用户名: 密码: 验证码:
灰绿藜液泡膜焦磷酸酶V-PPase基因增强烟草和拟南芥耐盐性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化严重影响植物的生长与发育,土壤中高浓度的盐分会造成植物体内离子失衡、氧化伤害、水分亏缺、营养缺乏并导致生物大分子破坏、生长迟缓、甚至植株死亡,从而使作物减产或绝收。而植物响应盐胁迫的最终结果就是降低胞质内的Na~+浓度并维持K~+、Na~+平衡。
     在盐胁迫的影响下,大量Na~+流入细胞,植物会将Na~+区隔到液泡中,即离子区隔化,这样不仅能够消除Na~+对胞质的毒害并维持较高的K~+/ Na~+比,而且还能使细胞利用累积在液泡中的大量无机离子进行渗透调节。因此,离子区隔化机制对植物细胞适应盐生境十分必要。Na~+区隔化主要是液泡膜上Na~+/H~+逆向转运蛋白利用液泡膜质子泵( V-H~+-ATPase,V-H~+-PPase)提供的质子驱动力将胞质中的Na~+逆浓度梯度运入液泡内积累。这就意味着可以通过增大液泡膜质子泵基因表达来增大质子驱动力,从而使细胞质中更多的Na~+区隔到液泡中以增强植物的耐盐性。在拟南芥、番茄、水稻中过表达液泡膜焦磷酸酶H~+-PPase基因,可使转基因植株在较高盐浓度下生长,说明液泡膜H~+-PPase在植物耐盐方面起重要作用。
     灰绿藜(Chenopodium glaucum L.)是新疆广泛分布的一种藜科耐盐植物,它可以在100~600 mmol/L NaCl甚至更高盐浓度的环境中生长。从形态学上看,它既无肉质茎也无变态叶,与甜土植物更为接近,因此,研究灰绿藜的耐盐机制将对提高甜土植物的耐盐性很有帮助。本研究将实验室已克隆获得的灰绿藜液泡膜焦磷酸酶H~+-PPase基因(CgVP1)构建到植物表达载体pCAMBIA1301.1上,通过根癌农杆菌介导转化植物,并通过对转基因植株的分子生物学及生理生化检测,对灰绿藜液泡膜H~+-PPase基因进行了功能鉴定,主要结果如下:
     1.通过根癌农杆菌浸染法转化拟南芥并经潮霉素筛选,获得T3代纯合子转基因拟南芥,PCR及RT-PCR检测表明CgVP1已整合到拟南芥基因组中,并在转录水平有所表达,这使得转基因拟南芥表现出比野生型更强的耐盐性。在150mmol/L NaCl胁迫下,野生型拟南芥生长受到了明显抑制,种子萌发率明显下降,当NaCl浓度分别为100mmol/L、150 mmol/L、175 mmol/L时,转基因植株的萌发率分别为91.7%、89.2%和84.2%,而野生型萌发率仅为67.5%、53.3%和35.8%。而且在175mmol/L NaCl培养基上,尽管二者生长均受到明显抑制,但转基因植株净生长量明显大于野生型。对Na~+、K~+含量测定表明:在盐胁迫下,转基因拟南芥将Na~+区隔到根部的细胞中减少Na~+向地上部的运输,从而保持叶中相对较高的K~+浓度;相对含水量和叶绿素测定结果显示:在盐胁迫下转基因拟南芥还能够使机体保持相对较高的相对含水量,确保叶片中叶绿素含量较高。以上实验结果初步显示,CgVP1的过表达提高了转基因拟南芥的耐盐能力。
     2.通过根癌农杆菌介导转化烟草并经潮霉素筛选,获得T0代转基因烟草。PCR及RT-PCR检测结果表明CgVP1已整合到烟草基因组中,并在转录水平有所表达。在盐胁迫下,转基因烟草和野生型烟草的生长都受到了轻微抑制。400mmol/L NaCl胁迫30d后,转基因烟草的K~+ /Na~+比率较野生型高,并且转基因烟草能够使机体保持较高的相对含水量以及较低的电解液渗漏率。通过检测转基因烟草的耐旱性,结果发现转基因烟草在干旱胁迫45d后,仍然生长良好,只是轻微受到干旱伤害,而野生型烟草失水十分严重,并且不能恢复。实验结果初步显示,CgVP1的过表达对转基因烟草的耐盐和耐旱能力有所提高。
Salt stress is the primary effect that limits the growth and development of plant, the higher salt concentration in the soil what can arouse many damages for the plant, for example, the loss of ion balance, oxidation damage, the deficiency of water, the lack of nutrition, which lead to the destroy of biology molecule, the slower of growth and the faster death of plant.Ultimately, those could result in the fall of plant yield or on harvest.That is why plant has to reduce cellular Na~+ and keep K~+/Na~+ balance when exposed to salt stress.
     Under salt stress, Na~+ influx into cells occurs via Na~+ permeable transporters which in turn elevates the cytoplasm sodium concentration and causes toxicity.Na~+ sequestration into vacuoles was not only avoid to destroy the cytoplasm, keep a higher K~+/Na~+ balance in cytoplasm, but also can be used as an osmolyte in the vacuole to help to achieve osmotic homeostasis.So, it is necessary to adapt the salt stress for plant, Na?~+ compartmentation means
     by the energy provided by transporting proton along its concentration gradient,vacuolar-type Na~+/H~+ antiporters deliver Na~+ into the vacuoles against the electrochemical gradient generated by vacuolar H~+-ATPase and H~+-PPase.The salt tolerance of plant can be advanced by accumulate to a higher level Na~+ in the cytoplasm through enhance the over expressing of vacuolar H~+-PPase.The enhanced salt tolerance of transgenic Arabidopsis, tomato, rice by overexpressing vacuolar H~+-PPase genes indicated their important roles in plant salt tolerance. Chenopodium glaucum L. is a Chenopodiacea halophytic plant species, which widely distributes in Xinjiang.It is the typical salt-tolerant plant, and it can grow normally under 100~600mmol/L NaCl treatment.The appearance of the whole plant of C.glaucum has neither chylocaulous stem, nor also no any specialized leaf, relatively closer to that of glycophyte.Therefore, it is more valuable to study the mechanism of salt tolerance and for applying on glycophyte to enhance the salt tolerance.Based on all of these, in this thesis, a binary expression vector pCAMBIA1301.1-CgVP1 which harbored CgVP1 gene was constructed and introduced into Arabidopsis thaliana and Nicotiana tabaccum plant by Agrobacterium-mediated method.The function analyses of CgVP1 transgenic plants have been done by molecular identification and some physiological indexes assay.The key results were as follows:
     1. The binary expression vector pCAMBIA1301.1-CgVP1 was introduced into A. thaliana by Agrobacterium-mediated method.T3 homogenous plantlets were obtained by screening hygromycin-resistant seedlings.PCR and RT-PCR analysis indicated that CgVP1 have been integrated into the genome of A.thaliana and expressed at transcriptional level.Overexpression of CgVP1 gene in A. thaliana led to enhanced tolerance to salt stress.The relative growth rate of wild-type was restrained markedly under 150mmol/L NaCl treatment.The germination rate of transgenic plants was 91.7%, 89.2%, 84.2%, repectively, while the wild-type was 67.5%, 53.3%, 35.8%, respectively when exposed to 100 mmol/L, 150 mmol/L, 175 mmol/L NaCl.The result of the Na~+, K~+ determination suggested that sodium was compartmentated in the root in order to decrease the sodium concentration of the leaf in transgenic plants under salt stress.Moreover, the relative water and chlorophyll content assay indicated that the relative water content of transgenic plants was higher than that of wild-type,and a higher chlorophyll content was also detected in transgenic plants under salt stress.Our data showed that overexpression of CgVP1 gene could enhance the capacity of salt-tolerance in transgenic A.thaliana.
     2. The binary expression vector pCAMBIA1301.1-CgVP1 was introduced into tobacco by Agrobacterium-mediated method.T0 plantlets were obtained by screening the hygromycin- resistant seedlings.PCR and RT-PCR analysis indicated that CgVP1 gene have been integrated into the genome of tobacco and expressed at transcriptional level.The relative growth rate of both wild-type and transgenic plants were restrained lightly under salt treatment.The K~+ /Na~+ rate and the relative water content of transgenic plants were higher than that of wild-type, and the electrolyte leakage rate was lower than that of wild-type after being exposed to 400 mmol/L NaCl for 30 days.The drought tolerance assay indicated that transgenic plants performed better than that of wild-type, such as growth status, almost no hurt after being drought stress for 45 days.But the water loss was too serious in wild-type to be restored.Our data showed that overexpression CgVP1 gene could enhance the capacity both in salt and drought tolerance in transgenic tobacco.
引文
[1]张新春,庄炳昌,李自超.植物耐盐性研究进展[J].玉米科学.2002,10 (1):50-56.
    [2]赵可夫,范海,宋杰.盐生植物利用与区域农业可持续发展[M].北京:气象出版社,2002.
    [3]沈善敏.我国农业发展趋势、导向、对策和土壤科学任务[M].北京:科技出版社,1994.23-24.
    [4]Apse M P,Aharon G S,Snedden W A,Blumwald E.Salt tolerance conferred by overexpression of a vacular Na+ / H+ antiporter in Arabidopsis[J].Science.1999,285:1256-1258.
    [5]吕庆,郑荣梁.干旱及活性氧引起的膜脂过氧化与脱醋化[J].中国科学[C].1996,26(1):26-30.
    [6]曾洪学,王俊.盐害生理与植物抗盐性[J].生物学通报.2005,40(9):1-2.
    [7]Moran J F,Becana M,Iturbe-Ormaetxe I, Frechilla S, Klucas R V, Aparicio-Tejo P.Drought in duces oxidative stress in pea plants[J].Planta .1994,94:346-352.
    [8]Munns R.Physiological processes limiting plant growth in saline soils:somc dogmas and hypotheses. Plant[J].Cell and Env.1993,16:15.
    [9]陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展[J].海南大学学报(自然科学版).2003,21(2):177-182.
    [10]张淑红,张恩平,庞金安,马德华,司龙亭,张美华.植物耐盐性研究进展[J].北方园艺.2000,(3):19-20.
    [11]全先庆,高文.盐生植物活性氧的非酶促清除机制[J].安徽农业科学.2003,31 (3):499-501.
    [12]Haseqawa P M,Bressan P A,ZHu J K,Bohnert H J.Plant cellular and molecular response to high salinity[J].Anne Rev Plant Physiol Mol Biol.2000,51:463-499.
    [13]Bowler C,Slooten L,Vandenbranden S,de Rycke R,Botterman J,Sybesma C, van Montagu M, Inze D. Manganese superoxide dismutase can ruduce cellulardamage mediated by oxygen radicals in transgenic plant[J].EMBO J.1991,(10):1723-1732.
    [14]郑世英,陈吉美.植物的抗盐生理[J].德州高专学报.2000,16 (4):39-40.
    [15]杨月红,孙庆艳,沈浩.植物的盐害和抗盐性[J].生物学教学.2002,27 (11):1-2.
    [16]刘国花.植物抗盐机理研究进展[J].安徽农业科学.2006,34(23):6111-6112.
    [17]Glenn E P,Watson M C,O’leary J W,Axelson R D.Comparison of salt tolerance and osmotic adjustment of low-sodium and high-sodium subspecies of the halophyte Atriplex canescens.Plant Cell Environ[J].1992,15:711-718.
    [18]Gorham J.Salt tolerance in the Triticeae:ion discrimination in Rye and Triticale[J].J Exp Bot. 1990,41:609-624.
    [19]Chan M T,Chang H H,Ho S L,Tong W F,Yu S M.Agrobacterium-mediated production of transgenic rice plants expressing a chimeric a-amylase promoter-glucuronidase gene[J].Plant Mol Biol.1993,22: 491-506.
    [20]Drew M C,Lauchli A.The distribution of Na ion in plant[J].Plant Physiol.1985,7:171.
    [21]王宝山,赵可夫,邹琦.作物耐盐机理研究进展及提高作物耐盐性的对策[J].植物学通报.1997, 33(6):423-426.
    [22]Zhang F S.Environ mental Stress and Plant Breeding[M].Beijing:Agriculture Press,1993.330-335.
    [23]Nakamura T,Osaki M,Ando M,Tadano T.Differences in mechanisms of salt tolerance between rice and barley Plants[J].Soil Sci Plant Nutr.1996,42 (2):303-314.
    [24]赵自国,路静梅.植物耐盐性研究及发展[J].长春师范学院学报.2002,21 (1):51-53.
    [25]杨晓慧,蒋卫杰,魏珉,余宏军.植物对盐胁迫的反应及其抗盐机理研究进展[J].山东农业大学学报(自然科学版).2006,37(2):302-305.
    [26]Zhang H X,Blumwald E.Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit[J].Nat Biotechnol.2001,19:765-768.
    [27]Fukuda A,Nakamura A,Tagiri A,Tanaka H,Miyao A,Hirochika H,Tanaka Y.Function,intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice[J].Plant Cell Physiol.2004,45:146-159.
    [28]Gaxiola R A,Li J,Undurraga S,Dang L M,Allen G J,Alper S L,Fink G R.Drought- and salt-tolerant plants result from overexpression of the AVP1 H+ pump[J].Proc Natl Acad Sci.2001,98:11444-11449.
    [29]Matsumoto H,Chung G P.Increase in protontransport activity of tonoplast vesicles as an adaptive response of barley roots to NaCl stress[J].Plant Cell Physiol. 1988,29:1133-1140.
    [30]Nakamura Y,Kasamo K,Sakata M,Ohta E.Stimulation of the extrusion of protons and H+-ATPase activities with the decline of pyrophosphatase activity of the tonoplast in intact mung bean roots under high NaCl stress and its relation to external levels of Ca2 + ions[J].Plant Cell Physiol.1992,32:139-149.
    [31]Amtmann A,Sanders D.Mechanisms of Na+ uptake by plant cells[J].Adv Bot Res.1999,29:75-112.
    [32]Blumwald E,Poole R J.Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris[J].Plant Physiol.1985,78:l63-167.
    [33]杨红花,冯宝春,陈学森.核果类果树DNA分子标记研究进展[J].生物技术通报.2002,5:17-20.
    [34]Staal M,Maathuis F J M,Elzenga T M,Overbeek J H M, Prins H B A.Na+/H+ antiport activity in tonoplast vesicles from roots of the salt-tolerant Plantago maritima and the salt sensitive Plantago media[J].Physiol Plant.1991,82:l79-l84.
    [35]Golldack D,Dietz K J.Salt-induced expression of the vacuolar H+-ATPase in the common ice plant is developmentally controlled and tissue specific[J].Plant Physiol.2001,125:1643-1654.
    [36]Shi H,Zhu J K.Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid[J].Plant Mol Biol.2002,50(3):543-550.
    [37]苏金,朱汝财.渗透胁迫调节的转基因表达对植物抗旱耐盐性的影响[J].植物学通报.2001,18 (2):129-136.
    [38]Holmberg N,Bulow L.Improving stress tolerance in plants by gene transfer[J].Trends Plant Science. 1998,3(2):61-66.
    [39]刘晶,周树峰,陈华,韩和平,李银心.农杆菌介导的双价抗盐基因转化番茄的研究[J].中国农业科学.2005,38(8):1636-1644.
    [40]张丽,张洪亮,李自超.转mtlD基因和BADH基因早稻苗期耐盐性研究[J].西南农业学报.2005, 18(5):621-624.
    [41]王宝山,邹琦.NaC1胁迫对高粱根、叶鞘和叶片液泡膜ATP酶和焦磷酸酶活性的影响[J].植物生理学报.2000,26:l81-188.
    [42]Bidney D,Scelonge C.Microprojectile bombardment of plant tissue increase transformation frequency by Agrobacterium tumefaciens[J].Plant Mol Boi1.1992,18:301-313.
    [43]Chan L.Expression and inheritance of multip1e transgenes in rice Plants[J].Nature Biotechnlogy.1998, 16:1060-1064.
    [44]Blumwald E,Gelli A.Secondary inorganic ion transport in plant vacuoles[J].Adv Bot Res.1997,25:401- 407.
    [45]武维华.植物的抗盐性.武维华.植物生理学[M].北京:科学出版社,2003.448-456.
    [46]Maeshima M.Vacuolar H+-pyrophosphatase[J].Biochim Biophys Acta.2000,1465(1):37-51.
    [47]Peerbolte R,Leenhouts K,Hooykaas-van Slogteren G M S, Wullems G J, Schilperoort R A.Clones from a shooty tobacco crown gall tumor II: irregular T-DNA structures and organization, T-DNA methylation and conditional expression of opine genes[J].Plant Mol Bio.1986,7:285-299.
    [48]倪为民,陈晓亚,许智宏,薛红卫.生长素极性运输研究进展[J].植物学报. 2000, 42(3): 221-228.
    [49]Kunitz M J.Crystalline inorganic pyrophosphatase inolated from baker’s yeast[J].Gen Physiol.1952,35: 423-449.
    [50]Karlsson J.Membrane-bound potassium and magnesium ion-stimulated inorganic pyrophosphatase from roots and cotyledons of sugar beet (Beta vulgaris L)[J].Biochim Biophys cta.1975,399(2): 356-63.
    [51]Rea PA,Britten CJ,Sarafian V.Common identity of substrate binding subunit of vacuolar H+-translocat- ing inorganic pyrophosphatase of higher plant cells[J].Plant Physiol.1992,100:723-732.
    [52]Sarafian V,Poole R J.Purification of an H+-translocating inorganic pyrophosphatase from vacuole membranes of red beet[J].Plant Physiol.1989,91:34-38.
    [53]Barkla B J,Pantoja O.Physiology of ion transport across the tonoplast of higher plants[J].Annu Rev Plant Physiol Plant Mol Biol.1996,47:159-184.
    [54]Rea P A,Poole R J.Vacuole H+-translocating pyrophosphatase[J].Annu Rev Plant Physiol Plant Mol Biol .1993,44:157-180.
    [55]Sarafian V,Kim Y,Poole R J,Rea P A.Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana[J].Proc Nat Acad Sci .1992,89:775-779.
    [56]Drozdowicz Y M,Kissinger J C,Rea P A.AVP2,a sequence divergent K+- insensitive H+-translocating inorganic pyrophosphatase from Arabidopsis[J].Plant Physiol .2000,123:353-362.
    [57]Belogurov G A,Lahti R.A lysine substitute for K+:A460K mutation eliminates K+-dependence in H+-pyrophosphatase of Carboxydothermus hydrogenoforman[J].J Biol Chem.2002,277:49651-49654.
    [58]Nakanishi Y,Maeshima M.Molecular cloning of vacuolar H+-pyroposphatase and its developmental expression in growing hypocotyl of mung bean[J].Plant Physiol.1998,116:589-597.
    [59]包爱科,张金林,郭正刚,王锁民.液泡膜H+-PPase与植物耐盐性[J].植物生理学通讯. 2006, 42(4): 777-783.
    [60]Nakanishi Y,Matsuda N,Aizzwa K.Molecular cloning of the cDNA for vacuolar H+-pyrophosphatase from Chara coralline[J].Biochimica et Biophysica Acta.1999,1418(1):245-250.
    [61]Ikeda M,Tanabe E,Rahman M H.A vacuolar inorganic H+- pyrophosphatase in Acetabularia acetabulum:partial purification,characterization and molecular cloning[J].J Exp Bot.1999,50:139-140.
    [62]Yoshikiyo S,Kunihiro K,Hideyuki K,Isao K,Shinji K.Identification of the gene structure and promoter region of H+-translocating inorganic pyrophosphatase in rice (Oryza sativa L.) [J]. Biochimica et Biophysica Acta.1999,1444 (2):117-124.
    [63]Tanaka Y,Chiba K,Maeda M,Maeshima M.Molecular cloning of cDNA for vacuolar membrane proton- translocating inorganic pyrophosphatase in Hordeum vulgare[J].Biochem Biophys Res Commun.1993, l90:lll0-lll4.
    [64]Kim Y,Kim E J,Rea P A.Isolation and characterization of cDNAs encoding the vacuolar H+ -pyrophosphatase of Beta vulgaris[J].Plant Physiol.1 994,106:375-382.
    [65]Lerchl J,Konig S,Zrenner R,Sonnewald U.Molecular cloning,characterization and expression analysis of isoforms encoding tonoplast-bound proton-translocating inorganic pyrophosphatase in tobacco[J]. Plant Mol Biol.1995,29:833-840.
    [66]Sakakibara Y,Kobayashi H,Kasamo K.Isolation and characterization of cDNAs encoding vacuolar H+- pyrophosphates isoforms from rice(Oryza sativa L.)[J].Plant Mol Biol.1996,3l:l029-l038.
    [67]Maruyama C,Tanaka Y,Takeyasu K,Yoshida M,Sato M H.Structural studies of the vacuolar H+- pyrophosphatase:sequence analysis and identification of the residues modified by fluorescent cyclohexylcarbodiimide and maleimide[J].Plant Cell Physiol.1998,39:1045-1053.
    [68]Brini F,Gaxiola R A,Berkowitz G A,Masmoudi K.Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophoshatase proton pump[J].Plant Physiol Biochem.2005,43:347-354.
    [69]LüSY,Jing YX,Pang XB,Zhao HY,Ma LQ,Li YF.cDNA cloning of a vacuolar H+-pyrophosphatase and its expression in Hordeum brevisubulatum (Trin.)Link in response to salt stress[J].Agr Sci China. 2005,4(4):247-251.
    [70]Guo S L,Yin H B,Zhang X,Zhao F Y,Li P H,Chen S H,Zhao Y X,Zhang H.Molecular cloning and characterization of a vacuolar H+-pyrophosphatase gene,SSVP,from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis[J].Plant Mol Bio1.2006,60:41-50.
    [71]Kuo S Y,Pan R L.An essential arginyl residue in the tonoplast pyrophosphatase from etiolated mung bean seedlings[J].Plant Physiol.1990,93:1128-1133.
    [72]Zhen R C,Kim E J,Rea P A.Localization of cytosolically oriented maleimide-reactive domain of vacuolar H+-pyrophosphatase[J].J Biol Chem.1994,269(37):23342-23350.
    [73]Kim E J,Zhen R C,Rea P A.Site-directed mutagenesis of vacuolar H+-pyrophosphatase[J].J Biol Chem. 1995,270(6):2630-2635.
    [74]Wallker R R,Leigh R A. Mg2+-Dependent,cation-stimulated inorganic pyrophosphatase associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.)[J].Planta.1981,15:150-155.
    [75]Chuichill K A,Sze H. Anion-sensitive, H+-pumping ATPase in membrane vesicles from oat roots[J]. Plant Physiol.1983,71:610-617.
    [76]Facanha A R,Meis L.Reversibility of H+-ATPase and H+- pyrophosphatase in tonoplast vesicles from maize coleoptiles and seeds[J].Plant Physiol.1998,116:1487-1495.
    [77]Blumwald E.Tonoplast vesicles for the study of ion transport in plant vacuoles[J].Physiol Plant. 1987,69:731-734.
    [78]Davies J M,Poole R J,Rca P A,Sanders D.Potassium transport into plant vacuoles energized directly by a proton-pumping inorganic pyrophosphatase[J].Proc Natl Acad Sci.1992,89:l170l-ll705.
    [79]Obermeyer G,Sommer A,Bentrup F W.Potassium and voltage dependence of the inorganic pyrophos- phatase of intact vacuoles from Chenopodium rubrum[J].Biochim Biophys Acta.1996,l284:203-2l2.
    [80]Sato M H,Kasahara M,Ishii N,Homareda H,Matsui H,Yoshida M.Purified vacuolar inorganic pyropho- sphatease consisting of a 75-kDa polypeptide can pump H+ into reconstituted proteoliposomes[J].J Biol Chem.1994,269:6725-6728.
    [81]Ros R,Romieu C,Gibrat R,Grignon C.The plant inorganic pyrophosphatase does not transport K+ in vacuole membrane vesicles multilabeled with fluorescent probes for H+, K+,and membrane potentia1[J]. J Biol Chem.1995,270:4368-4374.
    [82]Lerchl J,Geigenberger P,Stitt M,Sonnewald U.Impaired photoassimilate partitioning by phloem- specific removal of pyrophosphate can be complemented by a phloem-specific cytosolic yeast-derived invertase in transgenic plants[J].Plant Cell.1995,7:259-270.
    [83]Li J,Yang H,Peer W A,Richter G,Blakeslee J,Bandyopadhyay A,Titapiwantakun B,Undurraga S, Khodakovskaya M,Richards E L,Krizek B,Murphy A S,Gilroy S,Gaxiola R.Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development[J].Science.2005,310:121-l25.
    [84]Takeshige K.Ion effects on the H+-translocating adenosine triphosphatase and pyrophosphatase associated with the tonoplast of Chora coralline[J].Plant Cell Physiol.1988,29(4):649-257.
    [85]Pugliarella M C,Rasi-Caldogno F,Michelis M I D.The tonoplast H+-pyrophosphatase of radish seedings: biochemical characteristics[J]. Physiol Plant.1991,83:339-345.
    [86]Wang Y,Sze H.Electrogenic H+-pumping pyrophosphatase in tonoplast vesicles of oat roots[J].Plant Physiol.1986,81(2):497-502.
    [87]White P J,Marshall J,Smith J A C.Substrate kinetics of the tonoplast H+-translocating inorganicpyrophosphatase and its activation by free Mg2+[J].Plant Physiol.1990,93:1063-1070.
    [88]Marquardt G.Proton translocating enzymes at the tonoplast of leaf cells of the CAM plant Kalancho daigremontiana II The pyrophosphatase[J].J Plant Physiol.1987,129:269-286.
    [89]Levine G,Bassham J A.Photosynthesis in vitro I Achievement of high rates[J].Biochim Biophys Acte. 1974,333:136.
    [90]O’Leary J W.Adaptive components of salt tolerence[J].Handbook of plant and crop physiology. 1995,5(1):577-588.
    [91]Sze H,Li X,Palmgren M G.Energization of plant cell membranes by H+-pumping ATPases,Regulation and biosynthesis[J].Plant Cell.1999,11(4),677-690.
    [92]Strompen G.Arabidopsis vacuolar H+-ATPase subunit E isoform 1 is required for Golgi organization and vacuole function in embryogenesis[J]. Plant J.2005,41(1),125-132.
    [93]Zhen R G,Kim E J,Rea P A.The molecular and biochemical basis of pyrophosphate-energized proton translocation at the vacuolar membrane[J].Plant physiology and biochemistry.1997,(25):297-337.
    [94]赵利辉,刘友良.液泡膜H+-PPase及其对逆境胁迫的反应[J].植物生理学通讯.1999,35(6):441-445.
    [95]Yoshida S,Matsuura-Endo M.Comparison of temperature dependency of tonoplast proton translocat- ing between plants sensitive and insensitive to chilling[J].Plant Physiol.1991,95:504-508.
    [96]Bremberger C,Ltittge U.Dynamics of tonoplast proton pumps and other tonoplast proteins of Mesembryanthemum crystallinum L.during the induction of crassulacean acid metabolism[J]. Planta. 1992,188:575-580.
    [97]Fukuda A,Chiba K,Maeda M ,Nakamura A,Maeshima M,Tanaka Y.Effect of salt and osmotic stresses on the vacuolar H+-pyrophosphatase,H+-ATPase subunit A,and Na+/H+antiport from barley[J].J Exp Bot. 2004,55(397):585-594.
    [98]Vera-Estrella R,Barkla B J,Garcfa-Ramfez L,Pantoja O.Salt stress in Thellungiella halophila activates Na transport mechanisms required for salinity tolerance[J].Plant Physiol.2005,l39:l507-l5l7.
    [99]Gaxiola R A,Rao R,Sherman A,Grisafi P,Alper S L,Fink G R.The Arabidopsis thaliana proton transporters,AtNhxl and Avp1 can function in cation detoxification inyeast[J].Proc Natl Acad Sci . 1999,96:l480-1485.
    [100]Park S,Li J S,Pittman J K,Berkowitz G A,Yang H B,Undurraga S,Morris J,Hirschi K D,Gaxiola R A. Up-regulation of a H+-pyrophosphatase(H+-PPase) as a strategy to engineer drought-resistant crop plants[J]. Proc Natl Acad Sci.2005,l02(52):l8830-l8835.
    [101]Zhao F Y,Zhang X J,Li P H,Zhao Y X,Zhang H.Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1[J].Mol Breed.2006,17:341-353.
    [1]陈璋.拟南芥:植物分子生物学研究的模式物种[J].植物学通报.1994,11 (1):6-11.
    [2]于政权,孙颖.拟南芥菜室内培养技术的改进[J].河北师范大学学报(自然科学版).1999,23(4):499 -550.
    [3]郁晓敏,方萍,朱日清.拟南芥直播水培法[J].植物生理学通讯.2004,2(40):81-82.
    [4]萨姆布鲁克J,弗里奇E F,曼尼阿蒂斯T.分子克隆实验指南[M].第二版.北京:科学出版社,2002.19-2l.
    [5]李啸浪,胡新文,刘晓丽,郭建春.热带地区拟南芥栽培技术及基因转化体系的构建[J].热带作物学报.2005,26(3):56-60.
    [6]韩玉珍,李睿,孟繁静.拟南芥开花的光周期调节[J].植物生理学通讯.1998,34:401-406.
    [7]Pruitt R E,Meyerowitz E M.Characterization of the Genome of Arabidopsis thaliana[J].Mol Biol. 1986,187:169-183.
    [8]孙昌辉,邓晓建,方军,储成才.高等植物开花诱导研究进展[J].遗传.2007,29(10):1182-1190.
    [9]张森.喷雾:一种简便的拟南芥转化方法[J].生物技术.2006,16(5):36-38.
    [10]戚元成,张世敏,宋安东,高玉千,胡渝,张慧.土壤农杆菌介导的转GST基因拟南芥的选育[J].河南农业大学学报.2005,39(1):75-78.
    [11]彭日荷,黄晓敏,李贤,孙爱君,姚泉洪,彭友良.带内含子卡那霉素抗性基因双元载体构建及烟草转化[J].植物生理学报.2001,27(1):55-61.
    [12]黄碧光,范永立,刘美顺.籼稻品种93-11遗传转化中抗生素适宜剂量的筛选[J].福建农林大学学报(自然科学版).2007,36(4):337-341.
    [1]张新春,庄炳昌,李自超.植物耐盐性研究进展[J].玉米科学.2002,10 (1):50-56.
    [2]赵自国,路静梅.植物耐盐性研究及发展[J].长春师范学院学报.2002,21 (1):51-53.
    [3]马焕成,蒋东明.木本植物抗盐性研究[J].西南林学院学报.1998,18 (1):52-59.
    [4]Blumwald E,Poole RJ.Na+/H+antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris[J].Plant Physiol.1985,78:l63-167.
    [5]Staal M,Maathuis F J M,Elzenga T M,Overbeek J H M, Prins H B A.Na+/H+ antiport activity in tonoplast vesicles from roots of the salt-tolerant Plantago maritima and the salt sensitive Plantago media[J].Physiol Plant.1991,82:l79-l84.
    [6]Apse M P,Aharon G S,Snedden W A,Blumwald E.Salt tolerance conferred by overexpression of a vacular Na+ / H+ antiporter in Arabidopsis[J].Science.1999,285:1256-1258.
    [7]Fukuda A,Nakamura A,Tagiri A,Tanaka H,Miyao A,Hirochika H,Tanaka Y.Function,intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice[J].Plant Cell Physiol.2004,45:146-159.
    [8]He C,Yan J Q,Shen G X,Fu L H,Holaday A S,Auld D,Blumwald E,Zhang H.Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field[J].Plant Cell Physiol.2005,45:1-28.
    [9]Matsumoto H,Chung GP.Increase in proton transport activity of tonoplast vesicles as an adaptive response of barley roots to NaCl stress.Plant[J].Cell Physiol .1988,29:1133-1140.
    [10]Nakamura Y,Kasamo K,Sakata M,Ohta E.Stimulation of the extrusion of protons and H+-ATPase activities with the decline of pyrophosphatase activity of the tonoplast in intact mung bean roots under high NaCl stress and its relation to external levels of Ca2 + ions[J].Plant Cell Physiol.1992,32:139-149.
    [11]Clough S J,Bent A F.Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J].Plant J.1998,16(6):735-743.
    [12]Seong E S,Cho H S,Choi D,Joung Y H,Lim C K,Hur J H,Wang M H.Tomato plants overexpressing CaKR1 enhanced tolerance to salt and oxidative stress[J]. Biochemical and Biophysical Research Communications.2007,363:983-988.
    [13]刘国花.植物抗盐机理研究进展[J].安徽农业科学. 2006,34(23):6111-6112.
    [14]Guo S L,Yin H B,Zhang X,Zhao F Y,Li P H,Chen S H,Zhao Y X,Zhang H.Molecular cloning and characterization of a vacuolar H+-pyrophosphatase gene,SSVP,from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis[J].Plant Mol Bio1.2006,60:41-50.
    [15] Park S,Li J S,Pittman J K,Berkowitz G A,Yang H B,Undurraga S,Morris J,Hirschi K D,Gaxiola R A.Up-regulation of a H+-pyrophosphatase(H+-PPase) as a strategy to engineer drought-resistant crop plants[J]. Proc Natl Acad Sci.2005,l02(52):l8830-l8835.
    [16]陈少裕.膜脂过氧化对植物细胞的毒害作用[J].植物生理学通讯.1991,(2):84.
    [17]王爱国.丙二醛作为脂质过氧化指标的探讨[J].植物生理学通讯.1986,(2):55-57.
    [18]Maslenkova L T,Zanev Y,Popova L P. Adap tation to salinity as monitored by PSII oxygen evolving reactions in barley thylakoids[J].PlantPhysiology.1993,142:629-634.
    [1]Moran J F,Becana M,Iturbe-Ormaetxe I, Frechilla S, Klucas R V, Aparicio-Tejo P.Drought in duces oxidative stress in pea plants[J].Planta .1994,94:346-352.
    [2]吕庆,郑荣梁.干旱及活性氧引起的膜脂过氧化与脱酯化[J].中国科学[M],1996.26-30.
    [3]Davies W J,Zhang J.Root signal and the regulation of growth and development of plants in drying soil[J]. Annu Rev Plant Physiol Plant Mol Boil.1991,42:55-76.
    [4]Bush D S.Calcium regulation in plant cells and its role in signaling[J].Annu Rev Plant Physiol Plant Mol Boil.1995,46:95-122.
    [5]Kishor P B K,Hong Z,Miao G H,Hu C A A,Verma D P S.Overexpression ofΔ’- pyrroline-5-carboxylate synthatase increase praline production and confers osmotolerance in transgenetic plants[J].Plant Physiol. 1995,108:1387-1394.
    [6]刘国花.植物抗盐机理研究进展[J].安徽农业科学.2006,34(23):6111-6112.
    [7]Horseh R B,Fry J E,Hoffmann N L,Eichholtz D,Rogers S G,Fraley R T.A simple and general method for transferring genes into plants[J].Science.1985,227:1129-1131.
    [8]Brini F,Hanin M,Mezghani I,Berkowitz G A,Masmoudi K.Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants[J].Journal of Experimental Botany.2007,2(58):301-308.
    [9]Gaxiola R A,Li J,Undurraga S,Dang L M,Allen G J,Alper S L,Fink G R.Drought- and salt-tolerant plants result from overexpression of the AVP1 H+ pump[J].Proc Natl Acad Sci.2001,98:11444-11449.
    [10] Park S,Li J S,Pittman J K,Berkowitz G A,Yang H B,Undurraga S,Morris J,Hirschi K D,Gaxiola R A. Up-regulation of a H+-pyrophosphatase(H+-PPase) as a strategy to engineer drought-resistant crop plants[J]. Proc Natl Acad Sci.2005,l02(52):l8830-l8835.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700