用户名: 密码: 验证码:
冬小麦对高量供锌的反应及铁、磷供应与锌中毒的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锌为动植物正常生长所必需,但土壤受到锌污染时,农作物及畜产品的产量和品质都会受到影响,最终危害人体健康。生长在锌污染土壤上的作物容易发生锌中毒,而铁、磷等营养元素对作物锌吸收的影响很大。小麦是我国大部分地区的主要粮食作物,有人认为合理使用磷、铁肥能缓解土壤锌污染对作物造成的毒害作用。因而,通过研究过量锌与小麦的生长状况及养分吸收的关系,尤其是过量锌在铁、磷的不同用量条件下对不同小麦基因型的生长状况及养分吸收的影响,具有十分重要理论和实践意义。本研究通过3个独立的水培试验,以期评价供试小麦基因型对高锌污染、尤其是缺铁与高锌、高磷与高锌两种双重胁迫条件下的耐性表现,为理论研究和生产实践提供依据。所得主要结论如下:
     (1)采用水培试验法,研究了不同供Zn量(0、0.5、10、40 mg/L,分别用Zn0、Zn0.5、Zn10、Zn40表示)对3种亲缘关系很远的半冬性小麦基因型郑麦9023、陕512、西农979幼苗生长发育、Zn吸收以及Fe,Mn吸收的影响,以期为筛选耐高锌的小麦基因型提供理论依据。结果表明,不供Zn时小麦幼苗未出现缺Zn症状;Zn0.5对小麦的正常生长影响较小。3种基因型小麦的幼苗在过量供Zn(Zn10、Zn40)时均受到严重伤害:显著抑制了小麦分蘖、根系及地上部生长,叶片叶绿素SPAD值显著降低,小麦植株尤其是根部的耐性指数显著降低,施入的Zn的转运率显著降低,却极大提高了小麦植株尤其是根部的Zn含量和吸收量(但Zn10时幼苗体内Zn含量和吸收量大于Zn40,且Zn10比Zn40更能在根部积累Zn),Zn与Fe的吸收在根部似乎表现为互助作用,而地上部表现为拮抗作用;Zn与Mn之间表现出强烈的拮抗作用。过量供Zn时以西农979耐性指数最大,Zn转运率最高,植株体内的Fe、Mn含量均为最高。总之,供Zn量为通常配方的5~10倍时对小麦幼苗的生长尚无明显影响;100~200和400~800倍时则能对小麦幼苗造成严重伤害,三种供试小麦基因型中以西农979对过量Zn毒害的耐性为较强。
     (2)为了揭示缺Fe与过量供Zn的双重胁迫对小麦幼苗生长的影响,本试验采用2个Fe用量(0, 5 mg/L)与3种Zn供应水平(0, 0.1, 10 mg/L)相配合的完全方案,在温室中采用人工春化后的小麦幼苗进行了水培试验,以期找到在缺Fe和正常供Fe条件下较耐过量Zn毒害的小麦基因型。结果表明,缺Fe对小麦植株生长的影响远大于缺Zn和过量Zn的影响;缺Fe条件下,不论缺Zn或Zn过量,小麦幼苗的生长量均大幅度下降,分蘖受到抑制、叶片严重失绿,根系生长也受到明显抑制,根冠比升高,表明缺Fe对地上部生长的阻碍作用大于根部。无论是否供Fe,缺Zn对3种小麦基因型生长均未表现出明显的不利影响;但过量供Zn使幼苗各部分生长均受到明显抑制,尤其在缺Fe时,过量Zn对小麦植株的抑制效应尤为明显,并且对地上部的影响显著大于根系;而正常供Fe则明显缓解了过量Zn的抑制效应。在两种胁迫(缺Fe和过量Zn)并存时,3种小麦基因型中,陕512的生长受到的影响最大,表现出强烈的敏感性,而西农979对这种双重胁迫的耐性最好。
     (3)缺Fe与过量供Zn对小麦幼苗生长双重胁迫试验的结果还表明:缺Fe条件下,3种基因型植株体内的Zn、Mn、Cu吸收量明显减少(由于缺Fe显著降低了小麦幼苗生长量),但含量显著增加;同时提高了Zn的转运率,促进了Mn向地上部的运输。正常供Fe条件下,Zn、Mn、Cu的吸收量明显高于缺Fe条件。缺Zn条件下,植株Zn含量和吸收量均略微有所降低;Fe转运率有所升高,叶部Fe吸收量却大幅度增加;促进了植株对Mn的吸收;根部Cu吸收量增大,但向地上部的输送未受影响。过量供Zn条件下,虽然明显促进了植株对Zn的吸收,但Zn在根部大量积累,转运率大幅度下降,但也促进了Fe向叶片中的输送;在养分吸收方面,过量供Zn严重抑制Mn的吸收,促进Cu的吸收,但抑制Cu向地上部的运输。缺Fe且过量供Zn的条件下,幼苗各部位的耐性指数均显著降低,对植株造成的胁迫最为严重,缺Fe似乎加剧了过量Zn的毒害效应,而正常供Fe能显著改善植株对过量Zn毒害的耐受力。
     (4)采用水培试验法,研究了不同P(0.12,0.4,3.0 mg/L)、Zn(0.1,10 mg/L)用量配比对3种小麦基因型幼苗生长和养分吸收的影响,以期找到在不同P用量下对过量Zn毒害效应具有较好耐性的小麦基因型。结果表明,过量供Zn条件下,幼苗各器官的Zn含量和吸收量均大幅度增加;使P在根系中大量累积,向地上部的转运受到抑制;Fe的情况与P类似;使幼苗各器官中的Cu含量和吸收量均大幅度增加,而抑制了Mn的吸收。与正常供P(0.4 mg/L)相比,低量供P(0.12 mg/L)时小麦生长并未受到明显影响,而高量供P(3.0 mg/L)则在一定程度上促进了小麦幼苗生长;同时高P能抑制过量供Zn对小麦幼苗地上部的毒害作用,这种效应在叶片上表现尤为明显。高P和低P均使根部的Zn含量和吸收量有所降低,地上部有所增加,但高P的降低作用更为明显;低P降低了幼苗体内的P、Cu、Mn、Fe含量和吸收量;高P并非使整株内的总P量相应提高,但大大促进了P、Fe向地上部的转运,但降低了植株体内的Cu、Mn含量和吸收量。3种小麦基因型中以陕512生长状况最好,在不同P、Zn用量配比下,其根部能吸收较多的P和Zn,向地上部转运较多的Cu、Mn、Zn;这表明陕512与另外两种小麦基因型相比,对高P、高Zn的共同胁迫具有更高的耐性。
Zinc is essential for normal growth of animal and plant, but soil zinc pollution can influence the yield and quality of crop and animal, finally it will harm the human’s health. The crops growing on the soils polluted by zinc easily suffer from zinc toxicity, while iron and phosphorus supply affects zinc nutrition of crops greatly. Wheat is one of the most important crops in our country, recently it is reported that the toxicity effects of excessive zinc to crops could be alleviated by applying iron and phosphorus fertilizes rationally. Therefore, through studying relationship between excessive zinc and growth conditions alone with nutrient uptake of wheat plants, especially excessive zinc toxicity effects to plants with different P and Fe dosage. And this research is of vital importance in theory and practice. And wheat genotype with high tolerance to excessive zinc will be selected. In this dissertation, three independent water culture experiments were conducted to investigate tolerance and response to excessive zinc of three wheat genotypes tested. Especially wheat plants were treated with no iron supply and excessive zinc application, as well as excessive zinc and excessive phosphorus. This research will provide grounds for theoretical study and production practice. The main results obtained were as follow:
     (1) In order to find wheat genotype with high tolerance to high rates of Zn, a solution culture experiment was conducted to investigate the influence of different Zn supplying rates (0, 0.5, 10, 40 mg Zn/L, and Zn0, Zn0.5, Zn10, Zn40 were used to indicate varied Zn rates, respectively) on growth and Zn, Mn, Fe uptake of seedling plants of three winter wheat genotypes. Their relationship was very far from heredity characteristics, and for Zhengmai9023,{(Xiaoyan6×Xinong65)×〔83(2)3-3×84(14)43〕}F3×Shaan213, and for Shaan512, has bred after hybridizing by sterile line of Shaanmai150MS2(A2)and Shaan354, and as far as Xinong979, it also is hybridized by female parent of Xinong2166 and male parent of(918×95 choice 1). All of them are semi-winteriness. The obtained results showed that no obvious zinc deficiency symptoms of wheat plants occurred under the condition of no Zn addition; and at Zn0.5 level, wheat plants also grew normally. All of the wheat plants of three genotypes tested were damaged seriously under the supplying rates with Zn10 and Zn40, high Zn rates inhibited the tiller, growth of root and shoot of winter wheat plants, also decreased the leaf chlorophyll SPAD values, decreased tolerance index significantly, especially for root parts. However, high rates of Zn greatly increased Zn concentration and uptake of wheat plants in various parts especially root parts of wheat plants. (But Zn concentration and uptake of wheat plants under Zn10 was higher than that Zn40, as well as accumulated more Zn in root at Zn10 than that at Zn40). Zn and Fe in root stimulated each other seemly in absorption, but they inhibited each other in shoot. Zn and Mn inhibited each other as well. Under the conditions of excessive Zn addition, the tolerance index of Xinong979, translocation rate of Zn and Fe, Mn concentration was largest among three genotypes. In conclusion, when supplied 5-10 times of normal rate of zinc to wheat plants, there was not obvious negative effect on growth and development of winter wheat plants, however, when supplied Zn at 100-200 or 400-800 times of normal rates, the wheat plants would be inguried severely due to the toxicity of zinc. Xinong979 had the largest tolerance to Zn toxicity among the three genotypes.
     (2) In order to verify the effects of double stress of no iron and excessive zinc fertilization on the growth of wheat plants of three winter wheat genotypes, and to select the wheat genotype with high tolerance to excessive zinc (Zn10) which was used under the conditiong of no iron and normal iron supply. Two iron levels (0, 5mg/L) and three zinc levels (0, 0.1, 10mg /L) were conbinated used in this solution culture experiment. The obtained results showed that, the negative effects of no iron supply on the growth of wheat plants is more serious than that of no zinc supply or excessive zinc supply. In the condition of no iron supply, no matter no zinc or excessive zinc, all growth index of three genotypes wheat plants were decreased significantly. The tiller number was decreased, chlorosis occurred, and the growth of root was inhibited seriously, the shoot to root ratio was increased, it indicated that the harms of no iron supply condition on the shoot growth was larger than on the root growth. No matter supplying Fe or not, no obvious zinc deficiency symptoms of wheat plants occurred under the condition of no Zn added. But the growth indexes of three genotypes were deceased significantly under supplying Zn10, especially in the condition of no iron supplying. But after supplying Fe normally, the inhibition of Zn10 had alleviated significantly. In the dual stress conditions of no iron and excessive zinc, Shaan512 had the lowest tolerance to this circumstance. But Xinong979 had the highest tolerance to this iron and zinc supplying condition.
     (3) The dual stress (no iron and excessive zinc supplying) experiment on the wheat plants also showed that, under the condition of no Fe supplying to the wheat plants, Zn, Mn, Cu concentration of the plants increased, but the uptake of them decreased (because no iron supplying condition decreased wheat dry weight significantly). Zn translocation of the wheat plants was enhanced; Mn translocation to shoot of the plants was also accelerated. Under the condition of normal iron rate supplied, the Zn, Mn, Cu concentration of the plants was higher than that of no iron supplying. Under the condition of no Zn supplying to the wheat plants, the Zn concentration and uptake of the wheat plants decreased slightly. The translocation ratio of iron of the wheat plants was promoted. And the uptake of iron in the leaves of plants also increased significantly, Mn uptake was enhanced as well; but the uptake of Cu was enhanced only in the roots of wheat plants. Under the condition of excessive zinc (Zn10) supplying on the wheat plants, the Zn concentration and uptake of the wheat plants increased significantly, but a great deal of zinc accumulated in the roots of the plants, the Zn translocation rate of the wheat plants also decreased greatly, and enhanced iron translocation to the leaf parts of the plants. As far as nutrient uptake, Mn uptake was inhibited greatly by the condition of excessive zinc, and Cu uptake was enhanced, but translocation of Cu to the shoots was inhibited. In the condition of no iron and excessive zinc supplying, the tolerance index of all parts of wheat plants decreased greatly, and under this condition the growth of wheat plants was damaged most seriously. This seemly indicated that no iron supply condition aggravated the toxicity effects of the excessive zinc (Zn10) on the wheat plants, but after supplying iron with normal rate, the tolerance of plants to the effects of the excessive zinc improved significantly.
     (4) In order to find wheat genotype with high tolerance to the excessive zinc at varied levels of phosphorus supplying, a solution culture experiment was conducted to investigate the influence of treatments with using two Zn supplying rates (0.1, 10 mg/L) and three P supplying rates (0.12, 0.4, 3.0 mg/L) on the growth situation and nutrient uptake of three winter wheat genotypes. The obtained results showed that, under the condition of excessive zinc supplying, Zn concentration and uptake in various parts of wheat plants increased significantly; it made P accumulated in the roots greatly, but inhibited translation to shoot parts; the iron situation was similar to P; Cu concentration and uptake of all parts of wheat plants increased obviously. Mn uptake of wheat plants decreased greatly as well. Compared with the normal supplying level of P, there were no significant effects on the growth situation of wheat plants at low P supplied. But it was improved significantly under the condition of supplying high P; at the same time, high P could inhibit toxicity effect of excessive zinc on the wheat plants (especially on the leaf). Both high and low P supplying decreased Zn concentration and uptake in the roots, but increased Zn concentration and uptake in the shoots. Low P supplying also decreased P, Cu, Mn, Cu concentration and uptake of the wheat plants; however, high P addition did not increase P concentration of the whole wheat plants correspondingly. But it enhanced translocation of the P and Fe to the shoots, as well as decreased Cu, Mn concentration and uptake of the wheat plants slightly. Among the three genotypes of wheat plants, the biomass of Shaan512 was largest. Under the different P and Zn combination, the roots of Shaan512 took up P and Zn greatly, also translocated Cu, Mn, Zn greatly to shoots. It indicated that Shaan512 has the high tolerance to the dual stress condition of high P and high Zn supplying.
引文
[1] 廖金凤. 海南岛土壤中的锌[J]. 热带亚热带土壤学报, 1997, 6(4): 255-259
    [2] 宋菲. 镉、锌、铅复合污染对菠菜的影响[J]. 农业环境保护, 1999, (1): 9-14
    [3] 蒋廷惠, 胡蔼堂, 秦怀英. 土壤中锌、铜、铁、锰的形态与有效性的关系土壤通报[J]. 1989, 20(5): 228-231
    [4] 张增强, 唐新保. 污泥堆肥化处理对重金属形态的影响[J]. 农业环境保护, 1996, 15(4): 188-190
    [5] 冉勇, 彭琳. 黄土区土壤中锌的化学形态分布及有效性研究[J]. 土壤通报, 1993, 24(4): 172-174
    [6] 谢振翅, 马朝红. 微量元素肥料研究与应用[M]. 湖北: 微量元素肥料研究与应用, 1986
    [7] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000
    [8] 刘铮, 吴兆明. 中国科学院微量元素学术交流会会刊. 北京: 科学出版社. 1980
    [9] 曾昭华. 长江中下游地区地下水中化学元素的背景特征及形成[J]. 地质学报, 1996, (3): 262-269
    [10] Curtin D, Smillie G W. Soil solution composition as affected by liming and incubation[J]. Soil Sci Soc Am J, 1983, 47(4): 701-707
    [11] Lindsay W L. Chemical equilibria in soils[M]. New York: JohnWiley, Sons, 1979: 211-220
    [12] 孙桂芳, 杨光穗. 土壤-植物系统中锌的研究进展[J]. 华南热带农业大学学报, 2002, 8(2): 22-30
    [13] John M K. In Procintlconf on Heavy metals in the Environ[M]. Tronto: Ontario, Canada, 1975,365-377
    [14] 于天仁. 土壤化学原理[M]. 北京, 科学出版社, 1987
    [15] 袁可能. 植物营养元素的土壤化学[M]. 北京, 科学出版社, 1983, 235-237
    [16] 刘世全, 张世熔, 伍钧等. 土壤pH与碳酸钙含量的关系[J]. 土壤, 2002, (5): 279-288
    [17] 曾昭华. 农业生态与土壤环境中锌元素的关系[J]. 吉林地质, 2001, 20(3): 58-63
    [18] 张继宏, 郭学成, 张伯泉. 覆膜与裸地条件下不同施肥处理土壤有效锌含量的变化[J]. 沈阳农业大学学报, 1994, 5(4): 308-310
    [19] 丁疆华等 土壤环境中镉锌形态转化的探讨[J]. 城市环境与城市生态, 2001, 4(2): 47-49
    [20] 李学坦, 王启发, 徐凤琳. 稻草还田对土壤K、P、Zn 的吸附—解吸及其有效性的影响[J]. 华中农大学报, 2000, 19 (3): 227-232
    [21] 朱宏斌, 张玉平, 叶舒娅等.长期施用有机肥对砂姜黑土锌的影响[J]. 安徽农业科学, 1999, 27(1): 33-35
    [22] 徐明岗, 张青, 李菊梅. 土壤锌自然消减的研究进展[J]. 生态环境, 2004, 13(2): 268-270
    [23] 徐明岗, 张青, 李菊梅. 土壤锌自然消减的研究进展[J]. 生态环境, 2004, 13(2): 268-270
    [24] 秦遂初. 作物营养障碍的诊断及其防治[M]. 杭州: 浙江科技出版社, 1988
    [25] 李健, 董新纯, 孟庆伟等. 微量元素营养对幼龄银杏光合与生长特性的影响[J]. 山东农业大学学报, 1999, 30(3): 256-260
    [26] Chatterjee A K, Biswapatimandall, Mandal N. Interaction of nitrogen and potassium with zinc in submerged soil and lowland rice[J]. Indian Soci Soi Sci, 1996, 44(4): 792-794
    [27] Imura K. Heavy metal problems in paddy soils[A]. In: Kitagishik, Yamane I, eds. Heavy Metal Pollution in Soils of Japan[M]. Tokyo: Japan Scientific Societies Press, 1981
    [28] Harmens H. Physiology of zinc tolerance in silene vulgaris[J]. Febodruk, Enschede, amsterdam.1993: 161-76
    [29] Wang J, Evangelou B P, Nielsen M T, wagner G J. Computer-simulated evaluation of possible mechanisms for sequestering metal ion activity in plant vacuoles[J]. II. Zinc. plant physiol, 1992, 99: 621-626
    [30] Wang J, Evangelou B P, Nielsen M T, wagner G J. Computer-simulated evaluation of possible mechanisms for sequestering metal ion activity in plant vacuoles[J]. I . Cadmium. Plant physiol, 1991, 97: 1154-1160
    [31] 张福锁. 锌在植物细胞原生质膜稳定性方面的作用[J]. 土壤学报, 1993, 30 (增刊): 104-110
    [32] 韩 冰. 镁锌硼锰元素对烤烟产量及质量影响的研究[J]. 内蒙古农牧学院学报, 1999, 20(1): 72
    [33] 李 延. 锌对水稻生理代谢的影响及潜在性的缺锌诊断[J]. 福建农业大学学报, 1999, 28(1): 66-70
    [34] Kabata A P, Pendlasm H. Trace elements in soul and plants[M]. CRC Pressinc. 1992. 85-86
    [35] 王晓云,程炳嵩,张国玲. 不同锌水平对姜苗氮代谢的影响[J]. 山东农业大学学报, 1993, 24(2): 207-210
    [36] 汪邓民. 磷钙锌对烟草生长、抗逆性、保护酶及渗调物的影响[J]. 土壤, 2000, 32 (1): 34-37
    [37] 周国庆. 几种微量元素配施对杂交早稻秧苗的效应[J]. 作物研究, 2000, 14 (1): 12-14
    [38] 张福锁. 植物营养生态学和遗传学[M]. 北京:中国科学技术出版社, 1993, 114-137
    [39] Davydova V N, Mochenyat K I. The abscissic acid content of zinc-deficient Phaseolus plants[J]. Fizologiya Biokhintyya Kulfurnykh Rastenij, 1980, 12: 588-591
    [40] 张玉琼等. 锌营养对淹水玉米抗性的影响[J]. 安徽农业通报, 1999, 5(3): 19-21
    [41] 吴志辉. 微肥对作物产量和品质的影响[J]. 湖南农业科学,1999, 3(2): 43-45
    [42] H A 施罗德(Schroder) (美). 微量元素与人[M]. 北京:科学出版社, 1979
    [43] 杨基森. 男子不育症及生精散治疗前后精浆中锌、镁的研究[J ]. 微量元素, 1990, (4)
    [44] W 亥克尔(德)著, 生胜田译. 食品化学与营养学[M]. 北京: 人民卫生出版社, 1985
    [45] E E Ziegler, L J Filer, JR(美). 闻芝梅,陈君石主译. 现代营养学[M]. 北京: 人民卫生出版社,1998
    [46] A H 思斯明格(美), 张其德译. 食物与营养百科全书(4)[M]. 北京:农业出版社, 1989
    [47] 苗健. 微量元素与相关疾病[M]. 郑州:河南医科大学出版社, 1997
    [48] 李宁. 锌化物的毒性研究[J]. 中国公共卫生学报, 1991, (5)
    [49] 杨世勇, 王方, 谢建春.重金属对植物的毒害及植物的耐性机制[J].环境科学报, 2004(1): 71-72
    [50] 王彗忠, 郭庆凯. 重金属污染土壤的治理方法[J]. 环境科学报, 2001(4): 25-26
    [51] Lamoreaux R J, Chaney W R. Grow and water movement in silver maple seedling affected by cadmium[J]. Environ Qual. 1977, 6: 201-205
    [52] 王焕校污染生态学基础[M]. 昆明: 云南大学出版社, 1990. 91-108
    [53] Cedeno-Maldonado A. The copper ion as an inhibitor of photosynthetic electron transport in isolated chloroplasts[J]. Plant Physiol. 1972, 50: 698-701
    [54] Peng M, Wang H X, Wu Y S. Ultrastructural changes induced by cadmium and lead in corn seedling cell[J]. Chin Environ Sci. 1991, 11(6): 426-431
    [55] Zhang Y S, Wang H X. Effect of Cd accumulated in Vicia faba seeds on the quality of the seeds[J]. Acta Sci Circumstantiae. 1986, 6: 199-206
    [56] Zhang Y X. Toxicity of heavy metals to hordeum vulgare[J]. Acta Sci Circumstantiae. 1997,17(2): 199-201
    [57] Gu Z L, Wu L S, Xie S Q. Evaluation of toxicity of heavy metals added to yellow brown earth and estimation of their critical concentrations[J]. Acta Pedol Sin. 1992, 29: 158-167
    [58] Huang Z, Sakadevan K, Bavor J. Cd, Cu and Zn influence on denitrification in constructed wetland[J]. Environ Sci. 2000, 21(4): 110-112
    [59] 郑春荣, 陈怀满. 土壤—植物系统中的重金属污染[M]. 北京:科学出版社, 1996. 238-247
    [60] Kennedy CD, Gonsalves FAN. The action of divalent Zn, Cd, Hg, Cu, Pb on the transroot potential and H+ efflux of excised roots[J]. Exp Bot. 1987, 38: 800-817
    [61] Haynes RJ. Active ion uptake and maintenance of cationanion balance , A critical examination of their role in regulating rhizo sphere pH[J]. Plant Soil. 1990, 126: 247-264
    [62] Zhou Q, Huang X H, Tu K G, Huang G Y, Zhang J H, Cao Y H. Ecophysiological effects of La on Glycine max seedling under Cd stress[J]. Chin Environ Sci. 1998, 18(5): 442-445
    [63] Zhao H Q, Hong F S. The changes of activity of protective enzymes in wheat seedling under Hg stress[J]. AgroEnviron Protection. 1998, 17(1):20-21
    [64] Luo L X, Sun T Y, Jin Y H. Accumulation of superoxide radical in wheat leaves under Cd stress[J]. Acta Sci Circumstantiae. 1998, 18 (5): 495-499
    [65] Luna CM, Gonzalez CA, Troppi VS. Oxidative damage caused by an excess of copper in oat leaves[J]. Plant Cell Phsiol.1994, 35: 11-15
    [66] 任继凯, 陈清明, 陈灵芝等.土壤中镉、铅、锌及其相互作用对植物的影响[J]. 植物生态学报与地植物丛刊, 1982, 6(4): 320-328
    [67] 袁可能. 植物营养元素的土壤化学[M]. 北京: 科学出版社, 1983
    [68] 张民,龚子同. 我国菜园土中某些重金属元素的含量与分布[J]. 土壤学报, 1996, 33(1): 85-93
    [69] 刘福来. 土壤—植物系统中锌的研究概况[J]. 土壤肥料, 1998, (5): 10-14
    [70] 王彗忠, 郭庆凯. 重金属污染土壤的治理方法[J]. 环境科学报, 2001(4): 25- 26
    [71] .项长兴, 董雅文, 钱君龙. 南京栖霞山铅锌矿区土壤环境质量评价[J]. 土壤, 1993, 25(6): 319-323
    [72] 任继凯, 陈清朗, 陈灵芝. 土壤中镉、铅、锌及其相互作用对作物的影响[J]. 植物生态学与地植物学丛刊,1982,6 (4):320 - 329
    [73] 陈怀满. 土壤-植物系统中的重金属污染[M]. 北京:科学出版社, 1996
    [74] 余国莹, 吴玉树, 王焕校. 不同化学形态镉、锌及其复合污染对小麦生理的影响[J]. 生态学报,1992,12(1):93-96
    [75] 褚天铎, 刘新保, 李春花等. 锌素营养对作物叶片解剖结构的影响[J]. 植物营养与肥料学报, 1995, 1(1): 24-29
    [76] 李惠英, 陈素英, 王豁. 铜、锌对土壤-植物系统的生态效应及临界含量[J]. 农村生态环境, 1994, 10( 2): 22-24
    [77] 刘福来. 土壤—植物系统中锌的研究概况[J]. 土壤肥料, 1998, (5): 10-14
    [78] 任继凯, 陈清朗, 陈灵芝等. 土壤镉污染与作物[J].植物生态学与地植物学丛刊, 1982, 6(2): 131-134
    [79] 陈怀满. 土壤-植物系统中的重金属污染[M]. 北京:科学出版社, 1996
    [80] 余国莹, 吴玉树, 王焕校. 不同化学形态镉、锌及其复合污染对小麦生理的影响[J]. 生态学报, 1992, 12(1): 93-96
    [81] Rauser, W. E, Glover, J. Cadmium binding protein in roots of maize[J]. Can. J. Bot. 1984, 62:1645-1650
    [82] Alina K P and Honry K P. Trace elements in soil and plants[M]. CRC Press. London, 1996, 67-291
    [83] Parker D R , Aguilera J J and Thomson D N. Zinc2phosphorus interactions in two cultivars of tomato ( L ycopersicon sculont um L. ) grown in chelator2buffered nutrient solutions[J] . Plant and Soil, 992, 143:163-177
    [84] Singh J P, Karamanos R E and Stewart J W P. Phosphorus induced zinc deficiency in wheat on residual phosphorus plots[J]. Agron. J, 986, 78: 68-675
    [85] Adriano D C Trace Elements in the Terrestrial Environment[M]. Springer-erlay, New York. 1986, 22-149
    [86] Marscher H and Cakrak I. Mechanism of phophorus induced zinc deficiency in cotton II. Evidence for impaired shoot control of phosphorus uptake and translocation under zinc deficiency[J]. Physiol. Plant. 1986, 68: 91-496
    [87] Harmens H. Physiology of zinc tolerance in Silene vulgaris[M]. Febodruk, Enschede, Amsterdam. 1993, 61-76
    [88] Van Steveninck R F M, Babare D R, Fernando D R and Van Steveninck M E. The binding of zinc, but not cadmium,by phytic acid in roots of crop plants[J]. Plant and Soil, 1994, 167: 57-164
    [89] Cakmark I and Marschner H. Mechanism of phosphorus2induced zinc deficiency in cotton Ⅲ. Changes in physiological availibility of zinc in plants[J]. 1987, 70: 13-20
    [90] Parker D R, guilera J J and Thomson D N. Zinc-phosphorus interactions in two cultivars of tomato (L ycopersicon sculont um L.) grown in chelator buffered nutrient solutions[J]. Plant and Soil, 1992, 143: 163-177
    [91] Loneragan J F, Grove T S, Robson A. D. and Snowball K. Phosphorus toxicity as a factor in the zinc-phosphorus inter actions in plants[J]. Soil Sci. Soc. Am. J., 1979, 43: 966-972
    [92] Olsen S R. Micronutrient interactions[A]. In: Mortvedt J J, Giordano P M. and Lindsay WL (eds. ). Micronutrients in Agriculture[J]. Soil Society of America, Madison, 1972, 243-264
    [93] Youngdahl L J et al. Change in the 65Zn distribution in corn root tissue with a phosphorus variable[J]. Crop Sci, 1977, 17: 66-69
    [94] Warnock R E. Micronutrient uptake and mobility within corn plants in relation to phosphorus induced zinc deficiency[J]. Soil Sci. Soc. Am. Proc, 1970, 34: 765-769
    [95] Loneragan J F, Grunes D L, Welch R M, Aduayi E A, Tengh A, Lazar V A and Caty E E. Phosphorus accumulation and toxicity in leaves in relation to zinc supply[J]. Soil Sci. Soc. Am. J, 1982, 46: 345-352
    [96] Marscher H and Cakrak I. Mechanism of phophorus induced zinc deficiency in cotton II. Evidence for impaired shoot control of phosphorus uptake and translocation under zinc deficiency[J]. Physiol. Plant. 1986, 68: 491-496
    [97] Welch R M, Webb M I and LoneraganJ F. Zinc in membrane function and its role in phosphorus toxicity [A]. In: Scaife A (ed.). Proc. 9th Int. Plant Nutr. Coll[C]. Agric. Bur. Famham Royal Bucks. U K. 1982, 710-715
    [98] 王家玉. 植物营养元素交互作用研究[J]. 土壤学进展, 1992, 20: 1-10
    [99] 陶红群, 李晓林, 张福锁. 锌污染条件下VA 菌根对三叶草生长和元素吸收的影响[J]. 应用与环境生物学报. 1997, 3: 263-267
    [100]FONTES R L F, COX F R. Iron deficiency and zinc toxicity in soybean grown in nutrient solution with different levels of sulfur[J]. Journal of Plant Nutrition, 1998, 21(8): 1715-1722
    [101]BROWN J C, JONES W E. Heavy-metal toxicity in plants: 1. A crisis in embryo[J]. Communications in Soil Science and Plant Analysis, 1975, 6(4): 421-438
    [102]STEPHAN U W, GRUN M. Physiological disorders of the nicotianamine-auxotroph tomato mutant chloronerva at different levels of iron nutrition: II. Iron deficiency response and heavy metal metabolism[J]. Biochemie und Physiologie der Pflanzen, 1989, 185(3-4): 189-200
    [103]SIEDLECKA A, KRUPA Z. Interaction between cadmium and iron Accumulation and distribution of metals and changes in growth parameters of Phaseolus vulgaris L. seedlings[J]. Acta Societatis Botanicorum Poloniae, 1996, 65(3-4): 277-282
    [104]KRUPA-Z, SIEDLECKA A, MATHIS P. Cd/Fe interaction and its effects on photosynthetic capacity of primary bean leaves[A]. In: Proceedings of the Xth International Photosynthesis Congress[C]. Netherlands: Kluwer Academic Publishers, 1995, 4: 621-624
    [105]ALCANTARA E, ROMERA F J, CANETE M, et al. Effects of heavy metals on both induction and function of root Fe (III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants[J]. Journal of Experimental Botany, 1994, 45: 1893-1898
    [106]COHEN C K, FOX T C, GARVIN D F, et al. The role of iron-deficiency stress responses in stimulating heavy- metal transport in plants[J]. Plant Physiology, 1998, 116: 1063-1072
    [107]Epstion E. Mineral nutrition of plants :principles and perspectives[M], New York: Jone wiley and sons 1972
    [1] 郭冠林, 周启星. 土壤—植物系统复合污染研究进展[J]. 应用生态学报, 2003, 14(5): 823-828
    [2] 张怀渝, 王化新, 吴素琼, 等. 微量元素锌在土壤-植物-动物生态系统中的循环转移与利用[J]. 四川农业大学学报, 1999, 1(4): 374-377
    [3] 谢正苗. 土壤中锌的化学平衡[J]. 环境科学进展, 1996, 4(5): 13-30
    [4] 蔡晓布. 磷锌肥配合施用对青稞产量和品质的影响[J]. 植物营养与肥料学报, 2004, 10(5): 526-530
    [5] Godbold D L, Horst W J, Marshner H, et al. Root growth and Zn uptake by two ecotypes of Descha mpsia caespitosa as affected by high Zn concentrations[J] Plant Physiol ,1983 ,112: 315-334
    [6] Possingham J V, Spencer D. Manganese as a functional component of chloroplasts[J]. Aust. J. Biol. Sci, 1962, 15(1): 58-61
    [7] 张永清. 蔬菜奢侈吸锌的研究进展[J]. 山西师范大学学报(自然科学版), 2002, 16(2): 76-79
    [8] 项长兴, 董雅文, 钱君龙,等. 南京栖霞山铅锌矿区土壤环境质量评价[J]. 土壤, 1993, 25(6): 319-323
    [9] 任继凯, 陈清朗, 陈灵芝, 等. 土壤中镉, 铅, 锌及其相互作用对作物的影响[J]. 植物生态学与地植物学丛刊, 1982, 6(4): 320-329
    [10] 余国莹, 吴玉树, 王焕校. 不同化学形态镉、锌及其复合污染对小麦生理的影响[J]. 生态学报, 1992, 12(1): 93-96
    [11] 李博文, 郝晋珉. 土壤镉,铅和锌污染的植物效应研究进展[J]. 河北农业大学学报, 2002, 25(增刊) : 74-76
    [12] 王晓波, 宋凤斌. 锌对水稻种子萌发的影响[J]. 吉林农业大学学报, 2005, 27(2): 119-122
    [13] 吴燕玉, 王新, 梁仁禄,等. 重金属复合污染对土壤-植物系统的生态效应. Ⅱ. 对作物、苜蓿、树木吸收元素的影响[J]. 应用生态学报, 1997, 8(5): 545-552
    [14] 肖昕, 冯启言, 刘忠伟, 王华. 重金属Cu、Pb、Zn、Cd在小麦中的富集特征[J]. 能源环境保护, 2004, 18(3): 28-31
    [15] Law D W. Gibberellin-enhanced indole-3-acetic acid biosynthesis: D-Tryptophan as the precursor of indole-3-acetic acid[J]. Plant Physiol., 1987, 70: 626-632
    [16] Marschner H. Mineral Nutrition of Higher Plants (2nd ed. )[M]. Academic Press, 1995, 347-364
    [17] 范业宽, 叶坤合编. 土壤肥料学[M]. 2000, 138-139
    [18] Collins J C. Zinc in Effect of Heavy Metal Pollution on Plants (ed Lepp NW) [M]. Applied Science Publishers, London, 1981
    [19] 王振林, 沈成国, 余松烈. 小麦供锌状况对叶片结构及叶绿体超微结构的影响[J]. 作物学报, 1993, 19(6): 18-21
    [20] 郑小林, 赖雨玲. 水培锌浓度对水稻生长发育的影响[J]. 湛江师范学院学报, 1999, 20(1): 61-67
    [21] 石孝均, 毛知耘, 周则芳. 钙质紫色土小麦优质高产与氮、锌、锰优化配方的研究[J]. 西南农业大学学报, 1990, 12(6): 553-559
    [22] Robert W P, Linda S. Adsorption/desorption characteristics of lead on various types of soil. Environmental Progress, 1992, 11(3): 234-240
    [23] Moraghan T J. Accumulation of cadmiumand selected elements in flax seed grown on a calcareous soil [J]. Plant and Soil, 1993, 150: 61-68
    [24] Abdel-Sablur M F. Cadmium-Zinc interactions in plants and extractable cadmiumand zinc fractions in soil [J]. Soil Science, 1998, 145(6): 424-431
    [25] Cakmak Ⅰ, Welch R M, Erenoglu B, R?mheld V, Norvell W A, Kochian L V. Influence of varied zinc supply on re-translocation of cadmium (109Cd) and rubidium (86Rb) applied on mature leaf of durum wheat seedling[J]. Plant and Soil, 2000, 219: 279-284
    [26] 白厚义, 肖俊璋主编. 试验研究与统计分析[M]. 世界图书出版公司, 1998, 46-47.
    [27] 王新, 梁仁禄, 周启星. 土壤外源汞污染对大豆幼苗生长的影响研究[J]. 农业环境保护, 2001, 20(2): 74-77
    [28] Godbold D L, Horst W J, Marschner H. Root growth and Zn uptake by two ecotypes of deschampsia caespitosa as affected by high Zn concentrations[J]. Plant Physiol, 1983, 112: 315-334
    [29] 余国营, 吴玉燕, 王新. 重金属复合污染对大豆生长的影响及其综合评价研究[J]. 应用生态学报, 1995, 6(4): 433-439
    [30] 华珞, 白铃玉, 韦东普, 陈世宝. 土壤镉Zn复合污染的植物效应与有机肥的调控作用[J]. 中国农业科学, 2002, 35(3): 291-96
    [31] 郑振华, 周培疆, 吴振斌. 复合污染研究新进展. 应用生态学报, 2001, 12(3): 469-473.
    [32] 龙耀庭. 有毒化学物质对 DNA 的损伤—生成 DNA 加成物. 环境科学进展, 1993, 1(4): 24-40
    [33] 杨志敏. Zn污染对小麦萌发期生长和某些生理生化特性的影响[J]. 农业环境保护, 1994, 13(3): 121-123
    [34] 孙桂芳, 杨光穗. 土壤—植物系统中锌的研究进展[J]. 华南热带农业大学学报, 2002, 8(2): 22-30
    [35] 陈素华, 孙铁珩, 周启星. 重金属复合污染对小麦种子根活力的影响[J]. 应用生态学报, 2003, 14(4): 577-580. Chen S H, Sun T H, Zhou Q X. Effects of combined pollution of heavy metals on root vitality of wheat seeds [J]. Chinese Journal of Applied Ecology, 2003, 14(4): 577-580
    [36] Kargin F, Cogun H Y. Metal interactions during accumulation and elimination of zinc and cadmium in tissues of the freshwater fish Tilapia nilotica [J]. Bull Environ Contamination Toxicity, 1999, 63(5): 511-519
    [37] Teichler Z D. The effect of manganese on chloroplast structure and photosynthetic ability of chlamydomonas reinhardi[J]. Plant Physiol, 1969, 44: 701-710
    [38] Possingham J V, Spencer D. Manganese as a functional component of chloroplasts[J]. Biology Science, 1962, 15(1): 58-61
    [39] 刘建凤, 崔彦宏, 王荣焕. 锰对玉米种子萌发及幼苗生理活性的影响[J]. 植物营养与肥料学报, 2005, 11(2): 279-281
    [1] 王彗忠, 郭庆凯. 重金属污染土壤的治理方法[J]. 环境科学报, 2001(4): 25-26
    [2] Godbold D L, Horst W J, Marshner H, et al. Root growth and Zn uptake by two ecotypes of Descha mpsia caes pitosa as affected by high Zn concentrations[J] Plant Physiol, 1983, 112: 315-334
    [3] Possingham J V, Spencer D. Manganese as a functional component of chloroplasts[J]. Aust. J. Biol. Sci, 1962, 15(1): 58-61
    [4] 项长兴, 董雅文, 钱君龙等. 南京栖霞山铅锌矿区土壤环境质量评价[J]. 土壤, 1993, 25(6): 319-323
    [5] 吴燕玉, 王新, 梁仁禄等. 重金属复合污染对土壤-植物系统的生态效应. Ⅱ. 对作物、苜蓿、树木吸收元素的影响[J]. 应用生态学报, 1997, 8(5): 545-552
    [6] 李元, 王涣校, 吴玉树. Cd、Fe 及其复合污染对烟草叶片几项生理指标的影响[J]. 生态学报, 1992, 12(2): 147-153
    [7] GUPTA A, SINGHA L C.lnhibition of PSH actirity by copper an ire effect on spectral properties on intact cells in Anacy stis nidulans[J].Enuiron Exper Botany, 1995, 35: 435- 437
    [8] 郭世伟,邹春琴,江荣凤,张福锁.提高植物体内铁再利用效率的研究现状及进展[J]. 中国农业大学学报,2000, 5(3): 80-86
    [9] 何念祖译. 植物的铁营养[J]. 土壤学进展, 1980, 14 (1): 19-23
    [10] Miller GW, Pushnik J C. Iron chlorosis, the role of iron in chlorophyll formation[J]. Utah Sci, 1983, 44: 99-103
    [11] Agarwala S C, Sharma C P, Farooq S. Effect of iron supply on growth, chlorophyll, tissue iron and activity of certain enzymes in maize and radish[J]. Plant Physiol, 1965, 40: 493-499
    [12] 史锟,张福锁,刘学军,张旭东.不同时期施铁对水稻根表铁胶膜中铁镉含量及根系含镉量的影响[J]. 农业环境科学学报, 2004, 23(1): 6-12
    [13] Eriksson, J. E. The influence of pH, soil type and time on adsorption and uptake by plants of Cd added to the soil[J].Water, Air and Soil pollution, 1989, 48: 317-335
    [14] 石孝均, 毛知耘, 周则芳. 钙质紫色土小麦优质高产与氮、锌、锰优化配方的研究[J]. 西南农业大学学报, 1990, 12(6): 553-559
    [15] 任继凯,陈清明, 陈灵芝, 等.土壤中镉、铅、锌及其相互作用对植物的影响[J].植物生态学报与地植物丛刊, 1982, 6(4): 320-328
    [16] Robert W P, Linda S. Adsorption/desorption characteristics of lead on various types of soil[J]. Environmental Progress, 1992, 11(3): 234-240
    [17] Root R A, et al. Up take of Cadmium-its toxicity and effect on the iron ratio in hydroponically growncorn[J]. Environ. Qual. 1975, 54:473-476
    [18] Cough trey P J, et al. Tolerance of Holus lanatus of lead, zinc and cadmium in factorial combination[J]. New Phytologist, 1978:147-154
    [19] Smith G G, et al. Cadmium sensitivity of soybean related to efficiency in iron ultilization[J]. Environ. Experi. Bot. 1985, 25 (2):99-106
    [20] Wong M K, et al. The up take of cadmium by Brassica chinensis and its effect on plant zinc and iron distribution[J]. Environ. Experiments. Bot. 1984, 24 (2):189-195
    [21] Foster PL, et al. Reversal of cadmium toxicity in diatom: An interaction between cadmium activity and iron[J]. Limnol. Oceanogr. 1982, 27: 745-752
    [22] Cakmak Ⅰ, Welch R M, Erenoglu B, R?mheld V, Norvell W A, Kochian L V. Influence of varied zinc supply on re-translocation of cadmium (109Cd) and rubidium (86Rb) applied on mature leaf of durum wheat seedling[J]. Plant and Soil, 2000, 219: 279-284
    [23] 白厚义, 肖俊璋主编. 试验研究与统计分析[M]. 世界图书出版公司, 1998, 46-47
    [24] 余国营, 吴玉燕, 王新. 重金属复合污染对大豆生长的影响及其综合评价研究[J]. 应用生态学报, 1995, 6(4): 433-439
    [25] 余国莹, 吴玉树, 王焕校. 不同化学形态镉、锌及其复合污染对小麦生理的影响[J]. 生态学报, 1992, 12(1): 93-96
    [26] 李博文, 郝晋珉. 土壤镉. 铅和锌污染的植物效应研究进展[J]. 河北农业大学学报, 2002, 25(增刊): 74-76
    [27] Collins J C. Zinc in Effect of Heavy Metal Pollution on Plants (ed Lepp NW)[M]. Applied Science Publishers, London, 1981
    [28] 周厚基,仝月澳. 苹果树缺铁失绿研究的进展: Ⅱ. 铁逆境对树体形态及生理生化作用的影响[J]. 中国农业科学, 1988, 21(4): 46-50
    [29] Masss FM, Van de Wetering PAM, Van de Beusichem ML, etal. Characterization of pH loem iron and its possible role in the regulation of Fe efficiency reaction[J]. Plant Physiol, 1988, 87: 167-171
    [30] Marschner H, Robmheld V and Kissel M. Different strategies in higher plants in mobilization and up take of iron[J]. Plant Nutr. 1986, 9: 695-713
    [31] M arschner H. Mineral nutrition of higher plants[M]. Academic Press, New York, 1986
    [32] 李花粉,郑志宇,张福锁,毛达如.铁对小麦吸收不同形态镉的影响[J].生态学报, 1999,(19)2: 170-173
    [1] SMARRELLI J J, CAMPBELL W H. Heavy metal inactivation and chelator stimulation of higher plant nitrate reductase[J]. Biochimica et Biophysica Acta P, 1983, 742: 435-445
    [2] KASTORI R, PETROVIC M, PETROVIC N. Effect of excess lead, cadmium, copper, and zinc on water relations in sunflower[J]. Journal of Plant Nutrition, 1992, 15: 2427-2439
    [3] ASSCHE F V, CARDINAELS C, CLIJSTERS H, et al. Induction of enzyme capacity in plants as a result of heavy metal toxicity: dose response relations in Phaseolus vulgaris L., treated with zinc and cadmium[J]. Environmental Pollution, 1988, 52(2): 103-115
    [4] 何念祖译.植物的铁营养[J]. 土壤学进展, 1980, 14(1): 19-23
    [5] ZHOU H J, KORCA K R F, W ERGIN W P, et al. Cellular ultrastructure and net photo synthesis of apple seedlings, under iron stress[J]. J. Plant Nutr, 1984, 7 (6): 911-928
    [6] 刘芷宇, 唐永良, 罗质超. 主要作物营养失调症状图谱[M]. 北京: 农业出版社出版, 1982: 47-48
    [7] FONTES R L F, COX F R. Iron deficiency and zinc toxicity in soybean grown in nutrient solution with different levels of sulfur[J]. Journal of Plant Nutrition, 1998, 21(8): 1715-1722
    [8] 安志装,王校常,施卫明,严蔚东,曹志洪.重金属与营养元素交互作用的植物生理效应[J]. 土壤与环境 2002,11(4): 392-396
    [9] 石孝均, 毛知耘, 周则芳. 钙质紫色土小麦优质高产与氮、锌、锰优化配方的研究[J]. 西南农业大学学报, 1990, 12(6): 553-559
    [10] Root R A , et al. Up take of Cadmium-its toxicity and effect on the iron ratio in hydroponically grown corn[J]. Environ. Qual. 1975, 54: 473-476
    [11] Cough trey P J, et al. Tolerance of Holus lanatus of lead, zinc and cadmium in factorial combination[J]. New Phytologist, 1978: 147-154
    [12] Smith G G, et al. Cadmium sensitivity of soybean related to efficiency in iron ultilization[J]. Environ. Experi. Bot. 1985, 25 (2): 99-106
    [13] Wong M K, et al. The up take of cadmium by Brassica chinensis and its effect on plant zinc and iron distribution[J]. Environ. Experiments. Bot. 1984, 24 (2): 189-195
    [14] Foster PL, et al. Reversal of cadmium toxicity in diatom: An interaction between cadmium activity and iron[J]. Limnol. Oceanogr. 1982, 27: 745-752
    [15] 王新, 梁仁禄, 周启星. 土壤外源汞污染对大豆幼苗生长的影响研究[J]. 农业环境保护, 2001, 20(2): 74-77
    [16] COHEN C K, FOX T C, GARVIN D F, et al. The role of iron-deficiency stress responses in stimulating heavy- metal transport in plants[J]. Plant Physiology, 1998, 116: 1063-1072
    [17] KRUPA-Z, SIEDLECKA A, MATHIS P. Cd/Fe interaction and its effects on photosynthetic capacity of primary bean leaves[A]. In: Proceedings of the Xth International Photosynthesis Congress[C]. Netherlands:Kluwer Academic Publishers, 1995, 4: 621-624
    [18] 周厚基,仝月澳. 苹果树缺铁失绿研究的进展: Ⅱ. 铁逆境对树体形态及生理生化作用的影响[J]. 中国农业科学, 1988, 21 (4): 46-50
    [19] Masss FM, Van de Wetering PAM, Van de Beusichem M L, et al. Characterization of pH loem iron and its possible role in the regulation of Fe2efficiency reaction [J]. Plant Physiol, 1988, 87: 167-171
    [20] 郑振华, 周培疆, 吴振斌. 复合污染研究新进展[J]. 应用生态学报, 2001, 12(3): 469-473
    [21] KRUPA-Z, SIEDLECKA A, MATHIS P. Cd/Fe interaction and its effects on photosynthetic capacity of primary bean leaves[A]. In: Proceedings of the Xth International Photosynthesis Congress[C]. Netherlands: Kluwer Academic Publishers, 1995, 4: 621-624
    [22] ALCANTARA E, ROMERA F J, CANETE M, et al. Effects of heavy metals on both induction and function of root Fe(III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants[J]. Journal of Experimental Botany, 1994, 45: 1893-1898
    [23] 胡玉香,翟长庚,于聚然.锌铁微肥对小麦良种的增产效应[J]. 中国种业, 2003, 2: 25-26
    [24] FONTES R L F, COX F R. Iron deficiency and zinc toxicity in soybean grown in nutrient solution with different levels of sulfur[J]. Journal of Plant Nutrition, 1998, 21(8): 1715-1722
    [25] BROWN J C, JONES W E. Heavy-metal toxicity in plants: 1. A crisis in embryo[J]. Communications in Soil Science and Plant Analysis, 1975, 6(4): 421-438
    [26] STEPHAN U W, GRUN M. Physiological disorders of the nicotianamine-auxotroph tomato mutantchloronerva at different levels of iron nutrition: II. Iron deficiency response and heavy metal metabolism[J]. Biochemie und Physiologie der Pflanzen, 1989, 185(3-4):189-200
    [27] Kargin F, Cogun H Y. Metal interactions during accumulation and elimination of zinc and cadmium in tissues of the freshwater fish Tilapia nilotica[J]. Bull Environ Contamination Toxicity, 1999, 63(5): 511-519
    [28] Walter A, R?mheld V, Marschner H, et al. Is the release of phytosiderophores in zinc-deficient wheat plants a response to impaired iron utilization[J]. Physiologia Plantarum, 1994, 92: 493-500
    [29] Rengel Z, R?mheld V. Root exudation and Fe uptake and transport in wheat genotypes differing in tolerance to Zn deficiency[J]. Plant and Soil, 2000, 222: 25-34
    [1] 白厚义, 肖俊璋主编. 试验研究与统计分析[M]. 世界图书出版公司, 1998, 46-47
    [2] Bai H Y, Xiao J Z edited. Experimental Study and Statistics[M]. The World Books Publisher, 1998, 46-47
    [3] Harmens H. Physiology of zinc tolerance in Silene v ulgaris[M]. Febodruk , Enschede , Amsterdam. 1993, 61-76
    [4] 夏星辉,陈静生. 土壤重金属污染治理方法研究进展[J]. 环境科学. 1997, 18: 72-75
    [5] 杨志敏, 郑绍建, 胡霭堂.植物体内P与重金属元素Zn、镉交互作用的研究进展[J]. 植物营养与肥料学报. 1999, 5 (4): 366-376
    [6] 夏星辉,陈静生. 土壤重金属污染治理方法研究进展[J]. 环境科学. 1997, 18: 72-75
    [7] Sela M and Elisha T. Localization and toxic effects of cadmium copper and uranium in Azolla[J]. Plant Physiol, 1988, 88: 30~36
    [8] Summer M E. Phosphorus interactions with other nutrients and lime in field croping systems[A]. In : Stewart B A(ed.). Advances in Soil Science[M]. Springer Verlag, New York, 1986, 68-86
    [9] 农牧渔业部农业局. 微量元素肥料研究与应用[M]. 武汉:湖北科学技术出版社,1986,1-54,60-91, 155-254
    [10] 何念祖等. 植物营养原理[M]. 上海:上海科学技术出版社,1987,125-133,293-304
    [11] 北京农业大学. 农业化学[M]. 北京:农业出版社,1994, 106-111, 169-170, 177-179
    [12] Summer M E. Phosphorus interactions with other nutrients and lime in field croping systems [A]. In Stewart B A(ed). Advances in Soil Science[M]. Springer Verlag, New York, 1986, 68-86
    [13] 王家玉. 植物营养元素交互作用研究[J]. 土壤学进展, 1992, 20:1-10
    [14] Alina K P and Honry K P. Trace elements in soil and plants [M]. CRC Press. London, 1996, 67-291
    [15] Robson A D and Pitman M G. Interaction of nutrients in higher plants [A]. In: Lauchli A (ed), 张礼忠, 毛知耘译.Inorganic Nutrition in Plants[M]. 北京: 农业出版社, 1992, 91-102
    [16] 王彗忠, 郭庆凯.重金属污染土壤的治理方法[J]. 环境科学报, 2001(4): 25-26
    [17] 任继凯, 陈清明, 陈灵芝, 等.土壤中镉、铅、Zn 及其相互作用对植物的影响[J]. 植物生态学报与地植物丛刊, 1982, 6(4): 320-328
    [18] Singh J P, Karamanos R E , Stewart J W P. Phosphorus-induced zinc deficiency in wheat on residual phosphorus plots[J]. Agron J, 1986, 78: 668-675
    [19] Marschner H.Minral nutrition of higher plants, 2nd eds[M]. London: Academic Press, 1995. 229-312
    [20] Cao M J (曹敏建) ,Dai J Y(戴俊英) ,Jia F W(贾方伟), et al. 1992. Study the phosphorus and zinc nutrition of corn seedlings[J]. Soil Sci (土壤通报), 23 (4): 165-167 (in Chinese)
    [21] Iorio AF, Gorgoschide L ,Rendina A , et al. 1996. Effect of phosphorus, copper, and zinc addition on the phosphorus/ copper and phosphorus/ zinc interaction in lettuce[J]. Plant Nut r, 19 (3/4): 481~491 Loneragan J F ,Grove TS ,Robson AD , et al . 1979. Phosphorus toxicity as a factor in zinc phosphorus interaction in plants[J]. Soil Sci, 43: 966-972
    [22] Loneragan J F, Webb M J. 1993. Interaction between zinc and other nutrients affecting the growth of plants. In: Robson AD ed. Zinc in Soils and Plants[M]. Dordrecht: Kluwer Academic Publishers. 119-134
    [23] Peng L (彭 琳), Peng X L (彭祥林). 1980. Zinc fertilizer efficiency and relation of phosphorus zinc in Lou soils[J]. Acta Pedol Sin (土壤学报),7(1): 62-68 (in Chinese)
    [24] Zhu Y G, Smith S E, Smith F A. 2001. Zinc (Zn) phosphorus (P) interactions in two cultivars of spring wheat (Triticum aestivum L.) differing in P uptake efficiency[J]. Ann Bot, 88: 941-945
    [25] 张富仓, 康绍忠, 龚道枝, 李志军. 不同 P 浓度对玉米生长及 P、锌吸收的影响[J]. 应用生态学报 2005, 16(5): 903-906
    [26] Millikan C R, Hanger B C, Bjarnason E N. Effect of phosphorus and zinc levels in the substrate on 65Zn distribution in subterranean clove and flax[J]. Australian J Biol Sci, 1968, 21: 619-640
    [27] 王海鸥, 刘杰民, 弓爱君吕俊君, 洪敏杰, 时国庆. 施加 P 元素后对小麦抗重金属 Cu 毒性的影响[J]. 环境污染治理技术与设备, 2006, 7(5): 54-59
    [28] Cakmark I, MarschnerH. Mechanism of phosphorus-induced zinc deficiency in cotton Ⅲ. Changes in physiological availability of zinc in plants[J]. Physiologia Plantarum, 1987, 70: 13-20
    [29] 张富仓, 康绍忠, 龚道枝, 李志军. 不同 P 浓度对玉米生长及 P、锌吸收的影响[J]. 应用生态学报 2005, 16(5): 903-906
    [30] Wang H X(王海啸), Wu J L (吴俊兰), Zhang T J (张铁金), et al. 1990. Relation of phosphorus zinc of calsic cinnamon response to the growth of corn seedlings[J]. Acta Pedol Sin (土壤学报), 27 (3): 24-249 (in Chinese)
    [31] Olsen S R. 1972. Micronutrient Interactions. In: Mortvedt JJ, eds. Micronutrients in Agriculture[J]. Madison, Wisconsin: Soil Soc. Soc. Am. Inc: 243-264
    [32] Cao M J (曹敏建), Dai J Y(戴俊英), Jia F W(贾方伟), et al. 1992. Study the phosphorus and zinc nutrition of corn seedlings[J]. Soil Sci (土壤通报), 23(4): 165-167(in Chinese)
    [33] Marschner H. 1995. Mineral Nutrition of Higher Plants[M]. London :Academic Press
    [34] Cogliatti D H, Alcocer N, Santa Maria G E. Effect of P concentration on 65Zn uptake in Gaudinia fragilis[J]. J Plant Nutrition, 1991, 14: 443-452
    [35] Cotter Howells J, Capron S. Remediation of contaminated land by formation of heavy metal phosphates[J]. Appl. Geochem, 1996, 11: 335-342
    [36] Malone C. P, Koeppe D. E, Miller R. J. Localisation of lead accumulated by corn plants[J]. Plant Physiol, 1974, 53: 388-394
    [37] Basta N. T, Gradwohl R.Estimation of Cd, Pb, and Zn bioavailability in smelter-contaminated soils by a sequential extraction procedure[J]. Soil Cont, 2000, 9: 149-164
    [38] Basta N. T, Gradwohl R, Snethen K. L, Schroder J. L. Chemical immobilisation of lead, zinc and cadmium in smelter contaminated soils using bio solids and rock phosphate[J]. Environ. Qual, 2001, 30: 1222-1230
    [39] 杨志敏, 郑绍健, 胡霭堂. 不同 P 水平下植物体内镉的积累、化学形态及生理特性[J]. 应用与环境生物学报, 2000, 6: 121-126
    [40] 郑振华, 周培疆, 吴振斌. 复合污染研究新进展[J]. 应用生态学报, 2001, 12(3): 469-473
    [41] Kargin F, Cogun H Y. Metal interactions during accumulation and elimination of zinc and cadmium in tissues of the freshwater fish Tilapia nilotica[J]. Bull Environ Contamination Toxicity, 1999, 63(5): 511-519
    [42] 王海啸,武丕武. P、锌使用量对玉米苗期吸收 Zn、Cu、Mn 的影响[J]. 农业环境保, 1996, 15(6): 257-260

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700