistance to Septoria tritici in seedlings of a synthetic hexaploid wheat, Triticum spelta and two cultivars of T. aestivum. Euphytica, 119: 151-155
    
    144. Smith JSC, Chin ECL, Shu H, et al., 1997. An evaluation of the utility of SSR loci as molecular markers in maize (Zey mays L.): comparisons with data from RFLPs and pedigree. Theor Appl Genet, 95: 163-173
    
    145. Soltis DE, Soltis PS, 1995. The dynamic nature of polyploid genomes. Proc Natl Acad Sci USA, 92: 8089-8091
    
    146. Soltis DE, Soltis PS, 1999. Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol, 14: 348-352
    
    147. Soltis DE, Soltis PS, Tate JA, 2004. Advances in the study of polyploidy since plant speciation. New Phytol, 161: 173-191
    148. Somers DJ, Isaac P, Edwards K, 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, DOI: 10.1007/s00122-004-1740-7
    
    149. Song KM, Lu P, Tang K, et al., 1995. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploids evolution. Proc Natl Acad Sci USA, 92: 7719-7723
    
    150. Song QJ, Fickus EW, Cregan PB, 2000. Construction of genomic library enriched with microsatellite sequences. In: Proceedings national Fusarium Head Blight forum. Cincinnati, KY, pp50-51
    
    151. Sourdille P, Cadalen T, Guyomare'h H, et al., 2003. An update of the Courtot × Chinese spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet, 106: 530-538
    
    152. Sourdille P, Tavaud M, Charmet G, et al., 2001. Transferability of wheat microsatellites to diploid triticeae species carrying the A, B and D genomes. Theor Appl Genet, 103: 346-352
    
    153. Stebbins GL, 1971. Chromosomal evolution in higher plants. Reading: Addison-Wesley, MA
    
    154. Subrahmanyam NC, Kasha KJ, 1973. Selective chromosome elimination during haploid formation in barley following interspecific hybridization. Chromosoma, 42: 111-125
    
    155. Talbert LE, Smith LY, Blake NK, 1998. More than one origin of hexaploid wheat is indicated by sequence comparison of low copy DNA. Genome, 41:402-407
    
    156. Tanno K, Willcox G, 2006. How fast was wild wheat domesticated? Science, 311: 1886
    
    157. Tautz D, Trick M, Dover GA, 1986. Cryptic simplicity in DNA is a major source of genetic variation. Nature, 322: 652-656
    
    158. The Arabidopsis Genome Initiative, 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408: 796-815
    
    159. Tian CG, Xiong YQ, Liu TY, et al., 2005. Evidence for an ancient whole-genome duplication event in rice and other cereals. Acta Genetica Sinica, 32: 519-527
    
    160. Tsunewaki K, 1993. Genome-plasmon interaction in wheat. Jpn J Genet, 68: 1-34
    
    161. Van Deynze AE, Dubcovsky J, Gill KS, et al., 1995. Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome, 38: 45-59
    
    162. Van Ginkel M, Ogbonnaya F, 2007. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Res, 104: 86-94
    
    163. Varshney RK, Graner A, Sorrells ME, 2005. Genic microsatellite markers in plants: features and applications. Trends Biotechnol, 23: 48-55
    164. Vigouroux Y, Jaqueth JS, Matsuoka Y, et al., 2002. Rate and pattern of mutation at microsatellite loci in maize. Mol Biol Evol, 19: 1251-1260
    
    165. Warburton ML, Crossa J, Franco J, et al., 2006. Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica, 149: 289-301
    
    166. Wendel GF, 2000. Genome evolution in polyploids. Plant Mol Biol, 42: 225-249
    
    167. Wendel J, Doyle J, 2005. Polyploidy and evolution in plants. In: Henry RJ, (ed). Plant diversity and evolution: genotypic and phenotypic variation in higher plants. Oxfordshire, pp97-117
    
    168. Wolfe KH, 2001. Yesterday's polyploids and the mystery of diploidization. Nat Rev Genet, 2: 333-341
    
    169. Worland AJ, Korzun V, Ganal MW, et al., 1998. Genetic analysis of dwarfing gene Rht8 in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor Appl Genet, 96: 1110-1120
    
    170. Worland AJ, Sayers EJ, Korzun V, 2001. Allelic variation at the dwarfing gene Rht8 locus and its significance in international breeding programmes. Euphytica, 119: 155-159
    
    171. Wu RL, Gallo-Meagher M, Littell RC, et al., 2001. A general polyploid model for analyzing gene segregation in outcrossing tetraploid species. Genetics, 159: 869-882
    
    172. Xu SJ, Joppa LR, 1995. Mechanisms and inheritance of first division restitution in hybrids of wheat, rye, and Aegilops squarrosa. Genome, 38: 607-615
    
    173. Yang WY, Yu Y, Hu XR, et al., 2001. Inheritance of resistance to Chinese wheat stripe rust races CYR30 and CYR31 in synthetic hexaploid wheat Decoy I / Ae. tauschii 510. Proceedings of the 10~(th) assembly. Wheat breeding society of Australia Inc., Australia
    
    174. Zhang LQ, Liu DC, Yan ZH, et al., 2004. Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat. Sci in China Ser C, 47: 553-561
    
    175. Zhang LQ, Liu DC, Yan ZH, et al., 2005. Alien DNA introgression and wheat DNA rearrangements in a stable wheat line derived from the early generation of distant hybridization. Sci in China Ser C, 48: 424-433
    
    176. Zhang LQ, Sun GL, Yan ZH, et al., 2007a. Comparison of newly synthetic hexaploid wheat with its donors on SSR products. J Genet Genomics, 34: 939-946
    
    177. Zhang LQ, Yen Y, Zheng YL, et al., 2007b. Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines. Sex Plant Reprod, 20: 159- 166
    
    178. Zhang YZ, Li XH, Wang AL, et al., 2008. Novel x-type high-molecular-weight glutenin genes from Aegilops tauschii and their implications on the wheat origin and evolution mechanism of Glu-D 1-1 proteins. Genetics, 178: 23-33
    179. Zhu CS, Wang FH, Wang JF, et al., 2007. Reconstruction of linkage maps in the distorted segregation populations of backcross doubled haploid and recombinant inbred lines. Chin Sci Bull, 52: 1648-1653
    
    180. Zohary D, Hopf M, 2000. Domestication of plants in the old world, 3~(rd) ed. Oxford University Press, Oxford

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700