用户名: 密码: 验证码:
运动性疲劳、铜锌营养与自由基代谢的相互关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代战争、军事训练和作业中,常常由于环境恶劣,长时间或超负荷的训练、施工,使得官兵的体力消耗和精神负担增加,同时休息不充分,极易产生运动性疲劳。运动性疲劳能直接影响部队的训练、作业乃至战斗力。运动性疲劳机理的研究其最终目的,是为解决疲劳的防护问题提供理论依据,故受到军事医学界的高度重视。
     剧烈的运动过程中自由基生成增多,损伤了多种细胞的正常机能是导致运动性疲劳的一种原因【1】。因此,我们推测抗氧化剂对运动性疲劳有防护作用。事实上越来越多的研究证明,服用抗氧化剂有助于提高机体运动能力,延缓运动性疲劳的产生【2】。微量元素铜、锌作为机体的必需微量元素,其中一个重要的生理作用是抗氧化。在运动医学领域,运动员经常服用一定剂量的微量元素铜、锌。另外,龚书明【3】等研究发现锌强化的茶叶具有很好的抗疲劳作用。但也有相当一部分研究显示补充微量元素铜、锌并不能提高机体运动能力【4-5】。目前,我们对机体运动,微量元素铜、锌营养,以及自由基的代谢之间的关系尚不清楚,因此,对是否服用一定量的铜、锌抗氧化、抗疲劳存在争议。阐明运动、铜、锌营养、机体氧自由基代谢三者的关系对解释微量元素铜、锌在抗疲劳中的作用及营养需要具有十分总要的现实意义。
     本研究采用10天递增负荷的游泳运动方式建立SD大鼠运动疲劳模型,观察大鼠机体抗氧化能力和氧化损伤情况,采用原子吸收光谱法测量实验组和对照组SD大鼠肝、肾、骨骼肌、血清铜、锌含量,采用分子生物学技术和原子吸收光谱法测量两组SD大鼠血清不同化学形态铜、锌含量,并分析两组SD大鼠机体铜、锌含量及相应形态含量变化与机体抗氧化能力和氧化损伤情况的相关性。
     本研究的主要结论如下:
     1.运动性疲劳时SD大鼠体内微量元素铜、锌的分布发生变化:与正常大鼠相比,运动性疲劳大鼠肝组织和血清铜含量增加(P<0.05),骨骼肌铜含量减少(P<0.05),肾脏组织铜变化不明显(P>0.05);运动性疲劳大鼠肝组织锌含量增加(P<0.05),血清、骨骼肌锌含量减少(P<0.05),肾脏组织锌变化不明显(P>0.05)。
     2.运动性疲劳时SD大鼠体内抗氧化能力下降:与正常大鼠相比,运动性疲劳大鼠肝、肾、骨骼肌、血清中超氧化物歧化酶活性明显下降(P<0.05);体内氧化损伤增加,较正常大鼠,运动性疲劳大鼠肝、肾、血清中丙二醛含量增加(P<0.05)。骨骼肌中丙二醛含量变化不明显(P>0.05)。
     3.SD大鼠体内微量元素铜、锌含量变化与其抗氧化能力有一定的相关性:肝脏中铜、锌含量增加,但其与肝脏抗氧化损伤能力相关性不明显(P>0.05);血清锌含量减少与血清抗氧化能力呈明显正相关(P<0.05),血清铜含量增加与血清抗氧化能力呈负相关(P<0.05);骨骼肌铜、锌的含量减少与骨骼肌的抗氧化能力呈正相关(P<0.05);肾脏铜、锌的含量无明显变化与铜、锌的抗氧化能力无明显相关性(P>0.05)。
     4.建立了血清铜、锌元素这两种化学形态的分离分析方法,并讨论了有关的实验条件。该方法铜、锌的检出限分别为9.84×10-3μg·ml-1、1.06×10-3 g·ml-1,相对标准偏差为0.34%~2.31%,回收率为95.0%~103.0%。结果显示该方法灵敏,准确,可靠,可以用于血清中铜、锌元素的形态测定。
     5.运动性疲劳时SD大鼠血清微量元素铜、锌的化学形态分布变化与其抗氧化能力相关:疲劳大鼠血清中铜总量以及结合与非结合态含量均较正常大鼠增加(P<0.05),血清中锌总量以及结合与非结合态的含量均较正常大鼠减少(P<0.05)。血清中各种化学形态锌含量减少与其抗氧化能力呈正相关(P<0.05),与此相反,血清中各种化学形态铜含量增加与其抗氧化能力呈负相关(P<0.05)。
     综上所述,运动既可影响铜、锌代谢,又可影响自由基代谢,而铜、锌代谢则与自由基代谢关系密切。运动时机体微量元素铜、锌的分布不仅发生变化,它们的化学形态分布也发生变化,这些变化是机体对运动的反应,保证了运动时机体的能量代谢、物质准备,但这种分布的变化导致机体内铜、锌抗氧化的生物效应下降,致使运动时产生的大量自由机不能有效、及时被灭活,从而进一步对机体的运动能力和生理功能产生重大影响,即运动对自由基代谢的影响受到铜、锌等营养因素的制约,这可能是运动产生疲劳的原因之一。
In Modern war and military training and performance, officers and soldiers usually have suffered from sports fatigue because long-time work or over loading training make their physical output and mental burden increased. sports fatigue can affect military training, performance and even military power. Anti-sports-fatigue is based on study on sports fatigue mechanism. So within the military medical domain, more and more researchers think highly of sports fatigue mechanism.
     Free Radicle is one of major factors in the sports fatigue. Free radicle which is produced during breather can attack other molecules in the body in order to grab an electron and damag the "healthy' molecule, which could cause cellular function abnormal. Therefore, we infer that addition of antioxidants can anti-fatigue. In fact, numerous animal experiments have demonstrated that the addition of antioxidants can improve locomotivity and postpone sports fatigue. Trace element Cu and Zn which belong to essential trace element of body play a very important role in antioxygen of body. Within sports medicine domain, the antioxidative potential of Zn and Cu was studied on restraint sports fatigue induced oxidant/pro-oxidant status. Everyday many athletes usually have supplementation with certain dosage of Zn and Cu in order to decrease sports fatigue and improve locomotivity. however, many studies have suggested that supplementation with Zn and Cu does not could decrease sports fatigue and improve locomotivity. Whether supplementation with Zn and Cu could decrease sports fatigue and improve locomotivity is still a matter of debate. So this is an important area for future research. Elucidation of the relationship of sports fatigue, free radicle metabolism and Zn、Cu nutrition is very significant for us to understand affect of trace element Zn and Cu to sports fatigue and decide nutrition requirement.
     In our research, the model of sports fatigued SD rats were established by ten days loading-increasing swimming exercise. Antioxidant capacity and the degree of oxidative damage of SD rat were observed.The Cu and Zn in liver,kidney skeletal ,muscle,serum of the SD rat were were analyzed by Flame atomic absorption spectrophotometry (AAS). speciation of the Cu and Zn in serum were analyzed by molecularbiology technology and AAS. At last, Relationship among trace Elements Cu and Zn , speciation of the Cu and Zn in serum and Metabolism of Free Radicl in SD Rat were analyzed.
     The main findings of the study are as follows:
     1.Under sports fatigued condition, the distribution of Cu and Zn in SD rat changed. The amount of Cu in the liver and serum of fatigued SD rat were increased compared with normal rats(P <0.05). The change of Zn in liver was also increased ,but the change of Zn in serum was opposite(P <0.05). The amount of Cu and Zn were decrease in the skeletal muscle(P <0.05) and did not change in the kidney compared with normal rats(P>0.05).
     2.Under sports fatigued condition, antioxidant capacity of SD rat decreases. The activities of SOD in liver,kidney,skeletal muscle,serum were significantly lower and beside skeletal muscle the levels of MDA in tissue were significantly higher than control group(P <0.05).
     3.Under sports fatigued condition, the distribution of Cu and Zn in SD rat relates with antioxidant capacity. There are relationship between trace elements Cu,Zn and capability of antioxidation in the liver,skeletal muscle,serum of fatigued SD rat(P <0.05).
     4.A method was developed for speciation analysis of the Cu and Zn in serum. The detection limit of Cu in serum by the method is in the range 9.84×10-3μg·mL-1. For Zn, The detection limit is in the range 1.06×10-3μg·mL-1,The percentage recovery of trace elements Cu and Zn by the proposed procedure is in the range 95.0~103.0%. The relative standard deviation(RSD) of trace elements Cu and Zn in the serum is in the range 0.34%~2.31%.
     5. Under sports fatigued condition, the distribution of speciation of the Cu and Zn in serum of SD rat changed , which relates with capability of antioxidation of serum. The amount of forms of total, combination and non combination of Zn in the Serum of fatigued SD rat were increased compared with normal rats(P <0.05), but the changes of Cu were opposite. There are relationship among all kinds of forms of trace elements Cu, Zn and capability of antioxidation in the serum of sports fatigued SD rat(P <0.05).
     On the whole, sports could not only affect the metabolism of Zn and Cu, but also affect the metabolism of free radicle. In addition, the metabolism of Zn and Cu closely relate with the metabolism of free radicle. During exercise, the distribution of Cu and Zn in SD rat changed and the distribution of speciation of the Cu and Zn in serum of SD rat also changed. Those changes meet body’s satisfaction of energy and material but cause decrease of capability of antioxidation. A lot of free radicles produced during exercise could cause sports fatigue.
引文
[1]Sjodin B, Hellsten Westing ,Y Apple FS. Biochemical mechanisms for oxygen free radical formation during exercise.Sports Med, 1990; 10(4):236-54.
    [2]Powers.Scott.K,Quindry.Dietary antioxidants and exercise. Journal of Sports Sciences, 2004,22(1):81-94.
    [3]龚书明,陈景元,赵振高,等.抗疲劳制剂提高战士体力耐力效果的研究. 第四军医大学学报,1997;18(8):464-466.
    [4]Clarkson PM. Minerals: exercise performance and supplementation in athletes.J Sports Sci,1991;9:91-116.
    [5]ClarksonPM.Micronutrients and exercise: anti-oxidants and minerals.J Sports Sci,1995 ;13(9):S11-24.
    [6]史套兴,蒋铭敏,黄留玉,等. 科索沃战争对未来军事医学的影响与启示.解放军预防医学杂志,2000;18(5):313-315.
    [7]田野.运动生理学高级教程.北京:高等教育出版社,2003: 453- 454.
    [8]Asmussen, E. Muscle fatigue. Medicine and Science in Sports, 1979;11: 313-321.
    [9]Clarkson PM,Hubal MJ. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil, 2002;81(11 Supp): 52- 69.
    [10]Per A. Tesch, J. Karlsson.Muscle metabolite accumulation following maximal exercise. European Journal of Applied Physiology, 1984; 52(2): 243-246.
    [11]Lamb GD,Stephenson DG.Effects of intracellular pH and 【Mg2+】on excitation—contraction coupling in skeletaI muscle fibres of the rat.J Physiol,1994;478(Pt2):331—339
    [12]张爱芳.实用运动生物化学.北京:北京体育大学出版社,2005:29—35.
    [13]昊纪饶,曾士云.运动生理学教程.北京:人民体育出版社,1997.
    [14]Maria L.Urso, Priscilla M.Clarkson. Oxidative stress, exercise, and antioxidant supplementatio.Toxicology, 2003;189 (1): 41-54.
    [15]Harman D. Aging: a theory based on free radical and radiation chemistry.J Gerontol,1956,11:289-300.
    [16]莫简.医用自由基生物学导论.北京:人民卫生出版社,1989.2。
    [17]孙存普,张建中,段绍瑾.自由基生物学导论.合肥:中国科学技术大学出版社,1999.4.
    [18]郑荣梁.自由基生物学. 北京:高等教育出版社,1989.4.
    [19]Hensley K, Floyd RA. Reactive oxygen species and protein xidation in aging: a look back , a look ahead. ArchBiophys, 2002,397(2):288- 301.
    [20]Yu BP. Aging and oxidative stress: modulation by dietary restriction. Free Rad Biol Med,1996,21:651-668.
    [21]海春旭.抗氧化剂、抗衰老与疾病控制的研究进展.疾病控制杂志,2002;6(4):289-293
    [22]田野.运动性骨骼肌疲劳机理.北京:北京体育大学出版社,1998.
    [23]胡红梅,许豪文.运动性内源自由基对大鼠心肌线粒体功能的影响.中国运动医学杂志,1998,17 (1):232-251.
    [24]田野,王义润,杨锡让.运动性骨骼肌机构、机能变化的机制研究 Ⅲ:力竭运动对脂质过氧化和ATP 代谢的影响.中国运动医学杂志,1994,13 (2):1092-1201.
    [25]吕梅,张勇,李静先.运动性疲劳状态下线粒体膜生物学特性的研究Ⅲ: 递增负荷运动后大鼠肝细胞线粒体膜MADH2CoQ 还原酶及肝组织NAD+ 的变化.中国运动医学杂志,1988,17(1):102- 111.
    [26]宫霞,卢元芳.银杏叶提取物对小鼠骨骼肌过氧化损伤的保护作用.中国运动医学杂志,1998;17(4):359-360.
    [27]张勇,耗竭性运动对大鼠心肌线粒体膜流动性及复合物Ⅰ的影响.生物 化学与生物物理学学报,1995;27(3):339-242.
    [28]Lamb GD,StephensonDG. Efects of intracellular PH and [Mg2+] on excitation-contraction coupling in skeletal muscle fibers of the rat. Physiol,1994;478:331-334.
    [29]侯春丽,闫守扶,孙红梅.运动性疲劳的细胞机制及研究进展.首都体育 学院学报,2003;15(1):89-92.
    [30]Thompson LV.Muscle fatigue in fog semetenduosus: alteration encontractile function. Physiol,1992;262:1500-1506.
    [31]Irene Margaritis, Stephane Palazzetti, Anne-Sophie Rousseau, et al. Antioxidant Supplementation and Tapering Exercise Improve Exercise-Induced Antioxidant Response. Journal of the American College of Nutrition, 2003; 22(2):147-156.
    [32]Priscilla M Clarkson, Heather S Thompson. Antioxidants: what role do they play in physical activity and health? American Journal of Clinical Nutrition, 2000;72(2):637-646.
    [33]Konig D, Wagner KH, Elmadfa I. Exercise and oxidative stress: significance of antioxidants with reference to inflammatory, muscular, and systemic stress. Exerc Immunol Rev, 2001;7:108-133.
    [34]Vina J,Gimeno A,Sastre J, et al. Mechanism of free radical production in exhaustive exercise in humans and rats; role of xanthine oxidase and protection by allopurinol. IUBMB Life,2000; 49(6):539-44.
    [35]张勇,文立,聂金雷,等.运动性疲劳的线粒体膜分子机理研究III线粒 体质子跨膜势能与运动性内源自由基生成的关系.中国运动医学杂 志,2000;19(4):346-348.
    [36]Herweijer MA, Berden JA, Slater EC. Uncoupler-inhibitor titrations of ATP-driven reverse electron transfer in bovine submitochondrial particles provide evidence for direct interaction between ATPase and NADH:Q oxidoreductase.Biochim Biophys Acta,1986;849(2): 276-287.
    [37]曹兆丰,程伯基.运动性内源性自由基对大鼠肝肚线粒体的影响.中国应用生理学杂志,l993;9(1):25—28.
    [38]吕梅,张勇.递增负荷力竭性运动后大鼠肝脏线粒体NADH-COQ还原酶及肝组织NAD+的变化.中国运动医学杂志,1998;17(I):10- 11.
    [39]Hanukoglu I, Rapoport R, Weiner L,et al. Electron leakage from the mitochondrial NADPH-adrenodoxin reductase-adrenodoxin-P450scc (cholesterol side chain cleavage) system. Arch Biochem Biophys, 1993;305(2):489-498.
    [40]张勇,时庆德,文立,等.运动性疲劳的线粒体膜分子机制研究Ⅰ 急性力竭运动中线粒体电子漏引起质子漏增加及其相互作用.中国运动医学杂志,1999;18(3):236-239.
    [41]张勇,时庆德,陈家琦.力竭性运动中肝赃线粒体电子漏对电子传递与质子漏转移偶联的影响.体育科学,l999;14(2):16-18.
    [42]时庆德,张勇,陈家琦,等.疲劳性运动中线粒体电子漏引趁质子漏的增加.生物化学与生物物理学报,l999;3l(1):97—100.
    [43]MC Beatrice, JW Palmer , DR Pfeiffer. The relationship between mitochondrial membrane permeability, membrane potential, and the retention of Ca2+ by mitochondria. Biol. Chem,1980; 255,(18): 8663-8671.
    [44]王长青, 刘丽萍, 郑师陵,等.运动性疲劳时Ca2+ 、线粒体膜电位的改 变与细胞凋亡.体育科学,2000;20(3):59-62.
    [45]苗明三.实验动物和动物实验技术.北京:中国中医药出版社,1997.
    [46]Hatta, H. Treadmill running in rats and mice. Jpn. J. Biochem. Exercise,1994;7: 15-19.
    [47]Hatta.H, R.Soma, Y.Atomi. Effect of endurance training on oxidation of lactate in mice after supramaximal exercise. Comp. Biochem. Physiol, 1994;107A: 27-30.
    [48]Denadai, B.S. Effect of caffeine on the metabolism of rats exercising by swimming. Braz. J. Med. Biol. Res,1994;27: 2481-2485.
    [49]Keitaro Matsumoto, Kengo Ishihara, Kazunori Tanaka,et al. An adjustable-current swimming pool for the evaluation of endurance capacity of mice. J Appl Physiol, 1996;81(4): 1843-1849.
    [50]Wataru Mizunoya,Shinichi Oyaizu,Kengo Ishihara,et al. Protocol for Measuring the Endurance Capacity of Mice in an Adjustable -current Swimming Pool. Bioscience, Biotechnology, and Biochemistry, 2002;66(5): 1133-1136.
    [51]Koury JC, de Olilveria AV Jr, Portella ES, et a1. Zinc and copper biochemical indices of antioxidant status in elite athletes of different modalities.Int J Sport Nutr Exerc Metab. 2004;14(3):358-372.
    [52]Lukaski HC, Siders WA, Hoverson BS, et a1. Iron, copper, magnesium and zinc status as predictors of swimming performance. Int J Sports Med. 1996;17(7):535-540.
    [53]Kikukawa A, Kobayashi A. Changes in urinary zinc and copper with Strenuous physical exercise.Aviat Space Environ Med. 2002; 73 (10) :991-995.
    [54]陈吉棣,冯建英.运动对体内锌代谢平衡的影响.中国运动医学杂志,1993;(3):139一149.
    [55]Dowdy, R. P,Burt, J. Effect of intensive, long-term training on copper and iron nutriture in man. Fed. Proc. 1980;39, 786-791.
    [56]李亚洁 周春兰.微量元素锌在防护自由基损伤中的作用.广东微量元 素科学.2001;7(8):1-3.
    [57]SlaterTF . Free radical mechanisms in tissue injure . Bioe]aem J.1984;222:1-5.
    [58]L.J. Machlin and A. Bendich, Free radical tissue damage: Protective role of antioxidant nutrients. FASEB J. 1987;1: 441–445.
    [59]周丽砖,黄连珍.缺锌对太鼠脂质过氧化及抗氧化系统的影响.营养学报,1999;21(2):181~185.
    [60]Sullivan J F, Jetton M S, Burch R E. Enhanced lipid peroxidation in liver microsomes of zinc-deficient rats. Am J Clin Nutr, 1980, 33: 51-56.
    [61]Burke RF, Masters BS. Some effects of zinc deficiency on the hepatic microsomal cytochrome P-450 system in the rat.Arch Biochem Biophys. 1995: 170(10):124-130.
    [62]曹国华,陈吉棣.运动与锌、铜营养及自由基生物学的研究进展.中国运动动医学杂志.1991;10 (1):40-48.
    [63]王德海, 程国富.铜抗氧自由基作用的研究进展. 微量元素与健康研究.2001;18 (4):70-73.
    [64]Rossi L, Arciello M, Capo C,et al. Copper imbalance and oxidative stress in neurodegeneration.Ital J Biochem. 2006;55(3-4):212-221.
    [65]Szpunar J. Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics. Analyst. 2005; 130(4):442-465.
    [66]Szpunar J.Bio-inorganic speciation analysis by hyphenated techniques. Analyst. 2000;125:963-988.
    [67]孙汉文,李爱红,孙建民.中草药中微量元素形态分析研究进展.河北 大学学报(自然科学版),2002;22(4):400-403.
    [68]侯莉娟, 刘晓莉, 乔德才.大鼠游泳运动疲劳模型建立的研究.实验动物科学与管理,2005,22(1):1~3.
    [69]Lowry ?OH, Rosebrough NJ, et a1.Protein with the Folin phenol reagent.J Bid Chem,1951;193:265-269.
    [70]董纯定.生化药物分析.南京:中国药科大学,1995:142-150.
    [71]何立望.生物化学实验(修订本).贵阳:贵阳科学出版社,1992.8.
    [72]庞战军,周 玫,陈 瑗.自由基医学研究方法. 北京:人民卫生出版社,2000.6.
    [73]梁 欣,海春旭,赵康涛,等.MDA 和SOD 在VC、VE 对60Co 照射家兔作用中的变化意义.癌变·畸变·突变,2004,16(6):341-346.
    [74]Ilda M, Robert B M, Michael WP. Metallothionein gene expression in testicular interstitial cells and liver of rats treated with cadmium. Toxicology.1996;107:121-130.
    [75]赵玉薇,陈吉棣.耐力性运动对锌、铜代谢的影响.中国运动医学杂志; 1990;9(1):10一14.
    [76]陈伟强,程义勇.金属硫蛋白的表达调控及其与锌的关系. 生理科学进展.2003; 34 (2):150-153.
    [77]龚书明,陈景元,高双斌,等.运动对大鼠微量元素代谢及血清酶的影响.解放军预防医学. 1993;11(5):332-335.
    [78]钟秀倩,钟俊辉. 微量元素与人体健康.现代预防医学,2007,34(1): 61-63.
    [79]汪家政,范明.蛋白质技术手册. 北京:科学出版社,2000, 68~69.
    [80]邓勃,何华焜.原子吸收光谱分析.北京:化学工业出版社,2004,371~374.
    [81]彭红云,杨肖娥.金属有机配体分析方法及金属组学研究.分析化学.2006,34(8):1190~1196.
    [82]W.H. Koppenol. The centennial of the Fenton reaction.Free Radic Biol Med, 1993;15 (6): 645–651.
    [83]W.H. Koppenol. The Haber–Weiss cycle—70 years on. Redox Rep, 2001;6 (4): 229–234.
    [84]R.H. Kim, J.E. Park and J.W. Park. Ceruloplasmin enhances DNA damage induced by hydrogen peroxide in vitro. Free Radic Res, 2000;33 (1): 81–89.
    [85]J.A. Swain, V. Darley-Usmar and J.M. Gutteridge Peroxynitrite releases copper from ceruloplasmin: implications for atherosclerosis. FEBS Lett , 1994;342 (1): 49-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700