用户名: 密码: 验证码:
裂缝油气储层检测与预测的地球物理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以裂隙介质的波动理论作指导,根据Hudson裂隙理论,求出EDA介质的弹性参数。在此基础上,应用Christoffel方程求出的地震纵波相速度表达式,探讨了裂缝密度和裂隙方位对代表波场运动学特征的纵波速度和代表波场动力学特征的反射系数的影响。其数值模拟表明,在裂隙介质中,地震纵波速度只具弱的各向异性,同时裂隙密度和裂缝方位的变化对纵波速度的影响不大。而对于同级别的裂缝密度,反射系数的变化量是其速度变化量的3倍左右。揭示了地震波的动力学特征比其运动学特征对裂隙更敏感。进而通过潜山面和内幕地面地震记录的数值模拟和波场特征分析表明,潜山面和潜山内幕裂缝介质的波场特征是不一致的,振幅和频率的变化量大于速度的变化量,从而更进一步证明,对于裂缝的敏感性,动力学特征优于运动学特征。同时无论是潜山面还是其内幕,不管是裂隙中含流体还是含气体,振幅的变化量大于频率的变化量。表明振幅比频率更对裂缝敏感。而且振幅对内幕裂缝的敏感性远大于其对潜山面裂缝的敏感性。因而,确定了主要以振幅,其次是频率的地震波动力学特征作为裂缝检测的被检参数和均方振幅和中心频率作为检验检测结果正确与否的评价参数。在上述研究基础上,针对裂缝的三要素,提出通过横向求异检测裂缝方位和纵向求异检测裂缝密度的新思想。并以小波作为分析工具,以潜山波场特征作指导,将数字图像处理中的多尺度边缘检测和自适性边缘检测引用到地震裂缝方位检测中来,并提出了小波变尺度滤波法新的裂缝方位检测法。与此同时,将函数奇异性分析的思想引到地震信号处理中来,针对地震信号信噪比的高低,提出小波振幅奇异性指数法和小波功率谱奇异性指数法的裂缝密度检测方法。同时在回归分析思想指导下,通过现代谱估计提取地震属性参数,将小波多尺度回归法用于裂缝密度预测。并用自编软件,将三种裂缝方位预测和三种裂缝密度预测用于实际地震资料处理,并用评价参数检验评估其正确性,最终在现有的方法中确定了最优裂缝方位检测方法—小波变尺度滤波法和最优裂缝密度检测法—小波振幅奇异性指数法和小波功率谱奇异性指数法。
Directed by wave theory of fractured media, The elastic parameters of EDA medium are determined in the light of Hudson-fractured theory, And Christoffel equation gives the formula of the phase velocity of P-wave by which, Effects of velocity on behalf of kinetic characteristic and reflection coefficient on behalf of dynamical characteristic form fractured density and azimuty is discussed. The resalts of numerical simulating indicat that velosity of P-wave has gentle anisotropy in fructured media at same time, the change of fractured density and azimuty has a little effects on velosity of P-wave. But the change of reflection coefficient is three times as much as the change of velesity resulted from fractured density, which shows that dynamical characteristic of seismic wave is more sensitive to fracture than kinetic characteristic. Then, by seismic numericac simulating of the buried hill surface and its internal phase and analysis of characteristic of wave-field, the wave-field charalteristic of the buried hill's surface is different to the characteristic of the buried hills' internal phase, and the change of amplitude and frequence is bigger than that of velosity which proves further that dynamical characteristic is more sensitive to fracture than kinetic characteristic. And the change of amplitude is bigger than that of frequence, either burich hills surface or internal phase and either fluid or gas in farcture. So amplitude is sensitive to frarcture than frequece. Then the sensitivity of amplitude to fracture of the buried hill's surface is further bigger than that to fracture of buried hill's internal phase. Therefore the dynamical characteristic is acted as detected parameter for fractured detection( primary amplitude secondary frequence).And the amplitude of mean sguare and central frequence are acted as evaluational parameter, Based on the those studies, the new ideas is put forward that fractured azimuth is dected by lateral difference and fractured density is dected by vertical difference for three facters of fracture ,wavelet acted as analysis tool and direction by wave field characteristic applied the multiple scale edge dectection and self-adaptive edge detection into the detection theory of seismic fractured azimuth, also put forward the wavelet different scale filter method of the fractured azimuth detection. Simultatly, based on the vaviaction of seismic signal-noise ratio, the anthor use the funtion singular method in the seismic data procesy and put forward the wavelet amplitude singular exponentid method and the wavelet power spectrum singular exponential for the fractued density detection. Pirected by the theory of regression analysis, we get the seismic arribute data by the moden specturm estimation and predict the fractured density by the wavelet multiple-scale regression analysis. Also, in our software, we have made the practical seismic data processing by the prediction of fractured amizuth and the fractured density, then evaluated the exactitude of the predictions by the evaluation of the assessment parauceter, and at last confirm one optimum detection methods of fractured amizuth,the wavelet difference scale filter method, and two the optimmer fractured density detection method, the wavelet amplititude singular exponential method and the wavelet power spectrum singular exponeatial method.
引文
[1] 贺振华,黄德济等,复杂油气藏地震波场特征方法理论及应用,四川科学技术出版社,1999
    [2] 贺振华等,反向地震资料偏移处理与反演方法,重庆大学出版社,1989
    [3] 黄德济等,地震勘探资料数字处理,地质出版社,1990
    [4] 贺振华、李亚林等,定向裂缝对地震波速度和振幅影响的比较,物探化探计术,2001,23(1)
    [5] 贾振远,碳酸盐岩沉积学,北京:中国地质大学出版社,1992
    [6] 严又生(译),地震属性及其分类,国内外油气勘探,1997,9(4):529—530
    [7] 张翠兰(译),用于储层预测和监测的地震属性技术,国外油气勘探,1998,10(2):220—231
    [8] 马玉春等(译),用AVO方法检测裂隙:解析基础和实用解,国外油气勘探,1998,10(4):470—476
    [9] 黄子齐等(译),基于三维纵波资料的裂隙检测方法,物探局研究院信息中心,1998
    [10] 侯安宁等,与裂隙有关的三分量地震记录数值研究,国际地球物理研讨会论文详细摘要,1998,323—327
    [11] 张淑敏,碳酸盐岩的勘探方法及其裂隙储层描述,石油物探专题情报成果集第7—8集,物探局研究院信息中心,1993
    [12] Yu u,J.A.McDonald等,1990,垂向排列裂隙介质的3D零炮检距偏移,《60届SEG年会论文集》
    [13] T.W.Spender等,1990,薄层裂隙密度,《60届SEG年会论文集》
    [14] C.Eemersoy等,1990,用于估算裂隙的分裂的横波反演,《60届SEG年会论文集》
    [15] Yu Xu,J.A.McDonald等,垂向排列裂隙对地震反射的影响,《60届SEG年会论文集》
    [16] 高希勤,利用横波分裂技术研究裂隙,《地球物理技术汇编》,1992,(18):75~83
    [17] 唐东磊、周竹生,利用VSP横波研究裂隙的方法,《地球物理技术汇编》,1992,(18):84~91
    [18] Gareth S.Yardley,各向异性介质中横波AVO研究的可行性,国外油气勘探,1994,7(4):419~430
    [19] Don Winterstein,横波的性质与岩石的裂缝之间的关系:几个简单的实例,石油物探译丛,1992,5:12~21
    [20] Heloise B.Lynn,天然裂隙气藏中纵波AVOA和横波旅行时各向异性之间的对比,国外油气勘探,1997,9(6):729~736
    [21] Colin MacBeth,各向异性情况下地震数据处理,石油物探译丛,1992,3:1~14
    [22] Zandong Sun,应用几种算法分析直达波和转换波VSP数据的横向各向异性,石油物探译丛,1995,4:47~53
    [23] E.Ata,用P-S转换波资料绘制储层裂隙分布图,石油物探译丛,1995,5:1~5
    [24] Chihhsiung Chang,垂直排列的地下裂缝对地震反射的影响:物理模型研究,石油物探译丛,1997,3:44~51
    [25] Andreas Ruger,用AVO方法检测裂隙:解析解基础和实用解,国外油气勘探,1998,7:470~476
    [26] 殷八斤,AVO技术的理论与实践,石油工业出版社,1995
    [27] 刘勇,碳酸盐岩储层裂隙探测方法,石油物探译丛,1999,4:13~22
    [28] 陈崇河,马晓芬,利用地震资料研究裂缝性储层的新进展,石油物探,1997,36:20~26
    [29] 何樵登等,横向各向同性介质中地震波及其数值模拟,吉林大学出版社,1996
    [30] 王允诚等,油气储层评价,石油工业出版社,1999
    [31] 王允诚等,裂缝性致密油气储集层,北京:地质出版社,1992
    [32] E.M.斯麦霍夫,裂缝性油气储集层勘探的基本原理与方法,石油工业出版社,1985
    
    
    [33] 李正文,高分辨率地震勘探,成都科技大学出版社,1993
    [34] 张帆,储层裂隙特征识别方法理论及应用研究,成都理工学院博士论文,1999
    [35] 黄捍东,碳酸盐岩裂缝油气预测的地球物理方法研究——任丘潜山碳酸盐岩裂缝油气预测,成都理工学院博士论文,2000
    [36] 齐东旭等,分形及其计算机生成,科学出版社,1994
    [37] 谢和平等,分形应用中的数学基础与方法,科学出版社,1998
    [38] 谢和平,分形—岩石力学导论,科学出版社,1996
    [39] Falconer,K.著,曾文曲等译,分形几何—数学基础及其应用,东北工学院出版社,1991
    [40] 傅长生等,储层预测技术研究新进展,石油工业出版社,1998
    [41] 尚岳全,黄润秋,工程地质研究中的数值分析方法,成都科技大学出版社,1991
    [42] 尚岳全,岩体稳定与区域稳定数值模拟理论与实践,成都理工学院博士论文,1995
    [43] 詹正彬等,多波及横波地震勘探,地质出版社,1994
    [44] 杨煊等,基于图像信息测度的多尺度边缘检测方法,信号处理,Vol.11.No.4.1998
    [45] 杨煊等,基于邻域直方图分析的多尺度边缘检测方法,信号处理,Vol.15.No.1.1999
    [46] 房育栋等,基于分形的混合图像压缩方法,信号处理,Vol.12.No.3.1996
    [47] 曹汉强等,一种基于IFS的图像边缘检测方法,信号处理,Vol.13.No.4.1997
    [48] 吴大奎,应用分形插值预测裂缝,石油地球物理勘探,1995,12(6):823~827
    [49] 周杰等,一种改进的码书型边缘检测方法,信号处理,Vol.12.No.2.1996
    [50] 黄德济,地震波主特性参数的提取,石油地球物理勘探,1989,24(2):155~165
    [51] 黄德济等,时频域中主参数剖面的计算及应用,物化探计算技术,1994,(3)
    [52] 李庆忠,岩石的纵、横波速度规律,石油地球物理勘探,1992,27(1):1~12
    [53] 李录明,罗省贤,多波AVA及岩性预测,石油地球物理勘探,1996,(2)
    [54] 寻浩,董敏煜,牟永光,横向各向同性介质中的AVO,石油地球物理勘探,1997,32(1):46~55
    [55] Robert,H.Tatham,横波分裂和裂隙密集度的物理模型研究,国外油气勘探,1993,(3)
    [56] 杨文彩,地震道的非线性混沌反演(Ⅰ),地球物理学报,1993,36(2):222~232
    [57] 杨文彩,地震道的非线性混沌反演(Ⅱ),地球物理学报,1993,36(3):376~387
    [58] 李正文,胡光岷等,地震数据多参数反演及应用,石油地球物理勘探,1994,29(5):581~587
    [59] 黄捍东,刘洪昌,宽带约束反演方法研究及效果分析,储层预测技术研究新进展,石油工业出版社,1998,199~205
    [60] 李玲等,用地震相干数据体进行断层自动解释,石油地球物理勘探,1998,33(增刊):105~111
    [61] 余德平等,相干数据体及其在三维地震解释中的应用,石油物探,Vol.37.No.4.1998
    [62] 周辉,何樵登,利用Hartley变换模拟各向异性介质地震波场,石油地球物理勘探,1995,30(5):593~614
    [63] 张中杰,何樵登,含裂隙介质中地震波运动学问题的正演模拟,石油地球物理勘探,1989,24(3):290~300
    [64] 谢桂生,包吉山,横波各向同性介质中弹性波模拟及波场特征研究,石油地球物理勘探,1996,31(6):806~814
    [65] 候安宁,何樵登,三维裂隙介质中弹性被的速度研究,石油地球物理勘探,1995,30(增刊2):1-9
    [66] 方伍宝等,方位各向异性介质的VSP资料处理,石油物探,Vol.35.No.1.1996
    [67] 刘彦强,董敏煜,对从各向同性到各向异性带来的几个问题的初探,石油地球物质勘探,1992,27(1):29~44
    
    
    [68]汪和杰,董敏煜,EDA介质中的弹性波,石油地球物理勘探,1994,29(6):706~712
    [69]汪和杰,董敏煜,EDA介质中弹性波VSP模拟和横波双折射分析,石油地球物理勘探,1993,28(增刊2):63~69
    [70]李文林,李承楚,含裂隙介质中弹性波场正演模拟,石油地球物理勘探,1994,29(6):714~722
    [71]李文林,李承楚,一种拾取裂隙密度的新方法,石油地球物理勘探,1994,29(3):286~293
    [72]郭建,裂隙介质中的各向异性研究,石油地球物理勘探,1993,28(3):348~353
    [73]邹振恒,杨文彩,地震道广义线性反演技术,石油地球物理勘探,1987,22(4):363~375
    [74]秦前清,杨宗凯,实用小波分析,西安电子科技大学出版社,1998
    [75][美]崔锦泰著,小波分析导论,程正兴译,西安交通大学出版社,1995
    [76]刘贵忠等,小波分析及其应用,西安电子科技大学出版社,1992
    [77]易克初,程俊,“信号的广义时频表示”,电子学报,第21卷,第10期,1993年10月
    [78]蔡志强,吴雅,周笠,杨叔子,“故障诊断与节削颤振的小波分析”,华中理工大学学报,1993年第1期
    [79]范中,田立生,“利用子波变换检测瞬时信号”,电子学报,第24卷第1期,1996年1月
    [80]何岭松,吴波,康宣华,吴雅,“小波分析及其在设备故障诊断中的应用”,华中理工大学学报,1993年第1期
    [81]吴波,何岭松,蔡志强,吴雅,“基于小波变换的波形特征抽取与识别”,华中理工大学学报,第21卷第1期,1993年2月
    [82]罗会国,朱耀庭,朱光喜,万发贵,“信号的一种快速子波分解“,电子学报,第22卷第7期,1994年7月
    [83]吴大正,《信号与线性系统分析》,高等教育出版社,1986年3月
    [84]Robert J.Urick,《水声原理》,哈尔滨船舶工程学院出版社,1990年2月
    [85]相敬林,王海燕,《微弱信号检测技术与近感系统》,西北工业大学讲义,1993年9月
    [86]曾义方,张彦仲,《信号处理名词术语集》,航空工业出版社,1992年12月
    [87]罗建,“船船辐射噪声的时频域重构”,西北工业大学硕士学位论文,1996年
    [88]R. A. Nelson, 1985, Geologic Analysis of Naturally Fracture Reservoir.
    [89]W. M. Moon and J. S. Kim, higher-resolution Seismic Reflection Technique for Plotting of Fracture in Crystalline Rock, Engineering Geology, Sept. 1993, P261~279
    [90]A. Ghosh and J. K. Daemen, Fractal Characters of Rock Discontunity, Engineering Geology, May 1993. P1~8.
    [91]J. J. Walsh and J. Watterson, Fractal Analysis of Fracture Pattern Using the standard Box-counting Technique: Valid and Invalid Methodologics. Journal of Structural Geology. Dec. 1993. P1509~1512.
    [92]Integration of 3D Seismic and Geostatistics Provides an Optimal Field Model, Petroleum Engineering International Dec. 1993, P15~21.
    [93]C. MacBeth and G. S. Yardley, Optimal Estimation of Crack-Strike, Geophysical Prospecting 40, 1992, P849~872.
    [94]Ass'AD, J. M. , Tatham, R. H., McDonald, J. A. etc. , 1993, A Physical Model Study of Scattering of Waves by Aligned Cracks: Comparison between Experiment and Theory, Geophysical Prospecting 41, P323~339.
    [95]I. I. X. Y, and Crampin. S., 1993, Variation of Reflection and Transmission Coefficient swich Cracks Strike and Crack Density in Anisotropic Media, Geophysical Prospecting 41, P859~882.
    
    
    [96] E. Z. Ata et al. Mapping distribution of fractures in a reservoir with P-S coverted waves. The Leading Edge of Exploration, 1995(6) : 664-676.
    [97] J. C. Lorenz et al. Natural fracture, Characteristics and effects. The Leading Edge of Exploration, 1996(8) : 909-912.
    [98] H. B. Lynn et al. Azimuthal anisotropy in P-wave 3D ( multiazimuth )date. The Leading Edge of Exploration, 1996(8) : 923-930.
    [99] Subhashis Mallick et al. Determination of the principal directions of azimuthal anisotropy from P-wave seismic data. Geophysics, 1998, 63(2) : 692-706.
    [100] Andreas Ruger. Variation of P-wave reflectivity with offset and azimuth in anisotropic media. Geophysics, 1998, 63(3) : 935-947
    [101] Colin M. Sayers et al. Seismic traveltime analysis for azimuthally anisotropic media: Theory and experiment, Geophysics, 1997, 62(5) : 1570-1580.
    [102] D. Marr and E. Hildreth, "Theory of edge detection", Proc. Royal Soc. Lodndon B, Vol. 207, pp187-217, 1981.
    [103] J. Canny, "A computational approach to edge detection", IEEE Trans. Patten Analysis and Machine Intelligence, vol. 8, No.6, pp. 679-698,1986.
    [104] S. Mallat et al., "Charaterisitics of signals from mlutiscale edges", IEEE Trans, on PAMI Vol. 14, No. 7, pp. 710-732 July 1992.
    [105] S. Mallat et al., "Singularity detection and processing with waveelets", IEEE Trans. on information theory Vol. 38 no. 2, pp.617-643 March 1992
    [106] Hagit Zabrodsky, Shmuel Peleg, and David Avnir, "Symmery as continuous feature", IEEE Trans. on PAMI vol. 17, No 12, pp.1154-1165, Dec 1995.
    [107] Guangzheng Yang and Thomas S. Huang, "Humman face detection in a complex background", Pattern Recognition, vol.27. No. pp53-63, 1994.
    [108] Daubechies, "Orthonormal basis of compactly supported waveletss", Comm. Pure and Applied Math., vo141, pp. 909-996, 1998.
    [109] S. Mallat, "A theory for multiresolusion signal decomposition, the wavelet representation", IEEE Trans. PAMI, vol. 11, pp.674-693, July, 1989.
    [110] M. V. Wickehauser, "Lectures on wavelet packet algorithms", Math. Depart. Washington Univ. St. Lowis Missouri U. S. 1991
    [111] R. Coifrnan, M. V. Wicherhauser, "Entropy-based algorithms for best basis selection", IEEE Trans. Information theory. vo138, pp.713-718, March 1992
    [112] D, Marr, Vision, San Francisco, CA: W. H. Freman, 1982.
    [113] J. Canny, "A Computational approach to edge detection", IEEE Trans. PAMI., vol.8, no.6, 1986 pp.679-698.
    [114] S. Mallat, S. Zhong, "characteriztion of signals from multiscale edges", IEEE Trans. PAMI, 14(9) , 1990 pp. 710-732.
    [115] A. Kundu, "Robust dge Detctio", Pattem Recognition, Vol. 23, No. 5, 1990, pp.423-440.
    [116] I. E. Abdou and W. K. Pratt, "Quantitative design and evaluation of enhancement/thresholding eodetectors," Proc. IEEE, vol.67, no.5, pp.753-763, May 1979.
    [117] Bahorich, M. S., and Farmer, S. L,. 3D Seismic discontinuity for faults and stratigraphic features: The
    
    coherence cube. The Leading Edge, 1995, 14(10) : 1953-1958
    [118] Nissen. S. E.. Haskell, N. L., Lopez, J. A., Donlon. T. J., and Bahorich, M. S., 1995, 3-D seismic coherency techniques applied to teh identification and delineation of slump features: 65th Ann. Internal. Mtg. Soc. Expl. Geophys. Expanded Abstracts, 1532-1534.
    [119] Richard, V, Brac, J., 1988, Wavelet analysis using well log information, 58th Ann. Intern, Mtg., Soc. Expl. Geophys., Expanded Abstracts, 946-949.
    [120] Bahorich, M. S., and Farmer, S. L,. 1994, 3-D Seismic discontinuity: The coherence cube for ffaults and stratigraphic features: U.S. and Foreign Patents Pending.
    [121] Bahorich, M. S., and Bridges. S. R.. 1992, The seismic sequence attribute map: SEG 62nd Annual international meeting and exposition. New Orleans.
    [122] Marfurt. K. J.. Kirlin, R. L., Farmer. S. L.. and Bahorich, M. S., 1997, 3D seismic attributes using a running window semblance algorithm. Submitted to Geophysics.
    [123] S. Mallat et al., "Characteristics of signals from multi-scale eges," IEEE Trans, on PAML vol. 14, No.7, pp.710-732 July 1992
    [124] J. Canny, "A computational approach to edge detection," IEE Trans. Pattern Analysis and Machine Intelligence, vol.8, No.6, pp. 679-698, 1986.
    [125] Olivier Rioul, Martin Vetterli, "Wavelet and Signal Processing", IEEE SP Magazine, 14-38, Oct, 1991.
    [126] Lora G. Weiss. "Wavelet and wideband correlation processing", IEEE SP Magazien, Jan. 1994.
    [127] Olivier Rioul, Pierre Duhamel, "Fast Algorithms for Discrete and Continuous Wavelet Transforms", IEEE Trans. on IT vol. 38, No. 2, 569-586, March 1992.
    [128] S. Mallat., "Multifrequency channel decompositions of image and wavelet models", IEEE Trans. on Acoustic Speech and Signal Processing. 1989, 37(12) : 2091-2110.
    [129] S. Mallat, "A thery for multiresolution signal decomposition: The wavelet representation", IEEE Trans. on Pattern Analysis and Machine Inteligence, Vol.11, pp.674-693, July 1989.
    [130] RonaId E. Crochiere, Lawrence R. Rabiner, "Multirate Digital Signal Processing", Prentice-Hall, Inc., 1983.
    [131] D. S. Greely, Calculation of Low frequency cavitation source strength of marine propeller, Bolt Beranes and Newman Inc July 1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700