用户名: 密码: 验证码:
短孔道有序介孔材料的可控合成及吸附、催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有序介孔材料因其具有2-50 nm均匀可控的孔径,大的比表面积和孔容、规则的孔道、易于修饰的表面等特性使其在催化、吸附、分离、生物医药等领域具有重要应用价值,备受国内外研究人员的关注。传统SBA-15呈棒状或纤维状,孔道较长(1-2μm),且颗粒往往呈聚集状。当其作为载体应用于吸附、分离和催化领域时,物质在微米级孔道范围内较慢的传递和扩散是制约动力学的主要因素之一。本论文针对传统SBA-15孔道较长而引起的扩散速度慢的问题,采用新的合成路线制备了六方板状、短孔道有序介孔材料。围绕合成过程中的影响因素进行系统研究,获得了六方板状短孔道有序介孔材料的可控合成优化条件。在此基础上,以合成的短孔道、六方板状介孔材料为基体,制备了氨基、巯基功能化介孔吸附材料和负载型铜锰复合氧化物介孔催化剂,考察了短孔道载体对吸附材料和催化剂性能的影响。结果表明,以ZCS为载体得到的吸附材料和催化材料,其性能与传统SBA-15相比有显著的改善。本论文主要进行了以下几个方面的研究工作:
     1.以非离子表面活性剂P123为模板剂,正硅酸乙酯(TEOS)为硅源,氧氯化锆(ZrOCl2·8H2O)和硝酸亚铈(Ce(NO3)3·6H2O)为无机前驱盐,在不外加任何无机酸的条件下,利用无机前驱盐自身水解产生的弱酸性环境,采用水热合成路线一步合成了不同形貌的Zr-Ce-SBA-15(ZCS)介孔材料。考察了合成体系中不同的合成条件,包括nZr(Ce)/nSi摩尔比、nCe/nZr摩尔比、反应温度和晶化温度等对合成产物的形貌和结构的影响,利用扫描电子显微镜(SEM)和小角X射线衍射(SXRD)对不同条件下制备的一系列样品形貌和孔道有序性进行了表征,研究并讨论了合成条件对介孔材料形貌和介孔结构有序性的影响规律。
     2.在ZCS介孔材料的一步法水热合成体系中,控制nZr(Ce)/nSi摩尔比为0.05、nZr/nCe摩尔比为1、反应温度为35℃,制备了高度有序、大径轴比、短孔道、六方板状形貌ZCS介孔材料。利用电感耦合等离子体原子发射光谱(ICP-AES)、粉末X射线衍射(XRD)、透射电子显微镜(TEM)、SEM、氮气吸附/脱附(BET)等手段对所合成样品的元素和相组成、形貌和微观结构进行了详细表征。结果表明:合成的材料形状规则,颗粒的径向长度约为1.5-1.7μm,轴向长度约为0.4-0.5μm,具有类似于SBA-15的二维六方介孔结构。孔径、孔容和比表面积分别为6.4nm、0.96 cm3/g和776 m2/g。
     3.分别采用缩聚和后接枝方法,以非离子表面活性剂P123为模板剂,N-(2-氨基乙基)-3-氨丙基三甲氧基硅烷(AAPTS)、3-巯基丙基-三甲氧基硅烷((MPTMS)为有机修饰剂,分别合成了氨基和巯基官能团化的短孔道有序介孔材料。通过物理化学手段分析测试,结果表明AAPTS和MPTMS成功地引入到有序介孔材料上,短孔道功能化材料仍保持了类似于传统SBA-15高度有序的二维六方介孔结构。功能化短孔道介孔材料对大分子有机染料的吸附性能研究表明,和传统长孔道SBA-15相比,这种功能化新型介孔材料具有更好的传输能力,可使有机大分子快速达到吸附平衡。
     4.以ZCS为载体,通过浸渍法制备了负载型铜锰复合氧化物介孔催化剂(Cu-Mn/ZCS)。以甲苯催化燃烧为模型反应,以传统的SBA-15负载型铜锰复合氧化物介孔催化剂(Cu-Mn/SBA-15)为参照,研究了Cu-Mn/ZCS催化剂对甲苯燃烧反应的催化性能、优化制备条件及机制。结果表明,与传统Cu-Mn/SBA-15相比,Cu-Mn/ZCS催化剂具有更好的催化效果。控制Cu-Mn质量比为1:1、Cu-Mn负载量为20%(质量分数)、经500℃焙烧4h制备的催化剂具有良好的催化活性。甲苯催化燃烧的起燃温度(T50)和完全燃烧温度(T95)分别为247℃和270℃。铜锰氧化物等活性组分在ZCS介孔分子筛孔道中高度分散,且晶化度较低是Cu-Mn/ZCS催化剂有较高催化活性的原因。研究结果为短孔道介孔材料在催化领域中的应用提供了一定的理论和实验依据。
Well-ordered mesoporous materials have been found great applications in the fields of catalysis, adsorption, separation and biomedicine because of their highly ordered pore structure, uniform pore size, large pore volume, high special surface area, the presence of voids of controllable dimensions at 2-50 nanometer scales, and easily modified surface characteristics. The morphology of conventional SBA-15 are usually bar or fiber aggregates. The slow transfer and diffusion of reactants in the relatively long channels has been the main problem for dynamic reaction when SBA-15 was used as catalyst, sorption and separation media. For solving such problem, a new one-step hydrothermal routine was used to synthesis highly ordered SBA-15 mesoporous material with hexagonal platelet morphology and short channels. The controlling factors for the synthesis of the new mesoporous material were systematically studied and the optimized condition was obtained. Amino-functionalized H2N-Zr-Ce-SBA-15 (H2N-ZCS) catalyst and Cu-Mn/ZCS catalyst were prepared based on the newly formed hexagonal platelet SBA-15. The catalytic and adsorption property of the catalysts based on ZCS were superior to the conventional SBA-15. The main research work and results are summarized as follows.
     (1) The mesoporous Zr-Ce-SBA-15 (ZCS) materials with various morphologies were synthesized by a one step hydrothermal route using tetraethyl orthosilicate as a silica source, Pluronic P123 as a template, zirconyl chloride and cerous nitrate as a precursor under a moderate self-generated acidic condition produced by the hydrolysis of the precursor, without the addition of mineral acids. The effects of the controlling factors on the morphologies and structures of ZCS, including molar ratios of nZr(Ce)/nSi and nZr/nCe, hydrothermal temperature and crystallization temperature, were systematically studied. Scanning electron microscope (SEM) and small angel X-ray diffraction (SXRD) were used to characterize the morphology and order of the arrangement of the mesopores. The relationship between synthetic parameters and the morphology and structure of mesopores was established.
     (2) With such a one step hydrothermal method, highly ordered mesoporous ZCS with hexagonal-platelet morphology was synthesized by controlling the reaction temperature at 35℃and molar ratios of nZr(Ce)/nSi and nZr/nCe at 0.05 and 1, respectively. Inductively coupled plasma atomic emission spectrometry (ICP-AES), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and N? adsorption/desorption were used to characterize the elemental and phase composition, morphology and microstructure of the as synthesized ZCS. Characterization reveals that the ZCS possesses a 2D hexagonal mesoporous structure similar to SBA-15. The average pore size, pore volume and specific surface area of the materials are 6.4nm,0.96 cm3/g and 776 m2/g, respectively.
     (3) Amino-functionalized H2N-Zr-Ce-SBA-15(H2N-ZCS) and thiol-functionalization HS-Zr-Ce-SBA-15(HS-ZCS) mesoporous materials with unique hexagonal platelet morphologies and short channels were respectively synthesized by post-grafting and co-condensation methods using [1-(2-amino-ethyl)-3-aminopropyl] trimethoxysilane (AAPTS), and 3-mercaptopropyltrimethoxysilane (MPTMS) as organic modifiers. The physical and chemical analysis indicates that AAPTS and MPTMS were successfully grafted to the host mesopores and the functionalized mesoporous materials have unique hexagonal platelet morphologies with short channels and they possess a highly ordered two-dimensional hexagonal mesoporous structure similar to conventional SBA-15. The study on the sorption of organic dye indicates that functionalized mesoporous materials have higher adsorption rates and adsorption capacities compared with conventional SBA-15. The improved performance is attributed to the short channels in the functionalized ZCS materials which facilitate molecular diffusion and quickly achieve the balance of adsorption/desorption.
     (4) Cu-Mn/ZCS catalyst was prepared by impregnation method. The catalytic activity of the catalyst was evaluated in the model reaction of toluene combustion. The synthetic condition was optimized and the mechanism was discussed. Results indicate that Cu-Mn/ZCS possesses a superior catalytic activity when it was prepared at such conditions as Cu/Mn mass ratio of 1 and 20 wt.% of Cu-Mn, being sintered at 500℃for 4hrs. With such a catalyst, the ignition temperature and total combustion temperature of the toluene combustion was 247℃and 270℃, respectively. The improved catalytic activity was due to the highly distribution of Cu-Mn reactants in the short channels in ZCS and relatively low crystallization degree of Cu-Mn oxides. These results provide a theoretic and experimental foundation for the application of the short channels mesoporous materials in the catalyst field.
引文
[1]Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves [J]. science,1995,267(5199):865-867.
    [2]Suzuki K, Ikari K, Imai H. Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system [J]. J. Am. Chem. Soc.,2004,126(2): 462-463.
    [3]Huo Q S, Leon R, Petroff P M, et al. Mesostructure design with Gemini surfactants-supercage formation in a 3-dimensional hexagonal array [J]. Science,1995, 268(5215):1324-1327.
    [4]Monnier A, Schuth F, Huo Q, et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures [J]. Science,1993,261(5126):1299-1303.
    [5]Scott B J, Stucky G D. Mesoporous and mesostructured materials for optical pplications [J]. Chem. Mat.,2001,13(10):3140-3150.
    [6]Ravikovitch P I, Wei D, Chueh W T, et al. Evaluation of pore structure parameters of MCM-41 catalyst supports and catalysts by means of nitrogen and argon adsorption [J]. J. Phys. Chem. B,1997,101(19):3671-3679.
    [7]Kosuge K, Sato T, Kikukawa N, et al. Morphological control of rod- and fiberlike SBA-15 type mesoporous silica using water-soluble sodium silicate [J]. Chem. Mater., 2004,16(5):899-905.
    [8]Srinivas D, Ratnasamy P. Spectroscopic and catalytic properties of SBA-15 molecular sieves functionalized with acidic and basic moieties [J]. Micropor. Mesopor. Mat., 2007,105(1-2):170-180
    [9]Chen S Y, Lee J F, Cheng S. Pinacol-type rearrangement catalyzed by Zr-incorporated SBA-15 [J]. J. Catal.,2010,270(1):196-205.
    [10]Everett D H. IUPAC mannul of symbols and terminology, appendix 2, part 1, colloid and surface chemistry [M]. Pure Appl. Chem.,1972,31(4):578.
    [11]Zhao X S, Lu G Q, Whittaker A K, et al. Comprehensive study of surface shemistry of MCM-41 using 29Si CP/MAS NMR, FTIR, Pyridine-TPD and TGA [J]. J. Phys. Chem. B.,1997,101(33):6525-6531.
    [12]Yanagsiwa T, Shimizu T, Kuroda K, et al. The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials [J]. Bull. Chem. Soc. Jpn.,1990,63(4):988-992.
    [13]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquidcrystal template mechanism [J]. Nature,1992,359(22):710-712.
    [14]Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid- crystal template mechanism [J]. J. Am. Chem. Soc.,1992,114(25): 10834-10843.
    [15]徐如人,庞文琴.分子筛与多孔材料化学(第一版)[M],北京:科学出版社,2004.
    [16]Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science,1998,279(5350):548-532.
    [17]Zhao D Y, Huo Q S, Feng J L, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. J. Am. Chem. Soc.,1998,120(24):6024-6036.
    [18]Imperor-Clerc M, Davidson P, Davidson A. Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers [J]. J. Am. Chem. Soc.,2000,122(48),11925-11933.
    [19]许磊,王公慰,魏迎旭,等.MCM-41介孔分子筛合成研究Ⅱ.微波辐射合成法[J].催化学报,1999,20(3):251-255.
    [20]Celer B, Jaroniec M. Temperature-programmed microwave-assisted synthesis of SBA-15 ordered mesoporous silica [J]. J. Am. Chem. Soc.2006,128(44):14408-14414.
    [21]Liu X Y, Tian B Z, Yu C Z, et al. Room-temperature synthesis in acidic media of large-pore three-dimensional bicontinuous mesoporous silica with la3d symmetry [J]. Angew. Chem. Int. Ed.,2002,41(20):3876-3878.
    [22]Tian B, Liu X Y, Zhang Z D, et al. Syntheses of high-quality mesoporous materials directed by blends of nonionic amphiphiles under nonaqueous conditions [J]. J. Solid State. Chem.,2002,167(2):324-329.
    [23]Soler-lllia G J de AA, Sanchez C, Lebeau B. et al. Chemical strategies to design tex- tured materials:from microporos and mesoporous oxides to nanonetworks and hierarchical structures[J]. Chem. Rev.,2002,102(11):4093-4138.
    [24]Sakamoto Y, Kaneda M, Terasaki O, et al. Directimaging of the pores and cages of three-dimensional mesoporous materials [J]. Nature,2000,408(23):449-453.
    [25]Zhao D Y, Huo Q S, Feng J L, et al. Novel mesoporous silicates with two-dimensional mesostructure direction using rigid bolaform surfactants [J]. Chem. Mater.1999,11(10): 2668.
    [26]Vartuli J C, Kresge C T, Leonowicz M E, et al. Synthesis of mesoporous materials: liquid-crystal templating versus intercalation of layered silicates [J]. Chem. Mater.1994, 6(11):2070-2077.
    [27]Kresge C T, Vartuli J C, Roth W J, et al. M41S:A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. Science and Technology in Catalysis, 1995,92:11-19.
    [28]Davis M E, Chen C Y, Burkett S L, et al. Synthesis of (alumino) silicate materials using organic molecules and self-assembled organic aggregates as structure-directing [J]. Mater. Res. Soc. Symp. Ser. Proc.,1994,346:831-842.
    [29]Chen C Y, Burkette S L, Li H X, et al. Studies on mesoporous materials Ⅱ. Synthesis mechanism of MCM-41 [J]. Microporous Mater.,1993,2(1):27-34.
    [30]Chen C Y, Burkette S L, Li H X, et al. Studies on mesoporous materials I. Synthesis and characterization of MCM-41[J]. Microporous Mater.,1993,2(1):17-26.
    [31]Firouzi A, Kumar D, Bull L M, et al. Cooperative organization of inorganic-surfactant and biomimetic assemblies [J]. Science,1995,267:1138-1143.
    [32]Firouzi A, Atef F, Oertli A G, et al. Alkaline lyotropic silicate-surfactant liquid crystals [J]. J.Am.Chem.Soc.1997,119(15):3596.
    [33]Vartuli J C, Schmitt K D, Kresge C T, et al. Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves:inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications [J]. Chem. Mater.1994,6(12):2317-2326.
    [34]Huo Q S, Margolese D L, Stucky G D. Surfactant control of phases in the synthesis of mesoporous silica-based materials [J]. Chem. Mater.,1996,8(5):1147-1160.
    [35]Monnier A, Schuth F, Huo Q, et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicat mesostructures[J]. Science,1993, 261(5126):1299-1303.
    [36]Huo Q S, Margolese D L, Ciesla U, et al. Generalized synthesis of periodic surfactant/inorganic composite materials [J]. Nature,1994,368(24):317-321.
    [37]Goltner C G, Antonietti M. Mesoporous materials by templating of liquid crystalline phases [J]. Adv. Mater.,1997,9(5):431-436.
    [38]Goltner C G, Henke S, Weissenberger M C, et al. Mesoporous silica from lyotropic liquid crystal polymer templates [J]. Angew. Chem. Int. Ed.,1998,37(5):613-616
    [39]Yu C Z, Yu Y H, Zhao D Y. Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO-PBO-PEO copolymer [J]. Chem. Commun.2000,7: 575-576.
    [40]Fan J, Yu C Z, Gao T, et al. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties [J]. Angew. Chem. Inter. Ed.2003,42 (27): 3146-3150.
    [41]Kim J M, Sakamoto Y, Hwang Y k, et al. Structural design of mesoporous silica by micelle-packing control using blends of amphiphilic block copolymers[J].J. Phys. Chem. B,2002,106(11):2552-2558.
    [42]Huo Q S, Feng J L, Schuth F, et al. Preparation of hard mesoporous silica spheres [J]. Chem. Mater.,1997,9(1):14-17.
    [43]Suzuki K, Ikari K, Imai H. Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system [J]. J. Am. Chem. Soc.,2004,126(2): 462-463.
    [44]Yu C Z, Tian B Z, Fan J, et al. Salt effect in the synthesis of mesoporous silica templated by non-ionic block copolymers [J]. Chem. Commun.,2001:2726-2727.
    [45]Schacht S, Huo Q, Voit-Martin I G, et al. Oil-water interface templating of mesoporous macroscale structures [J]. Science,1996,273(5276):768-771.
    [46]Zhu Y F, Shi J L, Chen H R, et al. A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property [J]. Micropor. Mesopor. Mat., 2005,84 (1-3):218-222.
    [47]Che S, Liu Z, Ohsuma T, et al. Synthesis and characterization of chiral mesoporous silica [J]. Nature,2004,429,281-284.
    [48]Che S, Garcia-Bennett A E, Yokoi T. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure [J]. Nature Materials,2003,2: 801-805.
    [49]Zhao D Y, Sun J Y, Li Q Z, et al. Morphological control of highly ordered mesoporous silica SBA-15 [J] Chem. Mater.,2000,12(2):275-279.
    [50]Yu C Z, Fan J, Tian B Z, et al. High yield synthesis of periodic mesoporous silica rods and their replication to mesoporous carbon rods [J]. Adv. Mater.,2002,14(16): 1742-1745.
    [51]Fan J, Lei J, Wang L M, et al. Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologies [J]. Chem. Commun.,2003, 2140-2141.
    [52]Zhang H, Sun J M, Ma D, et al. Unusual mesoporous SBA-15 with parallel channels running along the short axis [J]. J. Am. Chem.Soc.,2004,126(24):7440-7441.
    [53]Konya Z, Zhu J, Szegedi A, et al. Synthesis and characterization of hyperbranched mesoporous silica SBA-15 [J]. Chem. Commun.,2003:314-315.
    [54]Fahn Y Y, Su A C, Shen P. Towerlike SBA-15:Base and (10)-specific coalescenece of a silicate-enhanced hexagonal mesophase tailored by nonionic triblock copolymers [J]. Langmuir,2005,21(1):431-436.
    [55]Jin Z W, Wang X D, Cui X G. Synthesis and morphological investigation of ordered SBA-15-type mesoporous silica with an amphiphilic triblock copolymer template under various conditions [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2008,316: 27-36.
    [56]Han Y, Ying J Y. Generalized fluorocarbon-surfactant-mediated synthesis of nanoparticles with various mesoporous structures [J]. Angew. Chem., Int. Ed.2005,44(2): 288-292.
    [57]Cui X G, Moon S W, Zin W C. High-yield synthesis of monodispersed SBA-15 equilateral hexagonal platelet with thick wall [J].Mater. Let.,2006,60(29-30): 3857-3860.
    [58]Sujandi, Park S E, Han D S, et al. Amino-functionalized SBA-15 type mesoporous silica having nanostructured hexagonal platelet morphology [J]. Chem. Commun.,2006: 4131-4133.
    [59]Sujandi, Prasetyanto E A, Park S E. Synthesis of short-channeled amino-functionalized SBA-15 and its beneficial applications in base-catalyzed reactions [J]. Appl. Catal. A: Gen.,2008,350(2):244-251.
    [60]Chen S Y, Jang L Y, Cheng S. Synthesis of Zr-Incorporated SBA-15 mesoporous materials in a self-generated acidic environment [J]. Chem. Mater.,2004,16(21): 4174-4180.
    [61]Chen S Y, Tang C Y, Chuang W T, et al. A Facile route to synthesizing functionalized mesoporous SBA-15 materials with platelet morphology and short mesochannels [J]. Chem. Mater.,2008,20(12):3906-3916.
    [62]Chen S Y, Lee J F, Cheng S. Pinacol-type rearrangement catalyzed by Zr-incorporated SBA-15[J]. J. Catal.,2010,270 (1):196-205.
    [63]Ooi Y S, Zakaria R, Mohamed A R, et al. Hydrothermal stability and catalytic activity of mesoporous aluminum-containing SBA-15 Catalysis [J]. Communications,2004,5 (8): 441-445
    [64]Newalkar B L, Olanrewaju J, Komarneni S. et al. Microwave-hydrothermal synthesis and characterization of Zirconium substituted SBA-15 mesoporous silica [J]. J. Phys. Chem. B,2001,105(35):8356-8360.
    [65]Chen S Y, Tsai H D, Chuang W T, et al. Direct preparation of thermally stable Sn-Incorporated SBA-15 mesoporous materials in the self-generated acidic environment [J]. J. Phys. Chem. C,2009,113(34):15226-15238.
    [66]Melero J A, Iglesias J, Arsuaga J M, et al. Synthesis, characterization and catalytic activity of highly dispersed Mo-SBA-15[J]. Appl. Catal. A-General,2007,331:84-94.
    [67]Selvaraj M, Lee T G. Direct synthesis of well-ordered and unusually reactive Mn-SBA-15 mesoporous molecular sieves with high manganese content [J]. J. Phys. Chem. B 2006,110(43):21793-21802
    [68]Zhang Y H, Gao F, Wan H Q, et al. Synthesis, characterization of bimetallic Ce-Fe-SBA-15 and its catalytic performance in the phenol hydroxylation[J]. Micropor. Mesopor. Mat.,2008,113 (1-3):393-401
    [69]Dai Q G, Wang X Y, Chen G P, et al. Direct synthesis of Cerium(Ⅲ)-incorporated SBA-15 mesoporous molecular sieves by two-step synthesis method [J]. Micropor. Mesopor. Mat.,2007,100(1-3):268-275.
    [70]Timofeeva M N, Jhung S H, Hwang Y K, et al. Ce-silica mesoporous SBA-15-type materials for oxidative catalysis:Synthesis, characterization, and catalytic application[J]. Appl. Catal. A:General,2007,317 (1):1-10.
    [71]Srinivasu P, Anand C, Alam S, et al. Direct synthesis and the morphological control of highly ordered two-dimensional P6mm mesoporous Niobium silicates with high Niobium content [J]. J. Phys. Chem. C,2008,112(27):10130-10140.
    [72]Mu Z, Li J J, Hao Z P, et al. Direct synthesis of lanthanide-containing SBA-15 under weak acidic conditions and its catalytic study [J]. Micropor. Mesopor. Mat.,2008,113 (1-3):72-80.
    [73]Jung W Y, Baek S Ha, Yang J S, et al. Synthesis of Ti-containing SBA-15 materials and studies on their photocatalytic decomposition of orange[J]. Catal.Today,2008,131 (1-4): 437-443.
    [74]Li G, Zhao X S. Characterization and Photocatalytic properties of Titanium-containing mesoporous SBA-15[J]. Ind. Eng. Chem. Res.,2006,45(10):3569-3573.
    [75]Piumetti M, Bonelli B, Armandi M, et al. Vanadium-containing SBA-15 systems prepared by direct synthesis:Physico-chemical and catalytic properties in the decomposition of dichloromethane [J]. Micropor. Mesopor. Mat.,2010,133(1-3):36-44.
    [76]Wang X G, Lin K S K, Chan J C C, et al. Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials [J]. J. Phys. Chem. B.,2005,109(5):1763-1769.
    [77]Song S W, Hidajat K, Kawi S. Functionalized SBA-15 materials as carriers for controlled drug delivery:Influence of surface properties on matrix-drug interactions [J]. Langmuir, 2005,21(21):9568-9575.
    [78]Balas F, Horcajada P, Vallet-Regi M, et al. Confinement and Controlled Release of Bisphosphonates on Ordered Mesoporous Silica-Based Materials [J]. J. Am. Chem. Soc., 2006,128(25):8116-8117.
    [79]Nguyen T P B, Lee J W, Shim W G, et al. Synthesis of functionalized SBA-15 with ordered large pore size and its adsorption properties of BSA [J]. Micropor. Mesopor. Mat., 2008,110(2-3):560-569.
    [80]Hartono S B, Qiao S Z, Jack K, et al. Improving adsorbent properties of cage-like ordered amine functionalized mesoporous silica with very large pores for bioadsorption [J]. Langmuir,2009,25(11):6413-6424.
    [81]Zou B, Hu Y, Yu D H, et al. Immobilization of porcine pancreatic lipase onto ionic liquid modified mesoporous silica SBA-15[J]. Biochem. Eng. J.2010,53(1):150-153
    [82]Hoffmann M, Cornelius M, Morell J, et al. Silica-based mesoporous organic-inorganic Hybrid Materials [J]. Angew. Chem. Int. Ed.,2006,45(20):3216-3251.
    [83]Sayari A, Hamoudi S. Periodic mesoporous silica-based organic-inorganic nanocomposite materials [J]. Chem. Mater.,2001,13(10):3151-3158.
    [84]Tanev P T, Chibwe M, Pinnavaia T J. Titanium-containing mesoperous molecular sieves for catalytic oxidation of aromatic compounds [J]. Nanture,1994,368:321-323.
    [85]Blasco T, Corma A, Navarro M T, et al. Synthesis, characterization, and catalytic activity of Ti-MCM-41 structures [J]. J. Catal.,1995,156(1):65-74.
    [86]Be'rube' F, Kleitz F, Kaliaguine S. A comprehensive study of titanium-substituted SBA-15 mesoporous materials prepared by direct synthesis [J]. J. Phys. Chem. C,2008, 112(37):14403-14411.
    [87]Be'rube' F, Kleitz F, Kaliaguine S. Surface properties and epoxidation catalytic activity of Ti-SBA15 prepared by direct synthesis [J]. J. Mater. Sci.,2009,44(24):6727-6735.
    [88]Wong M S, Huang H C, Ying J Y. Supramolecular-templated synthesis of nanoporous Zirconia-silica catalysts [J]. Chem. Mater.2002,14(5):1961-1973.
    [89]Liu A M, Hidajat K, Kawi S, et al. A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions [J]. Chem. Commun.2000,13:1145-1146.
    [90]Mbaraka I K, Radu D R, Lin V S Y, et al. Organosulfonic acid-functionalized mesoporous silicas for the esterification of fatty acid [J]. J. Catal.,2003,219(2):329-336.
    [91]Diaz I, Mohino F, Perez-Pariente, et al. Synthesis, characterization and catalytic activity of MCM-41-type mesoporous silicas functionalized with sulfonic acid [J]. Appl. Catal. A, 2001,205(1-2):19-30.
    [92]Zeidan R K, Hwang S J, Davis M E. Multifunctional heterogeneous catalysts: SBA-15-containing primary amines and sulfonic acids [J]. Angew. Chem. Int. Ed.2006, 45(38):6332-6335.
    [93]Margelefsky E L, Zeidan R K, Dufaud V, et al. Organized surface functional groups: cooperative catalysis via thiol/slfonic acid pairing [J]. J. Am. Chem. Soc.,2007,129(44): 13691-13697.
    [94]杜耘辰.高稳定性介孔材料的合成、表征及催化性能研究[D].博士学位论文.长春:吉林大学,2008.
    [95]Garg S, Soni K, Kumaran G M, et al. Effect of Zr-SBA-15 support on catalytic functionalities of Mo, CoMo, NiMo hydrotreating catalysts [J].Catal. Today,2008, 130(2-4):302-308.
    [96]Olivasa A, Zepeda T A. Impact of Al and Ti ions on the dispersion and performance of supported NiMo(W)/SBA-15 catalysts in the HDS and HYD reactions [J]. Catal. Today, 2009,143(1-2):120-125.
    [97]林惠明.介孔材料的合成与应用研究[D].博士学位论文.长春:吉林大学,2010.
    [98]Li W B, Zhuang M, Xiao T C, et al. MCM-41 supported Cu-Mn catalysts for catalytic oxidation of toluene at low temperatures [J]. J. Phys. Chem. B,2006,110(43): 21568-21571.
    [99]Li W B, Zhuang M, Wang J X. Catalytic combustion of toluene on Cu-Mn/MCM-41 catalysts:Influence of calcination temperature and operating conditions on the catalytic activity [J]. Catal. Today,2008,137 (2-4):340-344.
    [100]Kang Y, He J, Guo X D, et al. Influence of pore diameters on the immobilization of lipase in SBA-15 [J]. Ind. Eng. Chem. Res.,2007,46(13):4474-4479.
    [101]Fan J. Lei J, Wang L M, et al. Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologies [J]. Chem. Commun.,2003, 17:2140-2141.
    [102]Lei J, Fan J, Yu C Z, et al. Micro. Immobilization of enzymes in mesoporous materials:controlling the entrance to nanospace [J]. Micropor. Mmesopor. Mater.,2004, 73(3):121-128.
    [103]Sun H, BaoXY, Zhao X S. Langmuir, Immobilization of Penicillin G Acylase on Oxirane-Modified Mesoporous Silicas,2009,25(3):1807-1812.
    [104]Trewyn B G, Giri S, Slowing I I, et al. Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems [J]. Chem. Commun.,2007: 3236-3245.
    [105]Giri S, Trewyn B G, Lin V S Y. Mesoporous silica nanomaterial. based biotechnological and biomedical delivery systems [J]. Nanomedicine,2007,2(5): 99-111.
    [106]L i Y S, Shi J L, Hua Z L, et al. Hollow spheres of mesoporous Alumino-silicate with a there-dimensional pore network and extraordinarily high hydrothermal stability [J]. Nano Letters,2003,3 (5):609-612.
    [107]ZhaoW R, Gu J L, Zhang L X, et al. Fabrication of Uniform Magnetic Nanocomposite Spheres with a Magnetic Core/Mesoporous Silica Shell Structure [J]. J. Am. Chem. Soc.,2005,127 (25):8916-8917.
    [108]ZhaoW R, Chen H R, Li Y S, et al. Uniform rattle-type hollow magnetic mesoporous spheres as drug delivery carriers and their sustained-release property [J]. Adv. Fun.Mater., 2008,18 (18):2780-2788.
    [109]Niu D C, Ma Z, Li Y S, et al. Synthesis of core-shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness [J]. J. Am. Chem. Soc.,2010,132(43):15144-15147
    [110]Song C S. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing [J]. Catal. Today,2006,115(1-4):2-32.
    [111]Liu X W, Li J W, Zhou L, et al. Adsorption of CO2, CH4 and N2 on ordered mesoporous silica molecular sieve [J]. Chem. Phys. Lett.,2005,415(4-6):198-201.
    [112]赵会玲,胡军,汪建军,等.介孔材料氨基表面修饰及其对CO2的吸附性能[J].物理化学学报,2007,23(6):801-806.
    [113]Sepehrian H, Fasihi J, Mahani M K. Adsorption behavior studies of picric acid on mesoporous MCM-41 [J]. Ind. Eng. Chem. Res.,2009,48(14):6772-6775.
    [114]Lee CK, Liu S S, Juang L C, et al. Application of MCM-41 for dyes removal from wastewater [J]. J. Hazard. Mater.,2007,147 (3):997-1005.
    [115]Qin Q D, Ma J, Liu K. Adsorption of anionic dyes on ammonium-functionalized MCM-41 [J]. J. Hazard. Mater.,2009,162(1):133-139.
    [116]Mureseanu M, Reiss A, Stefanescu I, et al. Modified SBA-15 mesoporous silica for heavy metal ions remediation [J]. Chemosphere,2008,73(9):1499-1504.
    [117]Wu H Y, Liao C H, Pan Y C, et al. Synthesis and characterriza-tion of cubic thiol-functionalized periodic mesoporous organosilicas as effective mercury ion adsorbents [J]. Micropor. Mmesopor. Mater.,2009,119(1-3):109-116.
    [118]Bibby A, Mercier L. Mercury(Ⅱ) ion adsorption behavior in thiol- functionalized mesoporous silica microspheres [J]. Chem. Mater.,2002,14(4):1591-1597.
    [119]Aguado J, Arsuaga J M, Arencibia A. Adsorption of aqueous mercury(Ⅱ) on propylthiol-functionalized mesoporous silica obtained by cocondensation [J]. Ind. Eng. Chem. Res.,2005,44(10):3665-3671.
    [120]Aguado J, Arsuaga J M, Arencibia A. Influence of synthesis conditions on mercury adsorption capacity of propylthiol functionalized SBA-15 obtained by co-condensation [J]. Micropor. Mesopo. Mat.,2008,109(1-3):513-524.
    [121]Jones A P. Indoor air quality and health [J]. Atmos. Environ.,1999,33(28): 4535-4564.
    [122]Kim S C, Shim W G. Influence of physicochemical treatments on iron-based spent catalyst for catalytic oxidation of toluene [J]. J. Hazard. Mater.,2008,154(1-3):310-316.
    [123]Pires J, Carvalho A, de Carvalho M B. Adsorption of volatile organic compounds in Y zeolites and pillared clays [J]. Mircropor. Mesopor. Mat.,2001,43(3):277-287.
    [124]Vineet K G, Nishith V. Removal of volatile organic compounds by cryogenic condensation followed by adsorption [J]. Chem. Eng. Sci.,2002,57(14):2679-2696.
    [125]Baker R W, Simmons V L, Kaschemekat J. Membrane systems for VOC recovery from air streams [J]. Filtration Separation,1994,5:231-235.
    [126]Zou L, Luo Yonggang, Hooper M, et al. Removal of VOCs by photocatalysis process using adsorption enhanced TiO2-SiO2 catalyst [J]. Chem. Eng. Process,2006,45(11): 959-964.
    [127]Kim H, Jaffe P R. Spatial distribution and physiological state of bacteria in a sand column experiment during the biodegradation of toluene [J]. Water Res,2007,41(10): 2089-21003
    [128]Yan K, Heesch E J M, Van Peman A J M, et al. Elements of pulsed corona induced non-thermal plasmas for pollution control and sustainable development [J]. J. Electrostatics,2001,51-52:218-224.
    [129]Yu D Q, Liu Y, Wu Z B. Low-temperature catalytic oxidation of toluene over mesoporous MnOx-CeO2/TiO2 prepared by sol-gel method [J]. Catal. Commun.,2010, 11(8):788-791.
    [130]Yan F W, Zhang S F, Guo C Y, et al. Total oxidation of toluene over Pt-MCM-41 synthesized in a one-step process [J]. Catal. Commun.,2009,10(13):1689-1692.
    [131]Delimaris D, Ioannides T. VOC oxidation over CuO-CeO2 catalysts prepared by a combustion method [J]. Appl. Catal., B-Environ.,2009,89(1-2):295-302.
    [132]Papaefthimiou P, Ioannides T, Verykios X E. Performance of doped Pt/TiO2, (W6+) catalysts for combustion of volatile organic compounds (VOCs) [J]. Appl. Catal., B-Environ.,1998,15(1-2):75-92.
    [133]Kim H S, Kim T W, Koh H L, et al. Complete benzene oxidation over Pt-Pd bimetal catalyst supported on y-alumina:influence of Pt-Pd ratio on the catalytic activity [J]. Appl. Catal. A:Gen.,2005,280(2):125-131.
    [134]Vu V H, Belkouch J, Ould-Dris A, et al. Removal of hazardous chlorinated VOCs over Mn-Cu mixed oxide based catalyst [J]. J. Hazard. Mater.,2009,169(1-3):758-765.
    [135]黄海凤,陈银飞,唐伟,等. VOCs催化燃烧催化剂Mn/γ-Al2O3和CuMn/γ-Al2O3的性能研究[J].高校化学工程学报,2004,2(18):152-155.
    [136]Fornes V, Lopez C, Lopez H H, et al. Catalytic performance of mesoporous VOx/SBA-15 catalysts for the partial oxidation of methane to formaldehyde [J]. Appl. Catal. A,2003,249(2):345-354.
    [137]Orlov A, Klinowski J. Oxidation of volatile organic compounds on SBA-15 mesoporous molecular sieves modified with manganese. Chemosphere.,2009,74(2): 344-348.
    [138]Popova M, Szegedi A, Cherkezova-Zheleva Z, et al. Toluene oxidation on titanium-and iron-modified MCM-41 materials [J]. J. Hazard. Mater.,2009,168(1):226-232.
    [139]赵福真,曾鹏晖,等.Cu-Co/SBA-15催化剂的结构特征及其催化甲苯燃烧性能[J].催化学报,2010,31(3):335-342.
    [1]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquidcrystal template mechanism [J]. Nature,1992,359(22):710-712.
    [2]Lin V S Y, Lai C Y, Huang J G, et al. Molecular recognition inside of multifunctionalized mesoporous silicas:toward selective fluorescence detection of dopamine and glucosamine [J]. J. Am. Chem. Soc.,2001,123(46):11510-11511.
    [3]Zhao D Y, Huo Q S, Feng J L, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable mesoporous silica structures [J]. J. Am. Chem. Soc.,1998,120(24):6024-6036.
    [4]Zhao D, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science,1998,279(5350):548-532
    [5]Chen S Y, Lee J F, Cheng S. Pinacol-type rearrangement catalyzed by Zr-incorporated SBA-15[J]. J. Catal.,2010,270(1):196-205.
    [6]Barmatova M V, Ivanchikova I D, El'kina E I, et al. Mesoporous "core-shell" adsorbents and catalysts with controllable morphology [J]. Appl. Surf. Sci.,2010, 256(17):5513-5519.
    [7]Enshirah D, Abdelhamid S. Adsorption of copper on amine-functionalized SBA-15 prepared by co-condensation:Equilibrium properties [J]. Chem. Eng. J.2011,166(1): 445-453
    [8]Selvaraj M, Park D W, Ha C S. Well ordered two-dimensional mesoporous Ce-SBA-15 synthesized with improved hydrothermal stability and catalytic activity [J]. Micropor. Mesopor. Mat.,2011,138 (1-3):94-101
    [9]Sayari A, Han B H, Yang Y. Simple synthesis route to monodispersed SBA-15 silica rods[J]. J. Am. Chem. Soc.,2004,126(44):14348-14349
    [10]Kosuge K, Sato T, Kikukawa N, et al. Morphological control of rod-and fiberlike SBA-15 type mesoporous silica using water-soluble sodium silicate [J]. Chem. Mater., 2004,16(5):899-905.
    [11]Nooney R I, Thirunavukkarasu D, Chen Y M, et al. Synthesis of nanoscale mesoporous silica spheres with controlled particle size [J]. Chem. Mater.,2002,14(11):4721-4728
    [12]Zhu Y F, Shi J L, Chen H R, et al. A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property [J]. Micropor. Mesopor. Mat., 2005,84 (1-3):218-222.
    [13]Shan W, Wang B, Zhang Y H, et al. Fabrication of lotus-leaf-like nanoporous silica flakes with controlled thickness [J]. Chem. Commun.,2005,1877-1879
    [14]孙锦玉,赵东元.“面包圈”状高有序度大孔介孔分子筛SBA-15的合成[J1.高等学校化学学报,2000,21(1):21-23.
    [15]Vinu A, Justus J, Anand C, et al. Hexagonally ordered mesoporous highly acidic AISBA-15 with different morphology:An efficient catalyst for acetylation of aromatics [J]. Micropor. Mesopor. Mat.,2008,116(1-3):108-115.
    [16]Qiao S Z, Yu C Z, Xing W, et al. Sythesis and bio-adsorptive properties of large-pore periodic mesoporous organo silica rods[J]. Chem. Mater.,2005,17(24):6172-6176.
    [17]Hong Sun, Xiao Ying Bao, and X. S. Zhao. Immobilization of Penicillin G Acylase on oxirane-modified mesoporous silicas [J]. Langmuir,2009,25(3):1807-1812
    [18]Wan H H, Liu L, Li C M, et al. Facile synthesis of mesoporous SBA-15 silica spheres and its application for high-performance liquid chromatography [J]. J. Colloid Interf. Sci., 2009,337(2):420-426.
    [19]Boissiere C, Kummel M, Persin M, et al. Spherical MSU-1 mesoporous silica particles tuned for HPLC[J]. Adv. Funct Mater.,2001,11(2):129-135.
    [20]Zhao D Y, Sun J Y, Li Q Z, et al. Morphological control of highly ordered mesoporous silica SBA-15 [J]. Chem. Mater.,2000,12(2):275-279.
    [21]Muthu K G, Shelu G, Kapil S, et al. Synthesis and characterization of acidic properties of Al-SBA-15 materials with varying Si/Al ratios[J]. Micropor. Mesopor. Mat.,2008, 114(1-3):103-109.
    [22]Li Y, Feng Z C, Lian Y X, et al. Direct synthesis of highly ordered Fe-SBA-15 mesoporous materials under weak acidic conditions [J]. Micropor. Mesopor. Mat.,2005, 84(1-3):41-49.
    [23]Chen S Y, Tsai H D, Chuang W T, et al. Direct Preparation of Thermally Stable Sn-Incorporated SBA-15 Mesoporous Materials in the Self-Generated Acidic Environment [J]. J. Phys. Chem. C,2009,113(34):15226-15238.
    [24]Srinivasu P, Anand C, Alam S, et al. Direct synthesis and the morphological control of highly ordered two-dimensional P6mm mesoporous Niobium silicates with high Niobium content [J]. J. Phys. Chem. C,2008,112(27):10130-10140.
    [25]Dai Q G, Wang X Y, Chen G P, et al. Direct synthesis of Cerium(III)-incorporated SBA-15 mesoporous molecular sieves by two-step synthesis method. [J]. Micropor. Mesopor. Mat.,2007,100(1-3):268-275.
    [26]Newalkar B L, Olanrewaju J, Komarneni S. Microwave-hydrothermal synthesis and characterization of Zirconium substituted SBA-15 mesoporous silica [J]. J. Phys. Chem. B,2001,105(35):8356-8360.
    [27]Chen S Y, Jang L Y, Cheng S. Synthesis of Zr-Incorporated SBA-15 mesoporous materials in a self-generated acidic environment [J]. Chem. Mater.,2004,16(21): 4174-4180.
    [28]Kruk M, Jaroniec M, Ko C H, et al. Characterization of the Porous Structure of SBA-15[J]. Chem. Mater.,2000,12(7):1961-1968
    [29]Desai P R, Jain N J, Sharma R K, et al. Effect of additives on the micellization of PEO/PPO/PEO block copolymer F127 in aqueous solution [J].Colloids Surf,2007, 178(l-3):57-69
    [30]Armstrong J K, Chowdhry B Z, Snowden M J, et al. Effect of sodium chloride upon micellization and phase separation transitions in aqueous solutions of triblock copolymers:A high-sensitivity differential scanning calorimetry study[J]. Langmuir,1998, 14(8):2004-2010
    [31]Yang S M, Yang H, Coombs N, et al. Morphokinetics:growth of mesoporous silica curved shapes [J]. Adv. Mater.,1999,11(1):52-55.
    [32]Chen S Y, Tang C Y, Chuang W T, et al. A facile route to synthesizing functionalized mesoporous SBA-15 materials with platelet morphology and short mesochannels [J]. Chem. Mater.,2008,20(12):3906-3916.
    [33]Jin Z W, Wang X D, Cui X G. Synthesis and morphological investigation of ordered SBA-15-type mesoporous silica with an amphiphilic triblock copolymer template under various conditions [J]. Colloids and Surf. A:Phys. Eng. Asp.,2008,316(1-3):27-36
    [34]Su Y L, Wang J, Liu H Z. FT-IR Spectroscopic investigation of effects of temperature and concentration on PEO-PPO-PEO block copolymer properties in aqueous solutions [J]. Macromolecules,2002,35(16):6426-6431.
    [35]Jorgensen E B, Hvidt S, Brown W, et al. Effects of salts on the micellization and gelation of a triblock copolymer studied by rheology and light scattering [J]. Macromolecules, 1997,30(8):2355-2364.
    [36]Ying J Y, Mehnert C P, Wong M S. Synthesis and applications of supramolecular-templated mesoporous materials [J]. Angew. Chem. Int. Ed.,1999,38(1-2):56-77.
    [37]Patarin J, Lebeau B, Zana R. Recent advances in the formation mechanisms of organized mesoporous materials [J]. Curr. Opin. Colloid Interface Sci.,2002,7(1-2):107-115.
    [1]Lin V S Y, Lai C Y, Huang J G, et al. Molecular recognition inside of multifunctionalized mesoporous silicas:toward selective fluorescence detection of dopamine and glucosamine [J]. J. Am. Chem. Soc.,2001,123(46):11510-11511.
    [2]Zhao D Y, Huo Q S, Feng J L, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable mesoporous silica structures [J]. J. Am. Chem. Soc.,1998,120(24):6024-6036.
    [3]Zhao D, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science,1998,279(5350):548-532
    [4]Du Y C, Liu S, Zhang Y L, et al. Urea-assisted synthesis of hydrothermally stable Zr-SBA-15 and catalytic properties over their sulfated samples [J]. Micropor. Mesopor. Mat.,2009, 121(1-3):185-193.
    [5]Saravanamurugan S, Sujandi, Han D S, et al. Transesterification reactions over morphology controlled amino-functionalized SBA-15 catalyst s[J]. Catal.Commu.2008,9(1):158-163
    [6]Srinivas D., Ratnasamy P. Spectroscopic and catalytic properties of SBA-15 molecular sieves functionalized with acidic and basic moieties [J]. Micropor. Mesopor. Mat.,2007,105(1-2): 170-180
    [7]Enshirah D, Abdelhamid S. Adsorption of copper on amine-functionalized SBA-15 prepared by co-condensation:Equilibrium properties [J]. Chem. Eng. J.2011,166(1):445-453
    [8]Bui T X, ChoiAdsorptive H. Removal of selected pharmaceuticals by mesoporous silica SBA-15[J]. J. Hazard. Mater.,2009,168(2-3):602-608
    [9]Song S W, Hidajat K, Kawi S. Functionalized SBA-15 materials as carriers for controlled drug delivery:Influence of surface properties on matrix-drug interactions[J]. Langmuir,2005, 21(21),9568-9575
    [10]Vallet-Reg M. Balas F. Arcos D. Mesoporous Materials for Drug Delivery [J]. Angew. Chem. Int. Ed.,2007.46(40),7548-7558.
    [11]Wang R, Liu X W, He Y, et al. The humidity-sensitive property of MgO-SBA-15 composites in one-pot synthesis [J]. Sen. Actuators B:Chemical,2010,145(1):386-393.
    [12]Wagner T, Roggenbuck J, Kohl C D, et al. Gas-sensing properties of ordered mesoporous Co3O4 synthesized by replication of SBA-15 silica [J]. Stud. Surf. Sci. Catal.,2007, 165:347-350.
    [13]Safia H, Abir E N, Khaled B. Adsorptive removal of dihydrogenphosphate ion from aqueous solutions using mono, di- and tri-ammonium-functionalized SBA-15[J].J. Coll. Inter. Sci., 2010,343(2):615-621.
    [14]Mureseanu M, Reiss A, Stefanescu I, et al. Modified SBA-15 mesoporous silica for heavy metal ions remediation [J]. Chemosphere,2008,73(9):1499-1504.
    [15]赵会玲,胡军,汪建军,等.介孔材料氨基表而修饰及其对C02的吸附性能[J].物理化学学报,2007,23(6):801-806.
    [16]Zhao D Y, Sun J Y, Li Q Z, et al. Morphological control of highly ordered mesoporous silica SBA-15 [J]. Chem. Mater.,2000,12(2):275-279.
    [17]Sun J M, Zhang H, Tian R J, et al. Ultrafast enzyme immobilization over large-pore nanoscale mesoporous silica particles [J]. Chem. Commun.,2006,12:1322-1324.
    [18]Han Y, Ying J Y. Generalized fluorocarbon-surfactant-mediated synthesis of nanoparticles with various mesoporous structures [J]. Angew. Chem., Int. Ed.2005,44(2):288-292.
    [19]Cui X G, Moon S W, Zin W C. High-yield synthesis of monodispersed SBA-15 equilateral hexagonal platelet with thick wall [J]. Mater. Let.,2006,60(29-30):3857-3860.
    [20]Sujandi, Sang-Eon Park, Dae-Soo Han, et al. Amino-functionalized SBA-15 type mesoporous silica having nanostructured hexagonal platelet morphology [J]. Chem. Commun.,2006: 4131-4133.
    [21]Sujandi, Prasetyanto E A, Park S E. Synthesis of short-channeled amino-functionalized SBA-15 and its beneficial applications in base-catalyzed reactions [J]. Appl. Catal. A-Gen., 2008,350(2):244-251.
    [22]Zhang H, Sun J M, Ma D, et al. Engineered complex emulsion system:toward modulating the pore length and morphological architecture of mesoporous silicas [J]. J. Phys. Chem. B,2006, 110(51):25908-25915.
    [23]Chen S Y, Tang C Y, Chuang W T, et al. A facile route to synthesizing functionalized mesoporous SBA-15 materials with platelet morphology and short mesochannels [J]. Chem. Mater.,2008,20(12):3906-3916.
    [24]Chen S Y, Lee J F, Cheng S. Pinacol-type rearrangement catalyzed by Zr-incorporated SBA-15[J]. J. Catal.,2010,270 (1):196-205.
    [25]闫继娜,施剑林,陈航榕,等.纳米介孔材料的催化应用前景[J].无机材料学报,2003,18(4):725-730.
    [26]朱金华,沈伟,徐华龙,等.水热一步法合成Ti-SBA-15分子筛及其催化性能研究[J].化学学报,2003,61(2):202-207.
    [27]诸荣,陈航榕,施剑林,等.以嵌段聚物为结构导向剂的SBA-15和SBA-16的合成及表征[J].无机材料学报,2003,18(4):855-860.
    [28]徐武军,高强,徐耀,等.基于HPMCP覆介孔SBA-15的pH敏感药物缓释系统[J].化学 学报,2008,66(14):1658-1662.
    [29]罗永明,侯昭胤,郑小明.低浓度液体酸介质中快速合成SBA-15分子筛[J].化学学报,2007,65(15):1481-1486.
    [30]李健生,苗小郁,易睿,等.巯基功能化介孔氧化硅的合成及其对Pb(Ⅱ)的吸附[J].功能材料,2007,38:1386-1388.
    [31]Yu C Z, Fan J, Tian B Z, et al. Morphology development of mesoporous materials:a colloidal Phase separation mechanism[J]. Chem. Mater.,2004,16(5):889-898.
    [32]Sokolov I, Yang H, Ozin G A, et al. Radial patterns in mesoporous silica [J]. Adv. Mater. 1999,11(8):636-642.
    [33]Zhao D Y, Yang P D, Chmelka B F, et al. Multiphase assembly of mesoporous-macroporous membranes [J]. Chem. Mater.,1999,11(5):1174-1178.
    [34]孙锦玉,赵东元.“面包圈”状高有序度大孔介孔分子筛SBA-15的合成[J].高等学校化学学报,2000,21(1):21-23.
    [35]Su Y L, Wang J, Liu H Z. FT-IR Spectroscopic investigation of effects of temperature and concentration on PEO-PPO-PEO block copolymer properties in aqueous solutions [J]. macromolecules,2002,35(16):6426-6431.
    [36]Su Y L, Liu H Z, Wang J, et al. Study of salt effects on the micellization of PEO-PPO-PEO block copolymer in aqueous solution by FT-IR spectroscopy [J]. Langmuir,2002,18(3): 865-871.
    [37]Jorgensen E B, Hvidt S, Brown W, et al. Effects of salts on the micellization and gelation of a triblock copolymer studied by rheology and light scattering [J]. Macromolecules,1997,30(8): 2355-2364.
    [38]Jin Z W, Wang X D, Cui X G. Synthesis and morphological investigation of ordered SBA-15-type mesoporous silica with an amphiphilic triblock copolymer template under various conditions [J]. Colloids Surf. A:Phys. Eng. Asp.,2008.316(1-3):27-36.
    [1]Li Y J, Zhou G W, Li C J, et al. Adsorption and catalytic activity of Porcine pancreatic lipase on rod-like SBA-15 mesoporous material [J]. Colloid. Surface. A,2009,341(1-3): 79-85.
    [2]Kosuge K, Sato T, Kikukawa N, et al. Morphological control of rod- and fiberlike SBA-15 type mesoporous silica using water-soluble sodium silicate [J]. Chem. Mater., 2004,16(5):899-905.
    [3]Zhang H, Sun J M, Ma D, et al. Engineered complex emulsion system:toward modulating the pore length and morphological architecture of mesoporous silicas [J]. J. Phys. Chem. B,2006,110(51):25908-25915.
    [4]Zhang H, Sun J, Ma D, et al. Unusual mesoporous SBA-15 with parallel channels running along the short axis [J]. J. Am. Chem. Soc.,2004,126(24):7440-7441.
    [5]Fan J, Lei J, Wang L M, et al. Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologies [J]. Chem. Commun.,2003: 2140-2141.
    [6]Chen S Y, Lee J F, Cheng S. Pinacol-type rearrangement catalyzed by Zr- incorporated SBA-15 [J]. J. Catal.,2010,270(1):196-205.
    [7]Qin Q D, Ma J, Liu K. Adsorption of anionic dyes on ammonium-functionalized MCM-41 [J]. J. Hazard. Mater.,2009,162(1):133-139.
    [8]Wang G, Otuonye A N, Blair E A, et al. Functionalized mesoporous materials for adsorption and release of different drug molecules:A comparative study [J]. J. Solid State Chem.,2009,182(7):1649-1660.
    [9]Zhao D Y, Huo Q S, Feng J L, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable mesoporous silica structures [J]. J. Am. Chem. Soc.,1998,120(24):6024-6036.
    [10]Zhao D, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science,1998,279(5350):548-532
    [11]Sujandi, Park S E, Han D S, et al. Amino-functionalized SBA-15 type mesoporous silica having nanostructured hexagonal platelet morphology [J]. Chem. Commun.,2006,39: 4131-4133.
    [12]Sujandi, Prasetyanto E A, Park S E. Synthesis of short-channeled amino- functionalized SBA-15 and its beneficial applications in base-catalyzed reactions [J]. Appl. Catal. A: Gen.,2008,350(2):244-251.
    [13]Aguado J, Arsuaga J M, Arencibia A. Adsorption of aqueous mercury(II) on propylthiol-functionalized mesoporous silica obtained by cocondensation [J]. Ind. Eng. Chem. Res.,2005,44(10):3665-3671.
    [14]Aguado J, Arsuaga J M, Arencibia A. Influence of synthesis conditions on mercury adsorption capacity of propylthiol functionalized SBA-15 obtained by co-condensation [J]. Micropor. Mesopor. Mat.,2008,109(1-3):513-524.
    [15]Chen S Y, Tang C Y, Chuang W T, et al. A facile route to synthesizing functionalized mesoporous SBA-15 materials with platelet morphology and short mesochannels [J]. Chem. Mater.,2008,20(12):3906-3916.
    [16]Zhao D Y, Sun J Y, Li Q Z, et al. Morphological control of highly ordered mesoporous silica SBA-15 [J]. Chem. Mater.,2000,12(2):275-279.
    [17]李健生,苗小郁,易睿,等.巯基功能化介孔氧化硅的合成及其对Pb(Ⅱ)的吸附[J].功能材料,2007,38:1386-1388.
    [18]Seo Y K, Park S B, Park D H. Mesoporous hybrid organosilica containing urethane moieties [J]. J. Sol. State. Chem.,2006,179(4):1285-1288.
    [19]Sun J M, Zhang H, Tian R J, et al. Ultrafast enzyme immobilization over large-pore nanoscale mesoporous silica particles [J]. Chem. Commun.,2006,12:1322-1324.
    [1]Santos A A, Lima K M, Figueiredo R T, et al.Toluene deep oxidation over noble metals, copper and vanadium oxides[J]. Catal. Lett.2007,114(1-2):59-63.
    [2]Bertinchamps F, Gregoire C, Gaineaux E M. Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination (chloro)-aromatics:Part Ⅱ:influence of the nature and addition protocol of secondary phases to VOx/TiO2 [J]. Appl. Catal. B,2006,66(1-2):10-22.
    [3]Ordouez S, Bello L, Sastre H, et al. Kinetics of the deep oxidation of benzene, toluene, n-hexane and their binary mixtures over a platinum on y-alumina catalyst [J]. Appl. Catal. B,2002,38(2):139-149.
    [4]Feijen-Jeurissen M M R, Jorna J J, Nieuwenhuys B E, et al. Mechanism of catalytic destruction of 1,2-dichloroethane and trichloroethylene over γ-Al2O3 and γ-Al2O3 supported chromium and palladium catalysts [J]. Catal. Today,1999,54(1):65-79.
    [5]Musialik-Piotrowska A. Destruction of trichloroethylene (TCE) and trichloromethane (TCM) in the presence of selected VOCs over Pt-Pd-based catalyst [J]. Catal. Today, 2007,119(1-4):301-304.
    [6]Tidahy H L, Hosseni M, Siffert S, et al. Nanostructured macro-mesoporous zirconia impregnated by noble metal for catalytic total oxidation of toluene [J]. Catal. Today, 2008,137(2-4):335-339.
    [7]Fabiola N A, Bibiana P B, Luis G, et al. Catalytic combustion of volatile organic compounds in binary mixtures over MnOx/Al2O3 catalyst [J]. Appl. Catal. B,2009, 91(1-2):108-112.
    [8]张庆豹,赵雷洪,滕波涛,等.用于甲苯催化燃烧的Pd/Ce0.8Zr0.2O2/基底整体催化剂[J].催化学报,2008,29(4):373-378.
    [9]Gutierrez-Ortiz J I, de Rivas B, Lopez-Fonseca R, et al. Catalytic purification of waste gases containing VOC mixtures with Ce/Zr solid solutions [J]. Appl. Catal. B-Environ., 2006,65(3-4):191-200.
    [10]Ozcelik Z, Pozan Soylu G S, Boz I. Catalytic combustion of toluene over Mn, Fe and Co-exchanged clinoptilolite support [J]. Chem. Eng. J.,2009,155(1-2):94-100.
    [11]Duran F, Barbero B P, Cadus L E, et al. Manganese and iron oxides as combustion catalysts of volatile organic compounds [J]. Appl. Catal. B-Environ.,2009,92(1-2): 194-201.
    [12]Zimowska M, Michalik-Zym A, Janik R, et al. Catalytic combustion of toluene over mixed Cu-Mn oxides [J]. Catal. Today,2007,119(1-4):321-326.
    [13]Li W B, Zhuang M, Xiao T C, et al. MCM-41 supported Cu-Mn catalysts for catalytic oxidation of toluene at low temperatures [J]. J. Phys. Chem. B,2006,110(43): 21568-21571
    [14]Vu V H, Belkouch J, Ould-Dris A, et al. Removal of hazardous chlorinated VOCs over Mn-Cu mixed oxide based catalyst [J]. J. Hazard. Mater.,2009,169(1-3):758-765.
    [15]Rodrigues A C C. Metallic mixed oxides (Pt, Mn or Cr) as catalysts for the gas-phase toluene oxidation [J]. Catal. Commun.,2007,8(8):1227-1231.
    [16]Sobczak I, Ziolek M, Renn M, et al. Cu state and behaviour in MCM-41 mesoporous molecular sieves modified with copper during the synthesis comparison with copper exchanged materials [J]. Micropor. Mesopor. Mat.,2004,74(1-3):23-36.
    [17]Araujo R S, Azevedo D C S, Rodriguez-Castellon E, et al. Al and Ti-containing mesoporous molecular sieves:synthesis, characterization and redox activity in the anthracene oxidation [J]. J. Mol. Catal. A-Chem.,2008,281(1-2):154-163.
    [18]Idakiev V, Ilieva L, Andreeva D, et al. Complete benzene oxidation over gold-vanadia catalysts supported on nanostructured mesoporous titania and zirconia [J]. Appl. Catal. A-Gen.,2003,243(1):25-39.
    [19]Tsoncheva T, Jarn M, Paneva D, et al. Copper and chromium oxide nanocomposites supported on SBA-15 silica as catalysts for ethylacetate combustion:Effect of mesoporous structure and metal oxide composition [J]. Micropor. Mesopor. Mat.,2011, 137(1-3):56-644.
    [20]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquidcrystal template mechanism [J]. Nature,1992,359(22):710-712.
    [21]Zhao D, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science,1998,279(5350):548-532
    [22]Zhao D Y, Huo Q S, Feng J L, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable mesoporous silica structures [J]. J. Am. Chem. Soc.,1998,120(24):6024-6036.
    [23]Popova M, Szegedi A, Cherkezova-Zheleva Z, et al. Toluene oxidation on titanium-and iron-modified MCM-41 materials [J]. J. Hazard. Mater.,2009,168(1):226-232.
    [24]Piumetti M, Bonelli B, Armandi M, et al. Vanadium-containing SBA-15 systems prepared by direct synthesis:Physico-chemical and catalytic properties in the decomposition of dichloromethane [J]. Micropor. Mesopor. Mat.,2010,133(1-3):36-44.
    [25]Yang J S, Jung W Y, Lee G D, et al. Catalytic combustion of benzene over metal oxides supported on SBA-15 [J]. J. Ind. Eng. Chem.,2008,14(6):779-784.
    [26]Popova M, Szegedi A, Cherkezova-Zhelevac Z, et al. Toluene oxidation on chromium-and copper-modified SiO2 and SBA-15 [J]. Appl. Catal. A-Gen.,2010,381(1-2):26-35.
    [27]赵福真,曾鹏晖,张广宏,等. Cu-Co/SBA-15催化剂的结构特征及其催化甲苯燃烧性能[J].催化学报,2010,31(3):335-342.
    [28]Zhao D Y, Sun J Y, Li Q Z, et al. Morphological control of highly ordered mesoporous silica SBA-15 [J]. Chem. Mater.,2000,12(2):275-279.
    [29]Tang X L, Zhang B C, Li Y, et al. Carbon monoxide oxidation over CuO/CeO2 catalysts [J]. Catal. Today,2004,93-95:191-198.
    [30]朱金华,沈伟,徐华龙,等.水热一步法合成Ti-SBA-15分子筛及其催化性能研究[J].化学学报,2003,61(2):202-207.
    [31]Rayo P, Rana M S, Ramirez J, et al. Effect of the preparation method on the structural stability and hydrodesulfurization activity of NiMo/SBA-15 catalysts [J]. Catal. Today, 2008,130(2-4):283-291.
    [32]Zhu P F, Li J, Zuo S F, et al. Preferential oxidation properties of CO in excess hydrogen over CuO-CeO2 catalyst prepared by hydrothermal method[J]. Appl. Surf. Sci.,2008,255 (5):2903-2909
    [33]Papavasiliou J, Avgouropoulos G, loannides T. Combined steam reforming of methanol over Cu-Mn spinel oxide catalysts [J]. J. Catal.,2007,251(1):7-20
    [34]Chen H, Tong X L, Li Y D. Mesoporous Cu-Mn Hopcalite catalyst and its performance in low temperatureethylene combustion in a carbon dioxide stream [J]. Appl. Catal. A-Gen.,2009,370(1-2):59-65
    [35]Zimowska M, Michalik-Zym A, Janik R, et al. Catalytic combustion of toluene over mixed Cu-Mn oxides [J]. Catal. Today,2007,119(1-4):321-326.
    [36]余凤江,张丽丹.苯催化燃烧反应Cu-Mn-Ce-Zr-O催化剂催化活性的研究[J].北京化工大学学报,2001,28(4):67-72.
    [37]范利萍.稀土掺杂新型VOCs处理催化剂的制备及反应性能研究[D].硕士学位论文.杭州:浙江大学,2007.
    [38]冯燕. CuMnOx/y-Al2O3及稀土助剂对VOCs催化燃烧性能的影响[D].硕士学位论文.西安:西安建筑科技大学,2009.
    [39]黄海凤,陈银飞,唐伟,等.VOCs催化燃烧催化剂Mn/γ-Al2O3和CuMn/γ-Al2O3的性能研究[J].高校化学工程学报,2004,18(2):152-155.
    [40]张燕.铜锰复合氧化物制备及其催化燃烧VOCs性能研究[D].硕士学位论文.杭州:浙江工业大学,2009.
    [41]Aguila G, Gracia F, Araya P. CuO and CeO2 catalysts supported on Al2O3, ZrO2, and SiO2in the oxidation of CO at low temperature [J]. Appl. Catal. A-Gen.,2008,343(1-2): 16-24
    [42]Liu Z, Amiridis M D, Chen Y. Characterization of CuO supported on tetragonal ZrO2 catalysts for N2O decompositionto N2 [J]. J. Phys. Chem. B 2005,109(3):1251-1255
    [43]Tang X F, Xu Y D, Shen W J. Promoting effect of copper on the catalytic activity of MnOx-CeO2 mixed oxide for complete oxidation of benzene [J]. Chem. Eng. J.,2008, 144(2):175-180
    [44]张志强,贺站锋,王娟芸,等.Zr02对CuMn2/Al-Ti整体式催化剂催化苯燃烧反应性能的影响[J].催化学报,2010,31(7):793-796

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700