用户名: 密码: 验证码:
不同大豆品种对低钾胁迫的生物学响应及耐性机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆是我国北方主要的油料作物,其产量和品质受钾素影响较大。近年来,我国土壤供钾能力逐年降低,投入钾肥不仅增加生产成本,降低肥料利用率,且易对环境造成危害,对大豆的生产十分不利。研究表明,种植耐低钾品种是缓解我国钾肥资源匮乏、促进农业可持续发展最为经济有效的途径。本文以前期筛选出的典型大豆品种为试验材料,在土培和溶液培养两种条件下分析了不同耐性品种对低钾胁迫的生物学响应差异,并对植株干物质积累、钾离子的动态吸收、植株含钾量以及钾吸收效率、利用效率进行研究,从而探讨耐性品种对低钾的耐性机制。试验主要结论如下:
     1.不同耐性品种的生物产量及经济产量对低钾胁迫响应不同,品种间差异明显。两品种百粒重对低钾胁迫的响应并不大。不耐品种单株荚数和收获指数在低钾胁迫下降低显著。
     2.溶液培养可以很好的反应不同耐性品种对低钾胁迫的反应差异,与田间试验相比,具有更好的可控性和可重复性。缺钾条件下,各品种植株干物重与高钾处理相比显著降低,不同耐性品种间没有差异;在低钾胁迫下,不耐低钾品种植株干物质积累减小幅度明显大于耐低钾品种;在中度低钾胁迫下,干物重变化的差异在不同耐性品种间表现不明显。低钾胁迫降低了植株的根/冠,耐性品种的下降幅度小于不耐品种。从培养时期来看,前期不同耐性品种处理间没有显著差异,在培养20d以后差异表现明显,耐性品种处理间植株干物重的降低幅度较小,而不耐品种则具有显著差异。因此,溶液培养中这一时期是分析生物学响应差异的关键时期。
     3.低钾胁迫下不同耐性品种培养前期根系形态的变化较小,处理间差异不明显。在培养20d左右,根系形态参数的变化在不同耐性品种间开始表现出一定差异,耐性品种在低钾胁迫下变化较小,根系表面积、平均直径降低幅度不明显,而不耐品种各参数受低钾胁迫变幅较大。显微结构观察结果表明,低钾胁迫下不同耐性品种根系皮层薄壁细胞明显较对照增厚,内部中柱变细。
     4.低钾胁迫下耐性品种叶片面积没有发生显著变化,比叶重在前期有所增加,后期变化并不明显,不耐品种叶面积在培养后期较对照显著降低,比叶重增幅显著;茎秆表皮厚角组织、维管束变薄,内部髓腔变细;不耐品种表现较耐性品种明显。叶脉的主脉变细,薄壁细胞层变薄,韧皮部、形成层和中间木质部均小于对照,但耐性品种叶脉内细小维管束部分及厚角组织没有发生显著变化,而不耐品种细小维管束发育与对照相比明显变弱。栅栏组织的排列规律是靠近主脉部分较为集中,而远离叶脉部分较为松散,在不同耐性品种各处理间表现并没有显著差异。
     5.低钾胁迫下根系钾吸收动力学参数中Km值有所降低,耐低钾品种变化幅度大于不耐品种,I_(max)有不同程度的提高,不耐品种增加幅度大于耐性品种,Cmin值也发生显著变化,尤其是耐性品种,增加幅度极为显著。高钾处理下两品种植株经过饥饿处理后吸收钾的量并没有增加,耐性品种甚至出现植株中的钾外泌现象,而低钾胁迫下两品种的植株经过钾饥饿处理后表现出了对吸收液中的钾快速吸收,不耐品种表现尤为明显,吸收液中K~+的浓度持续降低,耐性品种在测定后期对吸收液中的钾离子吸收逐渐减弱。此外,低钾胁迫下不耐品种根系伤流量发生显著降低,耐性品种没有明显变化,但两品种根系质膜H~+-ATPase活性都有所提高,耐性品种表现尤为突出。
     6.低钾胁迫下不耐品种茎秆纤维素含量有显著的降低,而耐性品种处理间没有差异;低钾胁迫下耐性品种叶片可溶性糖含量显著降低,淀粉含量则没有显著变化,不耐品种叶片可溶性糖含量降低幅度较小,但叶片淀粉含量降低十分明显;不耐品种Ca~(2+)-ATPase和Mg~(2+)-ATPase活性也较高钾处理显著降低,而耐性品种处理间两种酶活性变化差异并不显著。
     7.在低钾胁迫下,耐性品种的叶绿素a、b及a+b总含量与对照之间没有差异,a/b值较对照显著提高,而不耐品种的叶绿素a及a+b总量较对照显著降低,叶绿素b的含量及a/b值没有显著变化;低钾胁迫下耐性品种仍保持较高的光合速率,但气孔导度和胞间CO_2浓度则显著低于对照,不耐品种的各参数下降幅度远大于耐性品种,处理间均达到极显著差异。气孔限制值在不同耐性品种间的变化表现一致,而耐性品种水分利用效率降低幅度则明显小于不耐品种;随着供钾水平的降低,耐性品种叶绿素荧光各参数中仅F_v显著增加,而不耐品种F_o、F_m、F_v、F_v/F_m、F_l、Area、N、ET_o、(?)_(Po)、(?)_(Eo)、(?)_(Do)、RC等参数的变化均达到显著或极显著水平;低钾胁迫下不耐品种反应中心耗散的能量较多,用于电子传递的能量减少,而耐性品种处理间无明显变化。
     8.供钾水平对植株钾效率影响较大,不同耐性品种间表现出一定的差异。低钾胁迫下植株体内钾的累积量较对照显著降低,植株体内钾的分布也发生变化,不耐品种吸收的钾主要富集在茎秆中,叶片中的钾量显著降低,耐性品种各部分钾积累量没有发生明显变化。两品种在不同供钾水平下钾效率比的变化间并没有差异,但在钾利用效率方面的变化幅度却表现出了显著的差异,说明其耐性的差异不在于植株对钾素的吸收,钾在植株体内的利用情况如运输、同化才是其钾效率差异的关键。
Soybean[Glycine max(L.)Merr.]is the main oilseed crop in north of China,which yield and quality were extremely affected by potassium fertilizer.In recent years,the decline of K content in soil need input mineral fertilizer,which not only increase cost of agricultural production,but also decrease fertilizer use efficiency.Low fertilizer utilization increased the potential hazards of environmental pollution.All these could limit soybean production. Various studies on crops showed that planting tolerant varieties was an economic and effective way of alleviating potassium resource shortage and prompting sustainable development of agriculture in China.In former experiments,potassium tolerant and non-tolerant genotypes had been screened in field.The present study is an attempt to identify the physiological mechanisms implicated in tolerance to low potassium by testing difference of biological responses,dry matter accumulation of plants,K kinetic parameters and K efficiency of two typical genotypes that differ in tolerance to low K stress.The main conclusion of study were as followed:
     1.Responses of biomass and economic yield of different tolerance varieties to low potassium stress was different,and difference between varieties was significant.The changes of weight per 100 seeds were slight to low potassium stress for two types of varieties,but for non-tolerant variety,greatly changes has been determined on pods per plant and harvest index under low potassium stress.
     2.There were distinct differences of stress symptom when tolerant and non-tolerant varieties transplanted in solution culture.Compared with field plant,tank farming was more controllable and repeatable.In general,plant dry matter and root/shoot ratio decreased consistently with the decline of K levels in the growth medium.The two types were hardly reduced dry matter weight of plant under heavy low K stress,but this difference became progressively smaller with the increase of K levels in solution.During culture period,the first noticeable influence of K deficiency on the growth parameters of plant organs appeared at 14~(th)date and difference in total biomass between treatments was more acute at 21~(st)date for non-tolerant varieties.There was,however,little change in tolerant varieties.These results suggested that 21~(st)date could potentially be used as the crucial time for investigating differences of biological responses.
     3.Morphological and physiological characteristics of root are important for absorbing K efficiently from culture solution.Effect of low K stress on root morphological characteristics was tiny at early stage of growth.By 21~(st)date,low K stress produced significant effect on root morphological characteristics for non-tolerant variety.Total root length,average root radius,root surface area,and root volume were all declined due to K deficiency,while those parameters of tolerant variety were slightly reduced by low K stress.Plants had evolved some mechanisms to maximize the efficiency of potassium acquisition.Changes in root architecture are one such mechanism.When soybean seedlings were grown under conditions of low potassium availability,the ply of cells in the cortex of root tip was increased,but the stele was thin,compared with seedlings grown under conditions of high potassium availability.
     4.The change of leaf areas was tiny for tolerant variety under low potassium stress.And positive effects of low K stress on special leaf weight were slight at the early growing stage for non-tolerant variety,and marked increase was observed at later stage,but there was no difference between two K levels for tolerant variety.Collenchyma and vascular bundle in stem was weaker than that of adequate K plants for non-tolerant than tolerant variety.Those changes were same in comparison with pith in stem.When plants were subjected to low K stress,main veins were slenderer and parenchyma cell were smaller than that of K-adequate plants.Indeed we found that phloem,cambium,and xylem were all affected by the applied low K stress.And greater decreases in vascular bundle and collenchyma of leaf vein occurred for non-tolerant than for tolerant variety.Anatomical traits of leaf cross-sections performed that palisade tissue layer arrayed densely near the veins,but loosely away from veins. However,basic difference between tolerant and non-tolerant genotypes did not exist.
     5.When the roots of plants grown in K deficient solution are exposed to ample K concentration solution,the rate of K uptake previously in short supply is much increased compared with control plant maintained with an adequate K provision.Representative depletion curves showed the marked contrast between unstressed controls and plants under low K stress.In our uptake experiments,the decline of K concentration was initially rapid and near linear with time,but became more gradual as the concentration approached zero.The non-tolerant variety was superior over the tolerant variety in uptake both speed and time. Potassium kinetic study indicated that K deficiency in plants result in a decrease in K_m value and increase in I_(max)and C_(min)value.However,change extent of each parameter was harsh different between tolerant and non-tolerant varieties.Furthermore,root bleeding sap and cation exchange capacity of non-tolerant variety were all declined under low K stress,while that of tolerant variety changed slightly affected by K deficiency.The plasma membrane H~+-ATPase activities were dramatically greater than those at adequate K supply,especially to tolerant variety.
     6.Cellulose content of stem of non-tolerant variety at deficient K supply was much lower than that at adequate K supply.Soluble sugar content in leaf significantly declined due to low K stress,while starch content in leaf varied slightly for tolerant variety,but the content of soluble sugar and starch changed on the other way round for non-tolerant variety.Besides, low K stress produced significantly negative effect on Ca~(2+)-ATPase and Mg~(2+)-ATPase activities in leaf for non-tolerant variety,while those of tolerant variety were slightly reduced by low K stress.
     7.For non-tolerant variety it was combined with a decrease of chlorophyll content under low K stress,especially decline of Chl a.There was a slightly change in chlorophyll content of tolerant variety,but the ratio of Chl a/b remarkably increased due to K deficiency,which was benefit to capturing more photo electron.Photosynthetic rate,stomatal conductance,and intercellular CO_2 concentration of non-tolerant variety were all significantly reduced in K-deficient compared to K-sufficient leaves at 21~(st)date.By contrast,photosynthetic rate of tolerant variety kept a relatively high level under low K stress in spite of heavy decline of stomatal conductance and intercellular CO_2 concentration.Decrease of intercellular CO_2 concentration indicated that in tolerant and non-tolerant variety the stomata were more closed, which was reflected by a high value of stomatal limitation.There was also a decrease of WUE at the same time,especially for non-tolerant variety,which decline was noticeable.In the experiment all CF parameters were affected by low K stress:also F_0 was affected and varied for the non-tolerant but the tolerant.Except for that,the ratio of energy dissipated by reaction center increased in low K stress for non-tolerant variety,and the ratio of transfer energy decreased at the same time,while those change of tolerant variety were tiny.
     8.With plant growth,potassium accumulation and distribution in plant varied significantly between deficient and adequate K supply.Low K stress reduced the accumulation of K in root followed by leaf and stem,which lead to a change in K partition between organs.Marked differences existed in the non-tolerant variety.K accumulation in plant was the function of K content and dry matter weight,and was positively correlated with dry matter weight.So the potassium contents of tolerant and non-tolerant genotypes were close in the same K level. There were no difference between change of K uptake efficiency for tolerant and non-tolerant varieties,but change of K utilization efficiency between two genotypes in low and normal K. level was dramatically distinct.
引文
1.安林昇,倪晋山.1995.耐低钾水稻的钾营养特性.植物生理学通讯.31(4):257-259
    2.蔡俊杰.2001.如何选择和使用切片石蜡.中国组织化学与细胞化学杂志.10(2):233-234
    3.蔡时青,许大全.2000.大豆叶片CO_2补偿点和光呼吸的关系.植物生理学报.26(6):545-550
    4.曹翠玲,高俊凤,曹薇.1996.小麦根细胞质膜氧化还原系统对干旱胁迫反应与K~+累积的关系.西北农业大学学报.24(3):25-30
    5.曹敏建,王淑琴,松本英明.1999.玉米自交系对低钾胁迫耐性的差异.作物学报.25(2):254-259
    6.曹敏建,张雨林.1994.钾对玉米生长发育及生理指标影响的研究.土壤通报.25(4):181-183
    7.陈佰鸿,李新生,曹孜义,姚庆荣.2004.一种用透明胶带粘取叶片表皮观察气孔的方法.植物生理学通讯.40(2):215-218
    8.陈国安.1992.钠对棉花生长及钾钠吸收的影响.土壤.24(2):201-204
    9.陈国祥,张荣铣,何兵,魏锦城.2003.小麦苗期叶片PS Ⅱ结构与功能对光胁迫的响应.农村生态环境.19(3):26-30
    10.陈际型.1997.钾素营养对水稻根系生长和养分吸收的影响.土壤学报.34(2):182-188
    11.陈珈.1994.植物细胞质膜氧化还原系统.植物学通报.11(2):24-31
    12.陈建明,俞晓平,程家安.2006.叶绿素荧光动力学及其在植物抗逆生理研究中的应用.浙江农业学报.18(1):51-55
    13.陈立松,刘星辉,胡又厘,余文琴.1998.水分胁迫对抗旱性不同的荔枝实生幼苗叶片质膜透性和各细胞器中Na~+-K~+ATPase活性的影响.热带作物学报.19(1):58-63
    14.陈培元,蒋永罗,李英.1987.钾对小麦生长发育、抗旱性和某些生理特性影响.作物学报.13(4):322-327
    15.陈思学,焦新之.1995.植物质膜氧化还原系统的生理作用.生命科学.7(4):24-31
    16.崔国贤,李宗道.1997.植物钾营养基因型的差异及其机理研究进展.作物研究.11(1):43-48
    17.冯立田,赵可夫.1998.叶绿体对盐胁迫的某些生理适应机制.植物学通报.15(增刊):62-67
    18.高爱丽,赵秀梅,秦鑫.1991.水分胁迫下小麦叶片渗透调节与抗旱性的关系.西北植物学报.11(1):58-63
    19.高道华.1993.钾对玉米某些生理特性和产量的影响.土壤肥料.2:33-35
    20.高忠,张荣铣,方敏.1 995.植物叶片中RuBP羧化酶/加氧酶及光反应机构衰老机理的研究进展.南京农业大学学报.18(2):26-33
    21.宫海军,陈坤明,陈国仓,朱学艺,王锁民,张承烈.2003.缓慢干旱下春小麦叶片质膜脂肪酸组成、H~+-ATPase及5'-AMPase活力的变化.植物生态学报.27(4):459-465
    22.宫海军,陈坤明,高永生,赵志光,王锁民,张承烈.2004.不同生境两种生态型芦苇的抗氧化系统.西北植物学报.24(2):193-198
    23.龚月桦,王俊儒,高俊凤,荆家海.1998.渗透胁迫对绿豆下胚轴延伸生长及H+分泌的影响.西北植物学报.18(4):527-532
    24.关义新,林葆,凌碧莹.2000.光氮互作对玉米叶片光合色素及其荧光特性与能量转换的影响.植物营养与肥料学报.6(2):152-158
    25.郭丽琢,胡恒觉.2001.植物体内钾循环与再循环的研究进展.甘肃农业大学学报.36(1):1-7
    26.韩宁,綦翠华,丁同楼,王宝山.2005.植物膜Ca2+运输系统与逆境应答.植物生理学通讯.41(5):577-582
    27.韩燕来,刘新红,王宜伦,谭金芳.2006.不同小麦品种钾素营养特性的差异.麦类作物学报.26(1):99-103
    28.胡笃敬,董任瑞,葛旦之.1992.植物钾营养的理论与实践.长沙:湖南科学技术出版社:70-71
    29.胡泓,王光火.2003.钾肥对杂交水稻养分积累以及生理效率的影响.植物营养与肥料学报.9(2):184-189
    30.胡泓,王光火,张奇春.2004.田间低钾胁迫条件下水稻对钾的吸收和利用效率.中国水稻科学.18(6):527-532
    31.胡筑兵,陈亚华,王桂萍,沈振国.2006.铜胁迫对玉米幼苗生长、叶绿素荧光参数和抗氧化酶活性的影响.植物学通报.23(2):129-137
    32.化党领,介晓磊,韩锦峰.2002.植物钾吸收的分子水平研究.植物营养与肥料学报.8(3):377-383
    33.化党领,杨秋云,谭金芳,刘世亮,介晓磊.2005a.钾胁迫条件下,小麦茎叶、根ATP酶及可溶性蛋白质的电泳分析.河南农业大学学报.39(4):361-365
    34.化党领,介晓磊,郭天财,黄晓书,韩锦峰.2005b.小麦根质膜H~+-ATPase水解活性与吸钾关系研究.干旱地区农业研究.23(2):109-114
    35.黄薇,王静,赵文明,林栖凤.2002.渗透胁迫对春小麦根质膜H~+-ATPase活力的影响及其与脯氨酸积累的关系.海南大学学报(自然科学版).20(1):33-36
    36.贾彦博,杨肖娥,王为木.2006.不同供钾水平下水稻钾素吸收利用与产量的基因型差异.水土保持学报.20(2):64-67,72
    37.贾毅,王伯初,王秀娟,段传人,阳小成.2002.植物细胞质膜H~+-ATPase的调控.植物生理学通讯.38(1):98-102
    38.姜存仓,王运华,鲁剑巍,徐芳森,高祥照.2004.植物钾效率基因型差异机理的研究进展.华中农业大学学报.23(4):483-487
    39.姜存仓,高祥照,王运华,鲁剑巍,徐芳森,石磊.2005.不同基因型棉花苗期钾效率差异及其机制的研究.植物营养与肥料学报.11(6):781-786
    40.姜存仓,高祥照,王运华,鲁剑巍,徐芳森.2006.不同钾效率棉花基因型对低钾胁迫的反应.棉花学报18(2):109-114
    41.姜理英,杨肖娥,石伟勇.2001.钾钠替代作用及对作物的生理效应.土壤通报.32(1):28-31
    42.蒋德安,饶立华,彭佐权.1987.钾对水稻产量形成的一些生理效应.浙江农业大学学报.13(4):441-444
    43.蒋德安,饶立华,彭佐权.1988.低钾条件下水稻的光合特性.植物生理学报.14(1):50-55
    44.蒋德安,翁晓燕,洪健.1994.低钾营养条件下水稻叶碳同化物输出的障碍.植物生理学报.20(2):137-144
    45.蒋廷惠,郑绍建,石锦芹,胡霭堂,史瑞和,徐茂.1995.植物吸收养分动力学研究中的几个问题.植物营养与肥料学报.1(2):11-17
    46.库文珍,彭克勤,萧浪涛,周浩,沈志锦,苏益,黄欣,张雪芹,陈立德.2007.水稻钾营养基因型差异研究进展.邵阳学院学报(自然科学版).4(2):95-99
    47.旷远文,温达志,周国逸,张德强,曹裕松.2005.大气污染胁迫下9种植物幼苗叶片热值、C/N和灰分含量比较.热带亚热带植物学报.13(2):117-122
    48.李宾兴,肖凯,李雁鸣.2002.低磷胁迫条件下小麦光合特性的基因型差异.河北农业大学学报.25(1):5-9
    49.李春杰,王建国,许艳丽,李兆林.2005.钾对大豆产量及品质的影响.农业系统科学与综合研究.21(2):154-155,160
    50.李德全,邹琦,程炳嵩.1991.土壤水分胁迫下小麦叶片的渗透调节与膨压的维持.华北农学报.6(4):100-105
    51.李德全,邹琦,程炳嵩.1992.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质.植物生理学报.18(1):37-44
    52.李共福.1985.耐低钾水稻品种筛选利用的研究.Ⅰ.水稻不同品种在低钾条件下的产量差异及低钾品种对钾的吸收利用特点.湖南农业科学.3:15-18
    53.李共福.1986a.耐低钾水稻品种筛选利用的研究.Ⅱ.水稻品种耐低钾与高产稳产的关系.湖南农业科学.3:23-24
    54.李共福.1986b.耐低钾水稻品种筛选利用的研究.Ⅲ.水稻不同品种在低钾条件下的产量差异及耐低钾品种对钾的吸收利用特点.湖南农业科学.5:16-18
    55.李共福,谢少平.1991.水稻耐低钾能力及其鉴定研究.作物研究.5(1):4-9
    56.李海波,夏铭,吴平.2001.低磷胁迫对水稻苗期侧根生长及养分吸收的影响.植物学报.43(11):1154-1160
    57.李鹏民,高辉远,R J Strasser.2005.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用.植物生理与分子生物学学报.31(6):559-566
    58.李峤,孙骏威,李海霞.2006.缺钾对水稻叶片叶绿素荧光参数的影响.中国计量学院学报.17(1):79-83
    59.李桐柱,林世青.1996.一个适用于分离光系统Ⅱ的凝胶电泳系统.生物物理学报.12(2):357-360
    60.李伟,曹坤芳.2006.干旱胁迫对不同光环境下的三叶期幼苗光合特性和叶绿素荧光参数的影响.西北植物学报.26(2):0265-0275
    61.李廷强,王昌全.2001.植物钾素营养研究进展.四川农业大学学报.19(3):281-285
    62.李廷轩,马国瑞.2004.籽粒苋富钾基因型的根系形态和生理特性.作物学报.30(11):1145-1151
    63.李廷轩,马国瑞.2004.籽粒苋富钾基因型的生理生化基础研究.植物营养与肥料学报.10(4):380-385
    64.李秧秧.1995.钾营养对干旱条件下植物叶片光诱导的影响.植物生理学通讯.31(3):178-181
    65.林葵,李琳,徐坤,颜季琼,焦新之.1998.耐低钾水稻的根质膜ATPase和H~+分泌特性.植物学报.40(6):521-526
    66.林世青,许春辉,张其德,徐黎,毛大璋,匡廷云.1992.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用.植物学通报.9(1):1-16
    67.林咸永,孙羲.1992.不同水稻基因型对钾肥反映的差异及其根系生理基础.土壤通报.23(4):159-161
    68.林咸永,孙羲.1995.不同水稻品种对钾的吸收及其对钾肥的反应.土壤学报.32(1):77-83
    69.刘更另,高广领.1987.不同植物富钾作用的研究.中国农业科学.20(5):48-54
    70.刘国栋,刘更另.1994.水稻基因型与钾营养关系的研究.中国土壤学会第五界青年科学工作者学术论文编委会编.现代土壤科学研究.北京:中国农业科学出版社.535-538
    71.刘国栋,刘更另.1995.论缓解我国钾资源问题的新对策.中国农业科学.28(1):25-32
    72.刘国栋,刘更另.1996a.水稻耐低钾基因型筛选方法的研究.土壤学报.32(2):113-120
    73.刘国栋,刘更另.1996b.水稻不同基因型中Ca、Na对K的部分替代作用.作物学报.22(3):3 13-319
    74.刘国栋,刘更另.1998.籼稻不同基因型对钾、钠的反应.植物营养与肥料学报.4(4):360-365
    75.刘国栋,刘更另.2002a..籼稻耐低钾基因型的筛选.作物学报.28(2):161-166
    76.刘国栋,刘更另.2002b.籼型杂交稻耐低钾基因型的筛选.中国农业科学.35(9):1044-1048
    77.刘亨官,刘振新,刘放新.1987a.耐低钾水稻品种的初探.福建省农科院学报.2(1):39-42
    78.刘亨官,刘振新,刘放新.1987b.水稻耐低钾品种(系)鉴定筛选及其吸钾特性的研究.福建省农科院学报.2(2):10-17
    79.刘家尧,衣艳君,张其德.1998.盐胁迫对不同抗盐性小麦叶片荧光诱导动力学的影响.植物学通报.15(2):46-49
    80.刘建祥,杨肖娥.2000.水稻钾营养基因型差异与生产的关系.植物生理学通讯.36(4):384-389
    81.刘建祥,杨肖娥,吴良欢,杨玉爱.2001a.低钾胁迫对水稻叶片光合功能的影响及其基因型差异.作物学报.27(6):1000-1006
    82.刘建祥,杨肖娥,吴良欢,B John.2001b.植物钾营养高效与膜转运系统的关系.植物学通报.18(5):513-520
    83.刘建祥,杨肖娥,杨玉爱,吴良欢.2003.低钾胁迫下水稻钾高效基因型若干生长特性和营养特性的研究.植物营养与肥料学报.9(2):190-195
    84.刘尼歌,王占义,莫丙波,杨存义,严小龙,沈宏.2006.质膜H~+-ATPase与环境胁迫.热带亚热带植物学报.14(3):263-268
    85.刘伟宏,刘飞虎,D Schachtman.1999.植物根部细胞钾离子转运机制及其分子基础.江西农业大学学报.21(4):451-455
    86.刘咏梅.1999.低钾对番红花叶片中超氧化物歧化酶、过氧化氢酶、过氧化物酶活性和膜脂过氧化的影响.西南师范大学学报(自然科学版).24(1):116-119
    87.陆庆,蒋德安,翁晓燕,奚海福.1999.钾营养对不同水稻基因型物质生产和光合作用的效应.浙江农业大学学报.25(3):267-270
    88.吕福堂,张秀省,张保华,刘春生.2005a.不同玉米基因型吸钾和耐低钾能力的研究.植物营养与肥料学报.11(4):556-559
    89.吕福堂,张秀省,戴保国,刘春生.2005b.不同玉米基因型吸钾能力的比较研究.土壤通报.36(3):445-447
    90.毛桂莲,许兴,米海莉,龚红梅,郑国琦,张渊,徐兆桢,魏玉清.2003a.NaCl胁迫下枸杞愈伤组织活性氧产生与质膜H~+-ATPase活性的关系.干旱地区农业研究.21(3):110-113
    91.毛桂莲,许兴,徐兆桢.2003b.植物质膜H~+ATPase及其在胁迫中的反应.宁夏农学院学报.24(4):81-85,91
    92.米海莉,郑国琦,许兴,张曦燕,李越鲲,曹有龙.2006.NaCl胁迫对宁夏枸杞幼苗根系质膜和液泡膜H~+-ATPase活性的影响.西北植物学报.26(4):0748-0752
    93.倪晋山,安林昇.1984.三系杂交水稻幼苗K~+吸收的动力学分析.植物生理学报.10(4):381-390
    94.倪吾钟,何念组,林荣新.1997.钾对大白菜的营养作用及其生理机制研究.植物营养与肥料学报.2(3):117-120
    95.欧仕益.1989.五个早稻品种对K~+的吸收与再利用的比较研究.湖南农学院学报.15(2):1-5
    96.潘晓华,刘水英,李锋,李木英.2003.低磷胁迫对不同水稻品种幼苗光合作用的影响.作物学报.29(5):770-774
    97.彭海欢,翁晓燕,徐红霞,蒋琴素,孙骏威.2006.缺钾胁迫对水稻光合特性及光合防御机制的影响.中国水稻科学.20(6):621-625
    98.彭永康,郝泗城,王振英.1994.低温处理对豇豆幼苗生长和POD、COD、ATPase同工酶的影响.华北农学报.9(2):76-80
    99.彭志红,彭克勤,萧浪涛.2007.水稻耐低钾变异后代的苗期钾营养特性.湖南农业大学学报(自然科学版).33(1):5-8
    100.邱全胜.1999.植物细胞质膜H~+-ATPase的结构与功能.植物学通报.16(2):122-126
    101.邱全胜,苏雪峰.1999.大豆下胚轴质膜H~+-ATPase质子转运的测定.生物化学与生物物理学报.26(1):79-83
    102.邱全胜.2000.植物质膜钾离子转运研究进展.植物学通讯.17(1):34-38
    103.任迎虹,余前嫒,谌晓芳.2002.植物质膜质子泵H~+ATPase的活性调节及功能研究进展.西昌农业高等专科学校学报.16(2):40-42
    104.沙莎,缪月秋,徐勤松,周耀明,陆长梅,吴国荣.2006.镧对镉胁迫下豌豆幼苗根部细胞内离子平衡及膜质子泵的影响.中国稀土学报.24(2):235-240
    105.沈伟其.1990.不同杂交水稻组合对低钾胁迫的反应.科技通报.6(1):28-31
    106.沈伟其,陈建荣.1994.低钾胁迫对耐低钾基因型杂交水稻呼吸代谢的影响.中国水稻科学.8(4):243-246
    107.沈伟其.1995.水稻耐低钾胁迫特性的研究与展望.作物研究.9(4):46-49
    108.沈伟其.1999.低钾胁迫对不同基因型杂交水稻氮代谢的影响.科技通报.15(5):382-386
    109.史庆华,朱祝军,Khalid,刘慧英,喻景权.2004.等渗盐胁迫对番茄抗氧化酶和ATP酶及焦磷酸酶活性的影响.植物生理与分子生物学学报.30(3):311-316
    110.苏贤坤,张晓海,汪自强.2005.烤烟钾素营养特性的基因型差异研究.植物营养与肥料学报.11(4):536-540
    111.孙华.2005.土壤质量对植物光合生理生态功能的影响研究进展.中国生态农业学报.13(1):116-118
    112.孙骞,杨军,张绍阳,张凤琪,丁世林.2007.钾营养对中华猕猴桃叶片光合作用及叶绿素荧光的影响.安徽农业大学学报.34(2):256-261
    113.孙骏威,黄莹莹,徐坤,徐加发.2006.低钾对钾迟钝型水稻不同叶位叶片光合活性的影响.浙江农业学报.18(5):354-358
    114.宋桂云,徐正进,陈温福,张文忠,贺梅,张喜娟.2006.田间低钾对不同穗型水稻钾的吸收和利用效率的影响.华北农学报.21(6):89-94
    115.汤利,施卫明,王校常.2001.植物钾吸收转运基因的克隆与作物遗传改良.植物营养与肥料学报.7(4):467-473
    116.唐劲驰,曹敏建.2001.作物耐低钾营养研究进展.沈阳农业大学学报.32(5):382-385
    117.唐梅,李伏生,张富仓,梁继华,王力,陈俊.2006.不同磷钾条件下苗期适度水分亏缺对大豆生长及干物质积累的影响.干旱地区农业研究.24(5):109-114
    118.腾应,钱晓刚,何腾兵,陆引罡.2001a.玉米不同基因型对钾营养胁迫的反应.耕作与栽培.(2):43-44,封4
    119.腾应,钱晓刚,陈泽辉,杨光梅.2001b.植物钾营养性状遗传研究进展.种子.4:31-34
    120.涂书新,郭智芬,张平,孙锦荷.2000.植物吸收利用钾素研究的某些进展.土壤.(5):248-252
    121.汪自强.1996.不同钾水平下春大豆品种(系)的钾积累和利用特性研究.大豆通报.3:7-8
    122.汪自强,董明远.1996.不同钾水平下春大豆品种的钾利用效率研究.大豆科学.15(3):202-207
    123.王宝山,邹琦.2000.质膜转运蛋白及其与植物耐盐性关系研究进展.植物学通报.17(1):17-26
    124.王波,杨振明,鲍士旦.1999.水稻耐低钾基因型的筛选及吸钾特性的研究.植物营养与肥料学报.5(1):85-88
    125.王巩,陆引罡,张步阔,王鑫,吴明琴.2001.不同水稻品种对钾的吸收生理特性研究.耕作与栽培.(2):25,30
    126.王欢,祝雄伟,王延枝.1999.液泡膜H+-ATPase质子泵活性的荧光测定.生物化学与生物物理学报.26(2):184-187
    127.王家宝.1992.植物营养元素交互作用研究.土壤学进展.(2):1-10
    128.王家玉.1993.以钠代钾在水稻上的效用研究.浙江农业学报.5(4):197-202
    129.王姣爱,杨萍果,张定-,姬虎太.2001.不同小麦基因型对土壤钾的吸收研究.山西师范大学学报(自然科学版).15(2):53-56
    130.王精明,李洪清,李美茹.2004.水稻幼苗根细胞质膜和液泡膜微囊Ca~(2+)-ATPase酶的特性.植物生理学通讯.40(1):22-26
    131.王静,徐惠云.2000.水分胁迫对春小麦苗期叶肉细胞和气孔数的影响.西北植物学报.20(5):842-846
    132.王可玢,娄世庆.1997.CO_2浓度倍增对几种植物叶片的叶绿素蛋白质复合物的影响.植物学报 (英文版).39(9):867-873
    133.王明香,聂俊华,张华芳.2000.钾素营养研究进展.云南农业大学学报.15(4):356-358
    134.王为木,杨肖娥,李华,魏幼璋.2003.低钾胁迫对两个耐钾能力不同水稻品种养分吸收和分配的影响.中国水稻科学.17(1):52-56
    135.王为木,杨肖娥,魏幼璋,杨肖娥,叶正钱,刁维萍.2005.水稻不同基因型吸收利用土壤钾素的差异.浙江大学学报(农业与生命科学版).31(1):52-58
    136.王伟,曹敏建,周春喜,李植,张辉.2005a.大豆耐低钾胁迫品种(系)的筛选.大豆通报.(4):8-10
    137.王伟,曹敏建,王晓光,李植.2005b.低钾胁迫对不同钾营养效应型大豆保护酶系统的影响.大豆科学24(2):101-105
    138.王晓光,曹敏建,蒋文春,王伟,李植,于海秋.2006.钾肥对不同基因型大豆叶片生理功能的影响.大豆科学.25(2):133-136
    139.王延枝,许献忠.1993.空泡膜类型H~+-ATPase的研究进展.生物化学与生物物理进展.20(3):19-23
    140.王永锐,陈玉梅,邓政寰.1989.耐低钾水稻的幼苗生长及其营养吸收状况.中山大学学报(自然科学版).28(4):68-73
    141.王永锐,李卫军.1996.不同耐低钾基因型水稻品种的矿质营养及植株性状.中山大学学报(自然科学版).35(4):24-29
    142.王永锐,李卫军.1997.耐低钾基因型水稻品种孕穗期剑叶生理及根系活力.生态科学.16(1):67-70
    143.王永锐,李卫军,余款经.1997.耐低钾基因型水稻品种的筛选.广东农业科学.1:3-5
    144.王玉侠.2005.细胞膜Na~+-K~+-ATPase的研究进展及其与运动能力的关系.安徽体育科技.26(3):57-59
    145.王志强,董彩华,赵芳,王延枝.1999.小麦液泡膜H~+-ATPase的Ca~(2+)激活特性.武汉大学学报(自然科学版).45(6):841-844
    146.魏锦城.1994..水稻叶片生育过程中Rubisco活性与光合、光呼吸的关系.植物生理学报.20(3):285-292
    147.夏朝晖,陈珈.1998.胁迫反应中的液泡膜H~+-ATPase.植物生理学通讯.34(3):168
    148.项虹艳,丁洪,郑金贵,李卫华,林勇.2004a.耐低钾水稻品种的筛选.江西农业大学学报.26(3):338-344
    149.项虹艳,丁洪,郑金贵,李卫华.2004b.低钾胁迫对水稻部分生理生化特性的影响.仲恺农业技术学院学报.17(3):12-18
    150.谢少平,倪晋山.1990.水稻(威优49)幼苗根系K~+(~(86)Rb~+)吸收的调节.植物生理学报.16(1):63-69
    151.熊明彪,雷孝章,田应兵,宋光煜,曹叔尤.2003.钾素对小麦茎、叶解剖结构的影响.麦类作物学报.23(3):53-57
    152.徐国华,鲍士旦,杨建平,吴明.1995.不同作物的吸钾能力及其与根系参数的关系.南京农业大学学报.18(1):49-52
    153.徐红霞,翁晓燕,毛伟华,杨勇.2005.镉胁迫对水稻光合、叶绿素荧光特性和能量分配的影响.中国水稻科学.19(4):338-342
    154.徐青.1999.植物石蜡切片双重染色技术的改进.宁夏农学院学报.20(2):89-90
    155.徐文琳,钱令嘉,张成岗.2003.Na~+,K~+-ATPase研究进展.国外医学·生理、病理科学与临床分册.23(5):531-534
    156.许大全,徐宝基.1989.气孔限制在植物叶片光合诱导中的作用.植物生理学报.15(3):275-280
    157.许大全.1995.气孔的不均匀关闭与光合作用的非气孔限制.植物生理学通讯.31(4):246-252
    158.严小龙,张福锁.1997.植物营养遗传学.北京:中国农业出版社.1-17
    159.杨根平,高爱丽,荆家海.1993.钙素和水分亏缺对黄瓜叶片细胞质膜透性的影响.西北植物学报.13(2):89-95
    160.杨铁钊,范进华.2006.不同基因型烤烟品种吸收钾差异的根系特性研究.西北农业学报.15(3):41-44
    161.杨秀红,吴宗璞,张国栋.2001.对肥水条件反应不同的大豆品种根系性状的比较研究.中国油料作物学报.23(3):23-26
    162.杨颖丽,张锋,赵敏桂,谢能中,张立新.2003a.胡杨愈伤组织质膜的两相分离法及其H~+-ATPase的特性.西北植物学报.23(11):1877-1881
    163.杨颖丽,张锋,张立新,郭进魁,毕玉蓉.2003b.盐胁迫对小麦根质膜ATPase活性的影响.西北植物学报.23(3):401-405
    164.杨振明,李秋梅.1998.耐低钾冬小麦基因型筛选方法的研究.土壤学报.35(3):376-383
    165.由继红,陆静梅,杨文杰.2002.钙对玉米幼苗的抗寒性及膜H~+-ATPase活性的影响.东北师大学报(自然科学版).34(3):79-82
    166.于振文,张炜,岳寿松,沈成国,余松烈.1996.钾营养对冬小麦光合作用和衰老的影响.作物学报.22(3):305-312
    167.余勤,邝炎华.1997.根系养分吸收动力学研究及应用.华南农业大学学报.18(2):105-110
    168.张福锁.1993.环境胁迫与植物营养.北京:北京农业大学出版社.353-368
    169.张木清,陈如凯,吕建林,罗俊,徐景升.1999.甘蔗苗期低温胁迫对叶绿素a荧光诱导动力学的影响.福建农业大学学报(自然科学版).28(1):1-7
    170.张楠,邱全胜.2000.胰蛋白酶处理对大豆下胚轴质膜H~+-ATPase的影响.北京师范大学学报(自然科学版).36(3):390-393
    171.张其德,卢从明.1997.CO_2浓度倍增对垂柳和杜仲叶绿体吸收光能和激发能分配的影响.植物学报(英文版).39(9):845-848
    172.张守仁.1999.叶绿素荧光动力学参数的意义及讨论.植物学通报.16(4):444-448
    173.张桃林,王兴祥.2000.土壤退化研究的进展与趋向.自然资源学报.15(3):280-284
    174.张旺锋,勾玲,王振林,李少昆,余松烈,曹连莆.2003.氮肥对新疆高产棉花叶片叶绿素荧光动力学参数的影响.中国农业科学.36(8):893-899
    175.张喜琦,史衍玺.2004.不同基因型烟草成熟期钾在植株体内的迁移特征.中国烟草科学.(4):8-12
    176.张彦才,周晓芬,李巧云,翟彩霞,刘全清.2006.钠替代部分钾对棉花生长和养分吸收的影响.植物营养与肥料学报,12(1):115-118,132
    177.张永清,毕润成,庞春花,苗果园.2006.不同品种春小麦根系对低钾胁迫的生物学响应.西北植物学报.26(6):1190-1194
    178.赵淑清,郭剑波.2001a.高等植物根细胞高亲和性吸收钾的机制.生命科学.13(3):125,132-134
    179.赵淑清,郭剑波.2001b.植物钾营养性状的遗传潜力.西北植物学报.21(2):221-225
    180.赵学强,介晓磊,李有田,许仙菊,谭金芳,华党领.2006.不同基因型小麦钾离子吸收动力学分析.植物营养与肥料学报.12(3):307-312
    181.赵学强,介晓磊,谭金芳,许仙菊,李有田.2006.钾高效小麦基因型的筛选指标和筛选环境研究.植物营养与肥料学报.12(2):277-281
    182.郑国琦,马宏玮,许兴.2003.盐胁迫下宁夏枸杞盐分与甜菜碱累积及其与光合作用的关系.中国生态农业学报.11(3):51-54
    183.郑淑琴.2001.钾对大豆生理效应及产量和品质的影响.黑龙江农业科学.(4):25-27
    184.郑宪滨,曹一平,张福锁,朱尊权,李春俭,刘国顺,谢德平.2000.不同供钾水平下烤烟体内钾的循环、累积和分配.植物营养与肥料学报.6(2):166-172
    185.郑兴峰.2003.石蜡切片法中细长或薄片状材料的包埋.生物学杂志.20(4):41,43
    186.周贤芬,陈志坚,张兴江.1990.晚稻耐低钾品种的筛选与研究.浙江农业科学.6:251-254
    187.朱祝军,B Sattelmacher,K Thoms.1994.钾局部供应对玉米根系生长和钾吸收速率的影响.植物学报.36(5):358-363
    188.邹春琴,李振声,李继云,张福锁.2000.钾营养效率不同的小麦品种间根际钾营养动态的比较.中国农业大学学报.5(3):87-91
    189.邹春琴,李振声,李继云.2001.小麦对钾高效吸收的根系形态学和生理学特征.植物营养与肥料学报.7(1):36-43
    190.邹春琴,李振声,李继云.2002.钾利用效率不同的小麦品种各生育期钾营养特点.中国农业科学.35(3):340-344
    191.Allen G J,Wynjones R G,Leigh R A.1995.Sodium transport in plasma membrane vesicles insolated from wheat genotypes with different K~+/Na~-discrimination traits.Plant Cell Environ.18:105-115
    192.Ashraf M.2004.Some important physiological selection criteria for salt tolerance in plants.Flora.199:361-376
    193.Assmann S M.1993.Signal transduction in guard cells.Annu.Rev.Cell Biol.9:345-375
    194.Bacanamwo M,Purcell L C.1999.Soybean root morphological and anatomical traits associated with acclimation to flooding.Crop Science.39:143-149
    195.Baligar V C,He Z L,He Z L.2001.Nutrient use efficiency in plants.Communications in Soil Science Plant Analysis.32(7/8):921-950
    196.Begg C B M,Kirk G J D,Makenzie A F,Neue H U.1994.Root-induced iron oxidation and pH changes in the low land rice rhizosphere.New Phytologist.128:469-477
    197.Behboudian M H,Anderson D R.1990.Effects of potassium deficiency on water relations and photosynthesis of the tomato plant.Plant and Soil.127:137-139
    198.Behling J P,Gabelman W H,Gerloff G C.1989.The distribution and utilization of calcium by two tomato(Lycopersicon eaculentum Mill.)lines differing in calcium efficiency when grown under low-Ca stress.Plant and Soil.113:189-196
    199.Blevins D G,Barnett N M,Frost W B.1978.Role of potassium and malate in nitrate uptake and translocation by wheat seedlings.Plant Physiology.62:784-788
    200.Bukhov N G,Sabat S C,Mohanty P.1990.Analysis of chlorophyll a fluorescence changes in weak light in heat-treated Amaranthus chloroplasts.Photosynthesis Research.23:81-87
    201.Chen J J,Gabelman W H.1999.Potassium-transport rate from root to shoot unrelated to potassium-use efficiency in tomato grown under low-potassium stress.Journal of Plant Nutrition.22(4/5):621-361
    202.Chen J J,Gabelman W H.2000.Morphological and physiological characteristics of tomato roots associated with potassium-acquisition efficiency.Scientia Horticulturae.83:213-225
    203.Chowdhury M K,Rosario E L.1994.Comparison of nitrogen,phosphorus and potassium utilization efficiency in maize/mungbean intercropping.J.Agri.Sci.Camb.122:193-199
    204.Daniel R B,Louis J.1986.Potassium transport in suspension culture ceils and protoplasts of carrot.Plant Physiol.81:1022-1026
    205.Davies C,Shin R,Liu W H,Thomas M R,Schachtman D P.2006.Transporters expressed during grape berry(Vitis vinifera L.)development are associated with an increase in berry size and berry potassium accumulation.Journal ofExp Bot.57(12):3209-3216
    206.Dennison K L, Robertson W R, Lewis B D, Hirsch R E, Sussman M R, Spalding E P.2001.Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis.Plant Physiol.127: 1012—1019
    207.Dessougi H E, Claassen N, Steingrobe B.2002.Potassium efficiency mechanisms of wheat,barley and sugar beet grown on a K fixing soil under controlled conditions.Journal of Plant Nutrition and Soil Science.165 (6) : 732-737
    208.Deutsch C.2002.Potassium channel ontogeny.Annu Rev Physiol.64: 19—46
    209.Ding J, Starling A P, East J M, Lee A G.1994.Bingding sites for cholesterol on Ca~(2+)-ATPase studied by using a cholesterol-containing phospholipids.Biochemistry.33: 4974—4979
    210.Egilla J N, Davies F T, Boutton T W.2005.Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations.PHOTOSYNTHETICA.43 (1) : 135-140
    211.Egilla J N, Davies F T, Drew M C.2001.Effect of potassium on drought resistance of Hibiscus rosa-sinensis cv.Leprechaun plant growth, leaf macro- and micronutrient content and root longevity.Plant and Soil.229 (2): 213-224
    212.El Bassam N.1998.A concept of selection for' low input' wheat varieties.Euphytica.100: 95—100
    213.Fageria N K, Barbosa M P, Costa J G C.2001.Potassium use efficiency in common bean genotypes.Journal of Plant Nutrition.24(12): 1937 -1945
    214.Fan LM, Zhao Z X, Assmann S M.2004.Guard cells: a dynamic signaling model.Current Opinion in Plant Biology.7: 537-546
    215.Gaber R F, Styles C A, Fink G R.1988.TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae.Molecular and Cellular Biology.8: 2848-2859
    216.Garrido I, Espinosa F, Paredes M A, Alvarez-Tinaut M C.1998.Net simultaneous hydrogen and potassium ion flux kinetics in sterile aeroponic sunflower seedling root: effects of potassium ion supply,Valinomycin, and dicyclohexylearbodiimide.Plant Nutr.21(1): 115—137
    217.Gerloff G C.1987.Intact-plant screening for tolerance of nutrient-deficiency stress.Plant and Soil.99: 3-16
    218.Gerloff G C, Gabelman W H.1983.Genetic basis of inorganic plant nutrition.Encyclopedia of Plant Physiology.15: 453—480
    219.Gierth M, M(a|¨)ser P, Schroeder J 1.2005.The potassium transporter AtHAK5 functions in K~+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots.Plant Physiol.137: 1105—1114
    220.Glass ADM, Perley J E.1980.Varietal difference in potassium uptake by Barley.Plant Physiol.65: 160-164
    221.Glass A D M, Siddiqi M Y.1984.The control of nutrient uptake rates in relation to the inorganic composition of plants.Adv Plant Nutrition.1: 103 — 147
    222.Graham R D.1984.Breeding for nutritional characteristic in cereals.Adv Plant Nutrition.1: 57—102
    223.Gremigni P, WongMTF, Edwards NK, Harris D, Hamblin J.2001.Potassium nutrition effects on seed alkaloid concentrations, yield and mineral content of lupins (Lupinus angustifolius).Plant and Soil234: 131-142
    224.Grouzis J P, Gibrat R, Rigaud J, Ageorges A, Grignon C.1990.Potassium stimulation of corn root plasmalemmaATPase.Plant Physiol.93: 1175-1182
    225.Gupta N K, Meena S K, Gupta S, Khandelwal S K.2002.Gas exchange, membrane permeability, and ion uptake in two species of Indian jujube differing in salt tolerance.PHOTOSYNTHETICA.40 (4): 535-539
    226.Hodges T K, Leonard R T, Bracker C E, Keenan T W.1972.Purification of an ion-stimulated ATPase from plant root: association with plasma membrane.Proc Acad sci USA.69: 3307—3311
    227.Horvdth F, Hertel B, Wodala B, Moroni A, Hurst A, Thiel G.2005.Inactivation of KATl channel of guard cells at submillimolar concentrations of external potassium.Acta Biologica Szegediensis.49: 3-5
    228.Hua B G, Mercier R W, Leng Q, Berkowitz G A.2003.Plant do it differently.A new basis for potassium/sodium selectivity in the pore of an ion channel.Plant Physiol.132: 1353 — 1361
    229.Huang B R, Fry J D.1998.Root anatomical, physiological, and morphological responses to drought stress for tall fescue cultivars.Crop Science.38: 1017—1022
    230.Huang Z A, Jiang D A, Yang Y, Sun J W, Jin S H.2004.Effects of nitrogen deficiency on gas exchange chlorophyll fluorescence and antioxidant enzymes in leaves of rice plants.PHOTOSYNTHETICA.42 (3): 357-364
    231.Jan L Y, Jan Y N.1997.Cloned potassium channels from eukaryotes and prokaryotes.Annu.Rev.Neurosci.20: 91-123
    232.Jiang M Y, Zhang J H.2002.Role of abscisic acid in water stress-induced antioxidant defense in leaves of maize seedlings.Free Radical Res.36: 1001 — 1015
    233.Kaya C, Higgs D, Kirnak H.2001.The effects of high salinity (NaCl) and supplementary phosphorus and potassium on physiology and nutrition development of spinach.Bulg.J.Plant Physiol.27 (3-4): 47-59
    234.Kronzucker H J, Siddiqi M Y, Glass A D M.1995.Compartmentation and flux characteristics of nitrate in spruce.Planta.196: 674—682
    235.Leigh R A, Wyn J R G.1986.Cellular compartmentation in plant nutrition: The selective cytoplasm and promiscuous vacuole.Adv Plant Nutrition.2: 249—280
    236.Lew R R.1991.Substrate regulation of single potassium and chloride ion channels in Arabidopsis plasma membrane.Plant Physiol.95: 642—647
    237.Liu K, Fu H H, Bei Q X, Luan S.2000.Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements.Plant Physiol.124: 1315—1325
    238.Liu K, Luan S.2001.Internal aluminum block of plant inward K+ channels.The Plant Cell.13: 1453 -1465
    239.Lu Y X, Li C J, Zhang F S.2005.Transpiration potassium uptake and flow in tobacco as affected by nitrogen forms and nutrient levels.Annals of Botany.95: 991—998
    240.Maathuis F J M.1997.Roles of higher plant K~+ channels.Plant Physiol.114: 1141 -1149
    241.Maathuis F J M, Sanders D.1994.Mechanism of high-affinity potassium uptake in root of Arabidopsis thaliana.Proc Natl Acad Sci.91: 9272—9276
    242.Maathuis F J M, Sanders D.1995.Contrasting roles in ion transport of two K~+-channel types in root cells of Arabidopsis thaliana.Plant.197: 456—464
    243.Maathuis F J M, Sanders D.1996.Mechanism of potassium absorption by higher plant roots.Physiol Plant.96: 158-168
    244.Macpherson N, Shabala L, Rooney H, Jarman M G, Davies J M.2005.Plasma membrane H~+ and K~+ transporters are involved in the weak-acid preservative response of disparate food spoilage yeasts.Microbiology.151: 1995-2003
    245.Maser P, Gierth M, Schroeder J I.2002.Molecular mechanisms of potassium and sodium uptake in plants.Plant and Soil.247: 43—54
    246.Meille L J, Pellerin S.2004.Leaf area establishment of a maize (Zea Mays L.) field crop under potassium deficiency.Plant and Soil.265: 75—92
    247.Mengl K.1983.Reaponse of various crop species and cultivars to fertilizer application.Plant and Soil.72: 305-319
    248.Mittler R.2002.Oxidative stress, antioxidants and stress tolerance.Trends Plant Sci.7: 405—410
    249.Nakamura R L, Mckendree W L, Jr., Hirsch R E, Sedbrook J C, Gaber R F, Sussman M R.1995.Expression of an Arabidopsis potassium channel gene in guard cells.Plant Physiol.109: 371 -374
    250.Navarro A R.2000.Potassium transport in fungi and plants.Biochimica et Biophysica Acta.1469: 1 -30
    251.01iva C, Gonzalez V, Naranjo D.2005.Slow inactivation in voltage gated potassium channels is insensitive to the binding of pore occluding peptide toxins.Biophysical Journal.89: 1009 — 1019
    252.Oosterhuis D M, Coker D L, Mozaffari M, Arevalo L M.2003.Plant growth, potassium partitioning,and physiological response of growth chamber-grown cotton to K deficiency: Implications for developing critical K levels for cotton production in Arakansas.Wayne E.Sabbe Arkansas Soil Fertility Studies.515: 53-57
    253.Pervez H, Ashraf M, Makhdum M 1.2004.Influence of potassium nutrition on gas exchange characteristics and water relations in cotton (Gossypium hirsutum L.).Photosynthetica.42 (2): 251 —255
    254.Pettersson S, Jensen P V.1983.Variation among species and varieties in uptake and utilization of potassium.Plant and Soil.72: 231-237
    255.Pettigrew W T.1999.Potassium deficiency increases specific leaf weights and leaf glucose levels in field-grown cotton.J.Agron.91: 962—968
    256.Pilot G, Gaymard F, Mouline K, Ch6rel I, Sentenac H.2003.Regulated expression of Arabidopsis Shaker K~+ channel genes involved in K~+ uptake and distribution in the plant.Plant Molecular Biology.51: 773-787
    257.Rascio A, Russo M, Mazzucco L, Platani C, Nicastro G, Fonzo N D.2001.Enhanced osmotoleranceofa wheat mutant selected for potassium accumulation.Plant Science.160: 441—448
    258.Rengel Z, Romheld V.2000.Root exudation and Fe uptake and transport in wheat genotypes differing in tolerance to Zn deficiency.Plant and Soil.222(1/2): 25—34
    259.Riseman A, Craig R.2000.Physiological and morphological traits associated with zinc efficiency in Exacum.Plant and Soil.219(1/2): 41-47
    260.Roh(?)(?)k K.2002.Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationship.PHOTOSYNTHETICA.40 (1): 13-29
    261.Roshani G A, Narayanasamy G, Datta S C.2006a.Can potassium affect root length density of wheat?18~(th) world congress of soil science.139—148
    262.Roshani G A, Narayanasamy G, Datta S C.2006b.Can potassium affect root influx parameters of wheat? 18~(th) world congress of soil science.155—157
    263.Rubio L, Rosado A, Rueda A L, Borsani O, Sanchez M J G, Valpuesta V, Fernandez J A, Botella M A.2004.Regulation of K~+ transport in tomato roots by the TSS1 locus implications in salt tolerance.Plant Physiol.134: 452-459
    264.Sale P W G, Campbell L C.1987.Difference responses to K deficiency among soybean cultivars.Plant and Soil.104: 183-190
    265.Sale P W G, Campbell L C.1988.Carbon dioxide exchange rates in soybeans during pod filling as a function of potassium supply.Plant and Soil.109: 235—243
    266.Sarkar R K, Panda D, Rao D N, Sharma S G.2004.Chlorophyll fluorescence parameters as indicators of submergence tolerance in rice.Crop management & physiology.66—71
    267.Schachtman D P, Schroeder J 1.1994.Structure and transport mechanism of a high affinity potassium uptake transport from higher plants.Nature.370: 655—658
    268.Schachtman D P, Schroeder J I, Lucas W J, Anderson J A, Gaber R F.1992.Expression of an inward rectifying potassium channel by Arabidopsis KAT1 Cdna.Science.258: 1654—1658
    269.Schneider A, Castillon P, Pellerin S.2003.Relationships between soil potassium supply characteristics based on soil solution concentration and buffer power and field responses of winter wheat and maize.Plant and Soil.254: 269—278
    270.Schraut D, Heilmeier H, Hartung W.2005.Radial transport of water and abscisic acid (ABA) in roots of Zea mays under conditions of nutrient deficiency.Journal of Experimental Botany.56: 879—886
    271.Schroeder J I, Fang H H.1991.Inward-rectifying K~+ channels in guard cells provided mechanism for low affinity K~+ uptake.Proc Nal Acad Sci.88: 11583-11587
    272.Schroeder J I, Hedrich R, Fernandez J M.1984.Potassium selective single channels in guard cell protoplasts of viciafaba.Nature.312: 361—363
    273.Schroeder J I, Ward J M, Gassmann W.1994.Perspectives on the physiology and structure of inward-rectifying K~+ channels in higher plants: Biophysical implication for K~+ uptake.Annu Rev Biophys Biomol Struct.23: 441 -447
    274.Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon J M, Gaymard F, Grignon C.1992.Cloning and expression in yeast of a plant potassium ion transport system.Science.256: 663-665
    275.Shabala S.2003.Regulation of potassium transport in leaves: from molecular to tissue level.Annals of Botany.92: 627-634
    276.Sharma G L, Agarwal R M.2002.Potassium induced changes in nitrate reductase activity in Cicer arietinumL.Indian Journal of Plant Physiology.7(3): 721—726
    277.Shea P E, Gerloff G C, Gabelman W H.1968.Differing efficiency of potassium utilization in strains of snap beans.Plant and Soil.28: 286-293
    278.Shimizu A, Guerta C Q, Gregorio G B, Kawasaki S, Ikehashi H.2005.QTLs for nutritional contents of rice seedlings (Oryza sativa L.) in solution cultures and its implication to tolerance to iron-toxicity.Plant and Soil.275: 57—66
    279.Shin R, Berg R H, Schachtman D P.2005.Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency.Plant Cell Physiol.46 (8): 1350—1357
    280.Siddiqi M Y, Glass A D M, Hisiso A.1987.Genotypic differences among wild oat lines in potassium uptake and growth in relation to potassium supply.Plant and Soil.99: 93—105
    281.Sidikie GM, Lu G Q, Zhou W J.2002.Genotypic variation for potassium uptake and utilization efficiency in sweet potato (Ipomoea batatas L).Field Crops Research.77 (1): 7—15
    282.Smethurst C F, Garmett T, Sjabala S.2005.Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery.Plant and Soil.270: 31—45
    283.Storey R, Schachtman D P, Thomas M R.2003.Root structure and cellular chloride, sodium and potassium distribution in salinized grapevines.Plant, Cell and Environment.26: 789—800
    284.Syntichaki P, Samara C, Tavernarakis N.2005.The vacuolar H~+-ATPase mediates intracellular acidification required for neurodegeneration in C.elegans.Current Biology.15: 1249—1254
    285.Thalooth A T, Tawfik M M, Mohamed H M.2006.A comparative study on the effect of foliar application of zinc, potassium and magnesium on growth, yield and some chemical constituents of Mungbean plants grown under water stress conditions.World Journal of Agricultural Sciences.2(1):37-46
    286.Tollenaar M, Wu J.1999.Yield improvement in temperate maize is attributable to greater stress tolerance.Crop Science.39: 1597-1604
    287.Trehan S P, Claassen N.2000.Potassium uptake efficiency of potato and wheat in relation to growth in flowing solution culture.Potato Research.43: 9—18
    288.Trehan S P, Dessougi E H, Classen N.2005.Potassium efficiency of 10 potato cultivars as related to their capability to use nonexchangeable soil potassium by chemical mobilization.Communications in Soil Science and Plant Analysis.15:1809-1822
    289.Troyanos Y E, Hipps N A, Moorby J, Kingswell G.2000.The effects of external potassium and magnesium concentration on the magnesium and potassium inflow rates and growth of micropropagated cherry rootstocks, 'F.12/1' (Primus avium L.) and 'Colt' (Prunus avium L.) X (Prunus pseudocerasus L.).Plant and Soil.225: 73—82
    290.Walker D J, Leigh R A, Miller A J.1996.Potassium homeostasis in vacuolated plant cells.Proc Natl AcdaSci.93: 10510-10514
    291.Wang H, Jin J Y.2005.Photosynthetic rate, chlorophyll fluorescence parameters, and lipid peroxidation of maize leaves as affected by zinc deficiency.PHOTOSYNTHETICA.43 (4) : 591 —596
    292.Wang Y H, Garvin D F, Kochian L V.2002.Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots.Evidence for cross talk and root/rhizosphere- mediated signals.Plant Physiol.130: 1361 —1370
    293.Watson M B, Malmberg R L.1996.Regulation of Arabidopsis thaliana (L.)heynh arginine decarboxylase by potassium deficiency stress.Plant Physiol.111: 1077—1083
    294.Westbeek M H M, Pons T L, Cambridge M L, Atkin O K.1999.Analysis of differences in photosynthetic nitrogen use efficiency of alpine and lowland Poa species.Oecologia 120: 19—26
    295.Wild A, Skarlu V, Clement C R, Snaydon R W.1974.Comparison of potassium uptake b four plant species grown in sand and in flowing solution culture.J Appl Ecol.11: 801 — 812
    296.Woodend J J and Glass A D M.1993.Genotype-environment interaction and correlation between vegetative and grain production measures of potassium use-efficiency in wheat (T.aestivum L.) grown under potassium stress.Plant and Soil.1511 39—44
    297.Wu C, Wei X, Sun H L, Wang Z Q.2005.Phosphate availability alters lateral root anatomy and root architecture of Fraxinus mandshurica Rupr.seedlings.Journal of Integrative Plant Biology.47(3) :292-301
    298.Wu P, Ni J J, Luo A C.1998.QTLs underlying rice tolerance to low-potassium stress in rice seedlings.Crop Sci.38: 1458-1462
    299.Yang X E, Liu J X, Wang W M, Li H, Luo AC, Ye Z Q, Yang Y.2003.Genotypic differences and some associated plant traits in potassium internal use efficiency of lowland rice (Oryza sativa L.).Nutrient Cycling in Agroecosystems.67: 273—282
    300.Yoshida S.1991.Chilling-induced inactivation and its recovery tonoplast H~+-ATPase in mungbean cell suspension cultures.Plant Physiol.95: 456—460
    301.Zhao D L, Oosterhuis B.2001.Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure if cotton plants.PHOTOS YNTIETICA.39 (1): 103-109
    302.Zhu J K.2003.Regulation of ion homeostasis under salt stress.Current Opinion in Plant Biology.6: 441-445
    303.Zhu Y G, Shaw G, Nisbet A F, Wilkins B T.2000.Effect of potassium starvation on the uptake of radiocaesium by spring wheat (triticum aestivwn cv.Tonic).Plant and Soil.220 (112): 27—34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700