用户名: 密码: 验证码:
电励磁同步电机低开关频率控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在矿井提升、机车牵引等中高压大功率应用中,三电平交流变频调速驱动的电励磁同步电动机被广泛使用。为减小三电平变频器的开关损耗,提高其输出功率,需降低PWM变换器的开关频率;但随之带来输出谐波增加、动态性能下降等问题,传统控制方法不再适用。本课题针对三电平高压变频器驱动电励磁同步电机时,降低开关频率所引起的输出电流谐波畸变率增大、调速系统动态性能下降等问题进行系统建模及控制算法的研究。
     首先,描述了本文研究所针对的电励磁同步电动机三电平变频调速系统的特点,分析了二极管中点箝位式(neutral point clamped,NPC)三电平PWM逆变器的开关特性,并介绍了所设计、使用的50kW同步电机实验装置。借助滑动傅立叶变换(sliding discrete fourier transform, sDFT)提取感应电压的基波成分,设计了一种基于sDFT的同步电机转子初始位置角检测方法。
     其次,介绍了低开关频率下使用的PWM方法。给出了在低调制度下使用的线电压坐标系SVPWM和高调制度下使用的分段同步优化PWM方法,并提出了在开关频率的上限为500Hz的情况下,PWM分段同步调制方案的选取原则,及它们的数字实现方法。最后,提出了在低调制度区使用的平衡因子控制法和在高调制区使用的调整小矢量作用顺序的三电平变频器的中点电位平衡控制策略。利用复矢量信号流图对PWM变换环节进行建模,在对电流内环控制系统零极点图分析的基础上,提出了一种新颖的复矢量电流调节器。该调节器能有效改善降低开关频率造成的电流耦合现象,且具有较好的动稳态性能。对低开关频率下的PWM逆变器进行了复矢量建模,给出了电励磁同步电机的复矢量信号流图;接着分析常规PI调节器和带前馈补偿的PI调节器在低开关频率下的不足之处,然后基于零极点图分析进行了复矢量电流调节器的设计,并进行了实验验证。
     在对电励磁同步电机磁链观测原理分析的基础上,提出了电流模型与电压模型的过渡方法。随着控制性能要求的提高,电流测量误差对电励磁同步电动机控制性能的影响愈加显著。本文采用谐振式观测器对实际的电流测量误差进行补偿;为了消除残余误差,采用了带残余误差补偿器的纯积分磁链观测器以精确观测磁链。使用优化的PWM方法无法通过采样直接获得基波电流,而低通滤波器在提取基波分量的同时造成相位滞后、幅值衰减,难以满足系统高性能调速要求。为改善这一问题,本文在对电励磁同步电机进行复矢量和矩阵相结合的建模基础上,结合现代控制理论的观测器原理,针对电励磁同步电机,设计了一种新颖的基于不同坐标系的混合定子基波电流观测器。该混合基波观测器能在低开关频率下实现定子基波电流的快速观测,并具有良好的动态跟踪性能。
     最后研究了低开关频率下基于定子磁链轨迹跟踪的优化PWM开关角实时调整策略,解决了动态调速过程中使用离线计算的优化PWM模式引起的开关角紊乱、装置过流等问题。提出了低开关频率下电励磁同步电机的完整的控制方案,并进行了实验验证。实验结果验证了所提出控制方法的有效性。
     该论文有图83幅,表5个,参考文献231篇。
The three-level ac variable frequency converter fed electrical excited synchronous machine is in increasing demand for numerous medium-voltage high power industrial applications such as mining hoist and locomotive traction. The operation of the PWM converter should be kept at low switching frequency so as to restrain the dynamic losses of the three-level converter and improve its output power. Problems due to low switching frequency are studied in this paper, with system modeling and control strategies for solving the problems.
     First, the feathers of the three-level variable frequency converter fed electrical excited synchronous machine are described. The pulse width modulation (PWM) methods at low switching frequency are introduced. The complex state signal flow graph is used for modeling the PWM conversion part. With the analysis of zero-pole graph of the current control inner loop, a novel complex state current regulator is proposed. It can effectively reduce the cross coupling of the current control loop caused by low switching frequency, while realize high dynamic and steady performance at the same time are proposed.
     Based on the analysis of the flux observation principles of the electrical excited synchronous machine,the transition method between the current model and voltage model is proposed. A simple resonant type observer to compensate current measurement errors for the pure-integration-based flux estimation is proposed. The technique further contains a residual error compensator to eliminate miscellaneous residual error of the integrator. A novel hybrid fundamental current observer at different coordinates for the electrically excited synchronous machine is designed based on the observer theory and the complex vector model. This kind of hybrid observer can extract the fundamental component of the stator current instantaneously as well as the perfect performance of dynamic tracking. Finally, a real-time switching angle adjustment strategy of optimal PWM based on stator flux trajectory control at low switching frequency is proposed. Problems caused by using the offline calculated optimal PWM patterns at the dynamic speed control, such as switching angle disorder and equipment overcurrent trip are solved by this method.
     There are 83 figures, 5 tables and 231 references in this dissertation.
引文
[1] Abu-Rub H, Holtz J, Rodriguez J, et al. Medium voltage multilevel converters - state of the art, challenges and requirements in industrial applications[J]. IEEE Transactions on Industrial Electronics, 2010, 57(8): 2581-2596.
    [2] Rodriguez J, Bernet S, Steimer P K, et al. A survey on neutral-point-clamped inverters[J]. IEEE Transactions on Industrial Electronics, 2010, 57(7): 2219-2230.
    [3] Lixiang W, Mcguire J, Lukaszewski R A. Analysis of PWM frequency control to improve the lifetime of PWM inverter[J]. IEEE Transactions on Industry Applications, 2011, 47(2): 922-929.
    [4] Rathore A, Holtz J, Boller T. Synchronous optimal pulsewidth modulation for low switching frequency control of medium voltage multi-level inverters[J]. IEEE Transactions on Industrial Electronics, 2010, 57(7): 2374-2381.
    [5] Kai T, Qiongxuan G, Zhenggang Y, et al. The optimal control strategy for rectifier side of low switching frequency back-to-back converter[C]. Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2010. 1419-1423.
    [6] Holtz J, Oikonomou N. Optimal control of a dual three-level inverter system for medium-voltage drives[J]. IEEE Transactions on Industry Applications, 2010, 46(3): 1034-1041.
    [7] Holtz J, Oikonomou N. Fast dynamic control of medium voltage drives operating at very low switching frequency - an overview[J]. IEEE Transactions on Industrial Electronics, 2008, 55(3): 1005-1013.
    [8] Oikonomou N. Control of medium-voltage drives at very low switching frequency (paperback)[M]. Logos Verlag Berlin; 1st edition, 2008. 140.
    [9] Wu B. High-power converters and AC drives[M]. Hoboken, N.J.: Wiley, 2006. 333.
    [10] Bose B K. Power electronics and motor drives: advances and trends[M]. Amsterdam: Elsevier/Academic Press, 2006. 917.
    [11] Oikonomou N, Holtz J. Closed-loop control of medium-voltage drives operated with synchronous optimal pulsewidth modulation[J]. IEEE Transactions on Industry Applications, 2008, 44(1): 115-123.
    [12] Powell J D, Emami-Naeini A, Franklin G F. Feedback control of dynamic systems[M]. 6th ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2009.
    [13] Holtz J, Oikonomou N. Estimation of the fundamental current in low-switching-frequency high dynamic medium-voltage drives[J]. IEEE Transactions on Industry Applications, 2008,44(5): 1597-1605.
    [14] Holtz J, Juntao Q, Pontt J, et al. Design of fast and robust current regulators for high-power drives based on complex state variables[J]. IEEE Transactions on Industry Applications, 2004, 40(5): 1388-1397.
    [15] Bocker J, Janning J, Jebenstreit H. High dynamic control of a three-level voltage-source-converter drive for a main strip mill[J]. IEEE Transactions on Industrial Electronics, 2002, 49(5): 1081-1092.
    [16] Oikonomou N, Holtz J. Stator flux trajectory tracking control for high-performance drives[C]. 41st IEEE Industry Applications Society Annual Meeting, 2006. 1268-1275.
    [17]李建林,王立乔.载波相移调制技术及其在大功率变流器中的应用[M].机械工业出版社, 2009. 197.
    [18] Ge B, Fang Z P. An effective control technique for medium-voltage high power induction motor drives[C]. 34th Annual Conference of IEEE Industrial Electronics, 2008. 3195-3200.
    [19]李建林,许洪华.风力发电中的电力电子变流技术[M].机械工业出版社, 2008. 257.
    [20] Aiguo X, Shaojun X. A multipulse-structure-based bidirectional PWM converter for high-power applications[J]. IEEE Transactions on Power Electronics, 2009, 24(5): 1233-1242.
    [21]康劲松,张烨.多电平变流器在风力发电系统中的应用[J].中国电机工程学报, 2009, (24): 20-25.
    [22] Griva G, Oleschuk V, Profumo F, et al. Combined synchronised PWM for symmetrical split-phase drives with low switching frequency[C]. IEEE Power Electronics Specialists Conference, 2008., 2008. 1522-1527.
    [23]官二勇,宋平岗,蒋一泉.链式逆变器低开关频率的双波段研究[J].电工电能新技术, 2006, 25(1): 54-58.
    [24]绳伟辉,李崇坚,朱春毅,等.大功率IGCT三电平变流器空间矢量PWM调制算法[J].电工技术学报, 2007, 22(8): 1-6.
    [25] Abdul R B, G. N, V. T R. Modified SVPWM algorithm for three level VSI with synchronized and symmetrical waveforms[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 486-494.
    [26] Narayanan G, Ranganathan V T, Zhao D, et al. Space vector based hybrid PWM techniques for reduced current ripple[J]. IEEE Transactions on Industrial Electronics, 2008, 55(4): 1614-1627.
    [27] Un E, Hava A M. A near-state PWM method with reduced switching losses and reduced common-mode voltage for three-phase voltage source inverters[J]. IEEE Transactions onIndustry Applications, 2009, 45(2): 782-793.
    [28] Di Zhao, Hari V S S P, Narayanan G, et al. Space-vector-based hybrid pulsewidth modulation techniques for reduced harmonic distortion and switching loss[J]. IEEE Transactions on Power Electronics, 2010, 25(3): 760-774.
    [29] Di Zhang, Wang F, El-Barbari S, et al. Improved asymmetric space vector modulation for voltage source converters with low carrier ratio[C]. Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2010. 1487-1493.
    [30] John B, George V, Mishra M K. A simplified three phase PWM rectifier with fixed frequency modulation[C]. 2nd International Conference on Computer and Automation Engineering: 2nd International Conference on Computer and Automation Engineering, 2010. 83-87.
    [31] Hava A M, Kerkman R J, Lipo T A. A high-performance generalized discontinuous PWM algorithm[J]. IEEE Transactions on Industry Applications, 1998, 34(5): 1059-1071.
    [32] Dae-Woong C, Seung-Ki S. Minimum-loss strategy for three-phase PWM rectifier[J]. IEEE Transactions on Industrial Electronics, 1999, 46(3): 517-526.
    [33] Hava A M, Kerkman R J, Lipo T A. Simple analytical and graphical methods for carrier-based PWM-VSI drives[J]. IEEE Transactions on Power Electronics, 1999, 14(1): 49-61.
    [34] Ojo O. The generalized discontinuous PWM scheme for three-phase voltage source inverters[J]. IEEE Transactions on Industrial Electronics, 2004, 51(6): 1280-1289.
    [35] Bruckner T, Holmes D G. Optimal pulse-width modulation for three-level inverters[J]. IEEE Transactions on Power Electronics, 2005, 20(1): 82-89.
    [36]周京华,沈传文,苏彦民.多电平逆变器不连续空间矢量调制策略的研究[J].电力电子技术, 2005, 39(5): 15-17.
    [37]于飞,张晓锋,李槐树,等.基于零序偏移时间的低耗高性能PWM控制方法[J].电力系统自动化, 2005, 29(2): 39-44.
    [38]马丰民,吴正国,侯新国.基于统一PWM调制器的随机空间矢量调制[J].中国电机工程学报, 2007, 27(7): 98-102.
    [39] Asiminoaei L, Rodriguez P, Blaabjerg F, et al. Reduction of switching losses in active power filters with a new generalized discontinuous-PWM strategy[J]. IEEE Transactions on Industrial Electronics, 2008, 55(1): 467-471.
    [40] Dalessandro L, Round S D, Drofenik U, et al. Discontinuous space-vector modulation for three-level PWM rectifiers[J]. IEEE Transactions on Power Electronics, 2008, 23(2): 530-542.
    [41] Asiminoaei L, Rodriguez P, Blaabjerg F. Application of discontinuous PWM modulation inactive power filters[J]. IEEE Transactions on Power Electronics, 2008, 23(4): 1692-1706.
    [42]文小玲,尹项根,张哲.三相逆变器统一空间矢量PWM实现方法[J].电工技术学报, 2009, (10): 87-93.
    [43]马小亮,魏学森.西门子的优化三电平PWM信号生成方法[J].变频器世界, 2010, (1): 47-52.
    [44]程善美,王琰,夏丽涛,等.不连续空间矢量脉宽调制策略研究[J].微电机, 2003, 36(4): 37-40.
    [45] Patel H S, Hoft R G. Generalized techniques of harmonic elimination and voltage control in thyristor inverters: part I--harmonic elimination[J]. IEEE Transactions on Industry Applications, 1973, IA-9(3): 310-317.
    [46] Patel H S, Hoft R G. Generalized techniques of harmonic elimination and voltage control in thyristor inverters: part II --- voltage control techniques[J]. IEEE Transactions on Industry Applications, 1974, IA-10(5): 666-673.
    [47] Chenchen W, Yongdong L. Analysis and calculation of zero-sequence voltage considering neutral-point potential balancing in three-level NPC converters[J]. IEEE Transactions on Industrial Electronics, 2010, 57(7): 2262-2271.
    [48] Pontt J, Rodriguez J, Huerta R. Mitigation of noneliminated harmonics of SHEPWM three-level multipulse three-phase active front end converters with low switching frequency for meeting standard IEEE-519-92[J]. IEEE Transactions on Power Electronics, 2004, 19(6): 1594-1600.
    [49] Napoles J, Leon J I, Portillo R, et al. Selective harmonic mitigation technique for high-power converters[J]. IEEE Transactions on Industrial Electronics, 2010, 57(7): 2315-2323.
    [50] Napoles J, Leon J I, Franquelo L G, et al. Selective harmonic mitigation technique for multilevel cascaded H-bridge converters[C]. 35th Annual Conference of IEEE Industrial Electronics(IECON), 2009. 806-811.
    [51]章钧. MV7000变频器PWM调制技术[J].变频器世界, 2009, (9): 83-88.
    [52] Weg Equipamentos Elétricos S A. Medium voltage variable frequency drive[EB/OL].
    [53] Siemens AG. SINAMICS GM150/SINAMICS SM150 drives[EB/OL].
    [54]周璜,魏利平,吴晓峰.最新传动装置-阿尔斯通MV7000型中压变频器的剖析[J].变频器世界, 2005, (10): 53-55, 79.
    [55] Siemens AG. SIMOVERT ML2 Water-cooled medium-voltage converter[EB/OL].
    [56] ABB Industries AG. ACS 6000SD medium-voltage drives user’s manual[EB/OL].
    [57]魏克新,汪水明,杜明星,等. DSP控制的低开关损耗PWM整流器系统研究[J].电力电子技术, 2009, 43(5): 76-77.
    [58]王群京,陈权,姜卫东,等.一种降低三电平逆变器开关损耗的PWM方法[J].电气传动, 2007, 37(3): 26-29.
    [59]魏克新,汪水明,杜明星,等.基于低开关损耗新型滞环PWM整流器研究[J].电气传动, 2009, 39(11): 28-32.
    [60]曾江,叶小军,刘艳,等.低开关损耗有源电力滤波器的滞环电流控制[J].华南理工大学学报:自然科学版, 2009, (11): 76-82.
    [61] Borghetti G, Carpaneto M, Marchesoni M, et al. Induction motor direct torque control with improvement in low frequency harmonic content[C]. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2008. 124-129.
    [62] Steimel A. Direct self-control and synchronous pulse techniques for high-power traction inverters in comparison[J]. IEEE Transactions on Industrial Electronics, 2004, 51(4): 810-820.
    [63] Vargas R, Cortes P, Ammann U, et al. Predictive control of a three-phase neutral-point-clamped inverter[J]. IEEE Transactions on Industrial Electronics, 2007, 54(5): 2697-2705.
    [64]程曙. EOCPWM控制技术研究[J].同济大学学报:自然科学版, 2003, 31(2): 212-216.
    [65] Khaligh A, Wells J R, Chapman P L, et al. Dead-time distortion in generalized selective harmonic control[J]. IEEE Transactions on Power Electronics, 2008, 23(3): 1511-1517.
    [66] Rodriguez J R, Pontt J, Huerta R, et al. Resonances in a high-power active-front-end rectifier system[J]. IEEE Transactions on Industrial Electronics, 2005, 52(2): 482-488.
    [67] G. T F. Selected harmonic reduction in static dc-ac inverters[J]. IEEE Transactions on Communications, 1964, 83: 374-378.
    [68]钟玉林,赵争鸣,白华.对三电平变频器驱动电机的共模电压抑制的研究[J].电工电能新技术, 2008, 27(3): 31-34.
    [69]钟玉林,赵争鸣.改进式SHEPWM对三电平变频器系统的共模电压和轴电压的抑制作用[J].电工技术学报, 2009, (6): 48-55.
    [70]马小亮.浅说大功率IGCT变换器的几个问题[J].变频器世界, 2007, (2): 43-47.
    [71]张永昌,赵争鸣,张颖超,等.三电平变频调速系统SVPWM和SHEPWM混合调制方法的研究[J].中国电机工程学报, 2007, (16): 72-77.
    [72] Bierk H, Al-Judi A, Rahim A, et al. Elimination of low-order harmonics using a modified SHE-PWM technique for medium voltage induction motor applications[C]. IEEE Power & Energy Society General Meeting, 2009. 1-8.
    [73]马小亮.大功率IGCT变换器的几个问题[J].电力电子, 2006, 4(6): 13-17.
    [74] Cetin A, Ermis M. VSC-based D-STATCOM with selective harmonic elimination[J]. IEEETransactions on Industry Applications, 2009, 45(3): 1000-1015.
    [75] Bingjie Z, Xiaojie W, Xiao F, et al. A novel 12-pulse 3-level inverter for STATCOM using selective harmonic elimination modulation[C]. APPEEC, 2010. 1-5.
    [76] Chunhui W, Qirong J, Chunpeng Z. An optimization method for three-level selective harmonic eliminated pulse width modulation (SHEPWM)[C]. Eighth International Conference on Electrical Machines and Systems, 2005. 1346-1350.
    [77] Flourentzou N, Agelidis V G. Optimized modulation for AC-DC harmonic immunity in VSC HVDC transmission[J]. IEEE Transactions on Power Delivery, 2010, PP(99): 1.
    [78] Flourentzou N, Dahidah M, Agelidis V G. On distributing multilevel SHE-PWM waveforms in HVDC systems built with conventional three-phase VSC modules[C]. IEEE Power Electronics Specialists Conference, 2008. 4124-4129.
    [79] Watson A J, Wheeler P W, Clare J C. A phase shift selective harmonic elimination method for balancing capacitor voltages in a seven level cascaded H-bridge rectifier[C]. 13th European Conference on Power Electronics and Applications, 2009. 1-9.
    [80] Poddar G, Sahu M K. Natural harmonic elimination of square-wave inverter for medium-voltage application[J]. IEEE Transactions on Power Electronics, 2009, 24(5): 1182-1188.
    [81] Wells J R, Nee B M, Chapman P L, et al. Selective harmonic control: a general problem formulation and selected solutions[J]. IEEE Transactions on Power Electronics, 2005, 20(6): 1337-1345.
    [82]桂红云,姚文熙,吕征宇.中点箝位型三电平变换器SHEPWM方法研究[J].电力系统及其自动化学报, 2006, 18(3): 24-27.
    [83] Agelidis V G, Balouktsis A, Balouktsis I, et al. Multiple sets of solutions for harmonic elimination PWM bipolar waveforms: analysis and experimental verification[J]. IEEE Transactions on Power Electronics, 2006, 21(2): 415-421.
    [84]张永昌,赵争鸣,张颖超.三电平逆变器SHEPWM多组解特性比较及实验[J].电工技术学报, 2007, 22(3): 60-65.
    [85]张永昌,赵争鸣.三电平逆变器SHEPWM多组解计算方法[J].电工技术学报, 2007, 22(1): 74-78.
    [86]李岚.基于SHEPWM的波形优化多电平变频器的研究[J].电工技术, 2009, (9): 41-42.
    [87]张艳莉,费万民,吕征宇,等.三电平逆变器SHEPWM方法及其应用研究[J].电工技术学报, 2004, 19(1): 16-20.
    [88]林友杰,吴汉光.谐波消除式逆变器的一种实现方法和直流母线电压的选择[J].电气应用, 2005, 24(3): 99-102.
    [89]张慧,刘开培,Braun M,等.基于PWM低开关频率选择性谐波控制方程组的实时算法[J].中国电机工程学报, 2006, 26(22): 80-84.
    [90] Jiang Q, Holmes D G, Giesner D B. A method for linearising optimal PWM switching strategies to enable their computation on-line in real-time[C]. IEEE Industry Applications Society Annual Meeting, 1991. 819-825.
    [91]单庆晓,潘孟春,唐莺,等.基于沃尔什变换的多电平谐波消除技术[J].电力电子技术, 2004, 38(4): 32-34.
    [92]郑春芳,张波,丘东元.基于Walsh变换的多电平逆变器谐波消除技术[J].电工技术学报, 2006, 21(7): 121-126.
    [93]秦亮,刘开培,张慧.基于Walsh变换的PWM优化脉冲调制方法[J].电工技术学报, 2007, 22(4): 118-123.
    [94]宋平岗,官二勇.三电平逆变器SHE-PWM的研究[J].电力电子技术, 2005, 39(5): 21-23.
    [95] Taghizadeh H, Tarafdar Hagh M. Harmonic elimination of multilevel inverters using particle swarm optimization[C]. IEEE International Symposium on Industrial Electronics, 2008. 393-396.
    [96] Cungang H, Qunjing W, Weidong J, et al. Optimization method for generating SHEPWM switching patterns using chaotic ant colony algorithm applied to three-level NPC inverter[C]. International Conference on Electrical Machines and Systems, 2007. 149-153.
    [97]胡存刚,王群京,夏秋实,等.三电平逆变器SHEPWM优化方法的研究[J].电力电子技术, 2007, 41(10): 90-92.
    [98]胡存刚,王群京,李国丽,等.一种新的SHEPWM三电平逆变系统的仿真和实验研究[J].系统仿真学报, 2008, 20(16): 4425-4428.
    [99] Jegathesan V, Jerome J. Solution for PWM converter switching for voltage source inverter using non-traditional method[C]. 7th International Conference on Power Electronics and Drive Systems, 2007. 1528-1532.
    [100]王群京,胡存刚,李国丽.基于遗传算法的三电平逆变器SHEPWM方法的研究[J].中国科学技术大学学报, 2009, 39(8): 848-852.
    [101]费万民,张艳莉,都小利.五电平逆变器特定谐波消除脉宽调制方法[J].电工技术学报, 2009, (2): 85-93.
    [102] Jin W, Ahmadi D. A precise and practical harmonic elimination method for multilevel inverters[J]. IEEE Transactions on Industry Applications, 2010, 46(2): 857-865.
    [103] Agelidis V G, Balouktsis A I, Cossar C. On attaining the multiple solutions of selective harmonic elimination PWM three-level waveforms through function minimization[J]. IEEE Transactions on Industrial Electronics, 2008, 55(3): 996-1004.
    [104] Wells J R, Geng X, Chapman P L, et al. Modulation-based harmonic elimination[J]. IEEE Transactions on Power Electronics, 2007, 22(1): 336-340.
    [105] Bowes S R, Holliday D. Optimal regular-sampled PWM inverter control techniques[J]. IEEE Transactions on Industrial Electronics, 2007, 54(3): 1547-1559.
    [106]周熙炜,刘卫国.空间电压矢量合成的新型选择谐波消去技术[J].中国电机工程学报, 2009, (30): 35-41.
    [107] Bowes S R, Clark P R. Transputer-based optimal PWM control of inverter drives[J]. IEEE Transactions on Industry Applications, 1992, 28(1): 81-88.
    [108] Espinoza J R, Joos G, Guzman J I, et al. Selective harmonic elimination and current/voltage control in current/voltage-source topologies: a unified approach[J]. IEEE Transactions on Industrial Electronics, 2001, 48(1): 71-81.
    [109] Qin L, Liu K, Zhang H, et al. Real-time algorithm research and realization of optimal unsymmetrical PWM method[C]. IEEE 6th International Power Electronics and Motion Control Conference, 2009. 1527-1530.
    [110]李治典,周秦英,李宏,等.实时求解特定消谐方程组的新算法[J].西北工业大学学报, 2004, 22(1): 37-40.
    [111] Zhong D, Tolbert L M, Chiasson J N, et al. Reduced switching-frequency active harmonic elimination for multilevel converters[J]. IEEE Transactions on Industrial Electronics, 2008, 55(4): 1761-1770.
    [112]陈新,谢少军.用开关点预置SHEPWM控制方案实现变换器调压[J].电力电子技术, 2000, 34(2): 19-22.
    [113]李建国,刘文华.基于特定消谐PWM电流型逆变器的脉冲发生器[J].电力电子技术, 2005, 39(2): 18-20.
    [114]孙宁强,梁大开,丁伟.基于CPLD的特定消谐PWM数字触发电路的分析和实现[J].电气应用, 2005, 24(12): 52-55.
    [115] Xiao F, Xiaojie W, Bingjie Z, et al. Digital implement of selective harmonic elimination based on digital signal processor[C]. Asia Pacific Conference on Postgraduate Research in Microelectronics & Electronics, 2009. 141-144.
    [116] Liu H L, Cho G H, Park S S. Optimal PWM design for high power three-level inverter through comparative studies[J]. IEEE Transactions on Power Electronics, 1995, 10(1): 38-47.
    [117] Rathore A K, Holtz J, Boller T. Synchronous optimal pulsewidth modulation for low-switching-frequency control of medium-voltage multilevel inverters[J]. IEEE Transactions on Industrial Electronics, 2010, 57(7): 2374-2381.
    [118] Holtz J, Beyer B. Optimal pulsewidth modulation for AC servos and low-cost industrialdrives[J]. IEEE Transactions on Industry Applications, 1994, 30(4): 1039-1047.
    [119]李春燕,陈新,沈忠亭,等.最优PWM开关角的在线计算[J].南京航空航天大学学报, 2005, 37(1): 40-43.
    [120]李鹏飞.基于小波分析的优化PWM逆变系统控制[J].中小型电机, 2005, 32(4): 18-20.
    [121] Lou H, Mao C, Wang D, et al. PWM optimisation for three-level voltage inverter based on clonal selection algorithm[J]. IET Electric Power Applications, 2007, 1(6): 870-878.
    [122] Yah A S, Aflaki M, Rezazade A R. Optimal PWM for minimization of total harmonic current distortion in high-power induction motors using genetic algorithms[C]. International Joint Conference SICE-ICASE, 2006. 5494-5499.
    [123] Lou H, Mao C, Lu J, et al. Pulse width modulation AC/DC converters with line current harmonics minimisation and high power factor using hybrid particle swarm optimisation[J]. IET Power Electronics, 2009, 2(6): 686-696.
    [124] Ahn C W. Advances in evolutionary algorithms: theory, design, and practice[M]. Berlin: Springer, 2006. 171.
    [125] Sivanandam S N. Introduction to genetic algorithms (paperback)[M]. Springer Berlin Heidelberg, 2009. 464.
    [126]龚纯,王正林.精通Matlab最优化计算[M].北京:电子工业出版社, 2009.
    [127] Laczynski T, Werner T, Mertens A. Energy-based modulation error control for high-power drives with output LC-filters and synchronous optimal pulse width modulation[C]. 13th EPE-PEMC Power Electronics and Motion Control Conference, 2008. 649-656.
    [128] Laczynski T, Werner T, Mertens A. Active damping of LC-filters for high power drives using synchronous optimal pulsewidth modulation[C]. IEEE Power Electronics Specialists Conference, 2008. 1033-1040.
    [129] Luiz A S A, Cardoso Filho B J. Analysis of passive filters for high power three-level rectifiers[C]. 34th Annual Conference of IEEE Industrial Electronics, 2008. 3207-3212.
    [130] Laczynski T, Werner T, Mertens A. Modulation error control for medium voltage drives with LC-filters and synchronous optimal pulse width modulation[C]. IEEE Industry Applications Society Annual Meeting, 2008. 1-7.
    [131] Bouchhida O, Tlemcani A, Boudana D, et al. A novel method for harmonics and low switching-frequency eliminations for a three-phase PWM inverter[C]. 5th International Multi-Conference on Systems, Signals and Devices, 2008. 1-6.
    [132] IEEE recommended practices and requirements for harmonic control in electrical power systems[S].
    [133] Paice D A. Power electronics converter harmonics: multipulse methods for clean power(paperback)[M]. Wiley-IEEE Press, 1999. 222.
    [134] Fuchs E. Power quality in power systems and electrical machines (hardcover)[M]. Academic Press, 2008.
    [135] Napoles J, Leon J I, Portillo R, et al. Selective harmonic mitigation technique for high power converters[J]. IEEE Transactions on Industrial Electronics, 2009, PP(99): 1.
    [136] Napoles J, Portillo R, Leon J I, et al. Implementation of a closed loop SHMPWM technique for three level converters[C]. 34th Annual Conference of IEEE Industrial Electronics, 2008. 3260-3265.
    [137] Franquelo L G, Napoles J, Guisado R C P, et al. A flexible selective harmonic mitigation technique to meet grid codes in three-level PWM converters[J]. IEEE Transactions on Industrial Electronics, 2007, 54(6): 3022-3029.
    [138] Lipo T A, Holmes D G. Pulse width modulation for power converters: principles and practice[M]. Hoboken, NJ: John Wiley, 2003. 724.
    [139]陈国呈. PWM逆变技术及应用[M].北京:中国电力出版社, 2007.
    [140] Xiao F, Peng D, Bingjie Z, et al. Research on subsection synchronization harmonic optimum pulsewidth modulation for inverters[C]. Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2010. 1-5.
    [141] Holtz J, Beyer B. Optimal synchronous pulsewidth modulation with a trajectory-tracking scheme for high-dynamic performance[J]. IEEE Transactions on Industry Applications, 1993, 29(6): 1098-1105.
    [142] Holtz J, Bube E. Field-oriented asynchronous pulsewidth modulation for high performance AC machine drives operating at low switching frequency[C]. IEEE Industry Applications Society Annual Meeting: 1988. 412-417.
    [143] Holtz J, Bube E. Field-oriented asynchronous pulse-width modulation for high-performance AC machine drives operating at low switching frequency[J]. IEEE Transactions on Industry Applications, 1991, 27(3): 574-581.
    [144] Khambadkone A, Holtz J. Low switching frequency and high dynamic pulsewidth modulation based on field-orientation for high-power inverter drive[J]. IEEE Transactions on Power Electronics, 1992, 7(4): 627-632.
    [145] Khambadkone A M, Holtz J. Fast current control for low harmonic distortion at low switching frequency[J]. IEEE Transactions on Industrial Electronics, 1998, 45(5): 745-751.
    [146] Janning J, Beck H P. Highly dynamic vector control with adaptive line harmonic adjustment for high power voltage source converters[J]. Electrical Engineering, 1998, 81(5): 309-315.
    [147] Shih-Liang J, Hsiang-Sung H, Ying-Yu T. A three-phase PWM AC-DC converter with lowswitching frequency and high power factor using DSP-based repetitive control technique[C]. 29th Annual IEEE Power Electronics Specialists Conference, 1998. 517-523.
    [148] Vas P. Sensorless vector and direct torque control[M]. Oxford: Oxford University Press, 1998. 729.
    [149] Leonhard W. Control of electrical drives[M]. 3rd ed. ed. Berlin: Springer, 2001. 460.
    [150] Kovács P K. Transient phenomena in electrical machines[M]. Amsterdam: Elsevier, 1984. 391.
    [151] Holtz J. The induction motor-a dynamic system[C]. 20th International Conference on Industrial Electronics, Control and Instrumentation, 1994. P1-P6.
    [152] Holtz J. The representation of AC machine dynamics by complex signal flow graphs[J]. IEEE Transactions on Industrial Electronics, 1995, 42(3): 263-271.
    [153] Holtz J. On the spatial propagation of transient magnetic fields in AC machines[J]. IEEE Transactions on Industry Applications, 1996, 32(4): 927-937.
    [154] Burgos R P, Wiechmann E P, Holtz J. Complex state-space modeling and nonlinear control of active front-end converters[J]. IEEE Transactions on Industrial Electronics, 2005, 52(2): 363-377.
    [155]汤蕴璆,张奕黄,范瑜.交流电机动态分析[M].北京:机械工业出版社, 2005.
    [156]袁庆庆,符晓,刘向超,等.基于复矢量信号流图的电励磁同步电机动态模型表示[C].重庆:第四届中国高校电力电子与电力传动学术年会, 2010. 204-209.
    [157] Holtz J, Beyer B. Off-line optimized synchronous pulsewidth modulationwith on-line control during transients[Z]. 1991.
    [158] Holtz J, Beyer B. Fast current trajectory tracking control based on synchronous optimal pulsewidth modulation[J]. IEEE Transactions on Industry Applications, 1995, 31(5): 1110-1120.
    [159] Holtz J, Beyer B. The trajectory tracking approach-a new method for minimum distortion PWM in dynamic high-power drives[J]. IEEE Transactions on Industry Applications, 1994, 30(4): 1048-1057.
    [160] Holtz J, Oikonomou N. Synchronous optimal pulsewidth modulation and stator flux trajectory control for medium-voltage drives[J]. IEEE Transactions on Industry Applications, 2007, 43(2): 600-608.
    [161] Mertens A, Eckardt D. Voltage and current sensing in power electronic converters using sigma-delta A/D conversion[J]. IEEE Transactions on Industry Applications, 1998, 34(5): 1139-1146.
    [162] Ellis G. Control system design guide: a practical guide[M]. 3rd ed. ed. Amsterdam: ElsevierAcademic Press, 2004. 464.
    [163] Karlj.计算机控制系统理论与设计[M].北京:清华大学出版社, 2002.
    [164] Silva C, Oyarzun J. High dinamic control of a PWM rectifier using harmonic elimination[C]. 32nd Annual Conference on IEEE Industrial Electronics, 2006. 2569-2574.
    [165] Bordons C, Camacho E F. Model predictive control[M]. London: Springer, 2003. 405.
    [166]葛宝明,林飞,李国国.先进控制理论及其应用[M].北京:机械工业出版社, 2007. 260.
    [167] Rivera M, Correa P, Rodriguez J, et al. Predictive control of the indirect matrix converter with active damping[C]. IEEE 6th International Power Electronics and Motion Control Conference, 2009. 1738-1744.
    [168] Bolognani S, Peretti L, Zigliotto M. Design and implementation of model predictive control for electrical motor drives[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1925-1936.
    [169] Peyrl H, Papafotiou G, Morari M. Model predictive torque control of a switched reluctance motor[C]. IEEE International Conference on Industrial Technology, 2009. 1-6.
    [170] Laczynski T, Mertens A. Predictive stator current control for three-level voltage-source inverters with output LC-filters[C]. 13th EPE-PEMCPower Electronics and Motion Control Conference, 2008. 569-575.
    [171] Vargas R, Rodriguez J, Ammann U, et al. Predictive current control of an induction machine fed by a matrix converter with reactive power control[J]. IEEE Transactions on Industrial Electronics, 2008, 55(12): 4362-4371.
    [172] Oyarbide E, Galarza J, Aurtenechea S, et al. Second-order predictive direct control of a voltage source inverter coupled to an LC filter[J]. IET Power Electronics, 2008, 1(1): 38-49.
    [173] Alepuz S, Busquets-Monge S, Bordonau J, et al. Predictive current control of grid-connected neutral-point-clamped converters to meet low voltage ride-through requirements[C]. IEEE Power Electronics Specialists Conference, 2008. 2423-2428.
    [174] Abad G, Rodriguez M A, Poza J. Two-level VSC-based predictive direct power control of the doubly fed induction machine with reduced power ripple at low constant switching frequency[J]. IEEE Transactions on Energy Conversion, 2008, 23(2): 570-580.
    [175] Abad G, Rodriguez M A, Poza J. Three-level NPC converter-based predictive direct power control of the doubly fed induction machine at low constant switching frequency[J]. IEEE Transactions on Industrial Electronics, 2008, 55(12): 4417-4429.
    [176] Cortes P, Rodriguez J, Antoniewicz P, et al. Direct power control of an AFE using predictive control[J]. IEEE Transactions on Power Electronics, 2008, 23(5): 2516-2523.
    [177] Abad G, Rodriguez M A, Poza J. Predictive direct power control of the doubly fed inductionmachine with reduced power ripple at low constant switching frequency[C]. IEEE International Symposium on Industrial Electronics, 2007. 1119-1124.
    [178] Kouro S, Cortes P, Vargas R, et al. Model predictive control - a simple and powerful method to control power converters[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1826-1838.
    [179] Kouro S, La Rocca B, Cortes P, et al. Predictive control based selective harmonic elimination with low switching frequency for multilevel converters[C]. IEEE Energy Conversion Congress and Exposition, 2009. 3130-3136.
    [180]李崇坚.交流同步电机调速系统[M].科学出版社, 2005. 428.
    [181]李志民,张遇杰.同步电动机调速系统[M].北京:机械工业出版社, 1996. 201.
    [182]马小亮.大功率交—交变频调速及矢量控制技术[M].北京:机械工业出版社, 2004.
    [183] Beliav D, Weigner A, Paes R, et al. Field oriented control of a synchronous drive[C]. 2005 IEEE International Conference on Electric Machines and Drives, 2005. 957-961.
    [184]朱希荣,伍小杰,周渊深.基于内模控制的同步电动机变频调速系统的研究[J].电气传动, 2007, 37(12): 46-48.
    [185]朱希荣,周渊深,符晓.同步电动机三自由度内模动态解耦控制[J].电机与控制学报, 2010, 14(1): 61-65.
    [186]周扬忠,胡育文.交流电动机直接转矩控制[M].北京:机械工业出版社, 2010.
    [187]汪浩,葛琼璇,李申.同步电机基于最优时间理论的高性能电流控制[J].电气传动, 2007, 37(12): 43-45.
    [188] Nemec M, Drobnic K, Nedeljkovic D, et al. Direct current control of a synchronous machine in field coordinates[J]. IEEE Transactions on Industrial Electronics, 2009, 56(10): 4052-4061.
    [189]符晓,戴鹏,伍小杰.电励磁同步电动机模型预测控制的研究[C].杭州: 2009年全国博士生学术论坛-电能科学和技术, 2009.
    [190]李永东,肖曦,高跃.大容量多电平变换器[M].北京:科学出版社, 2005.
    [191] Jae H S, Chang H C, Dong S H. A new simplified space-vector PWM method for three-level inverters[J]. IEEE Transactions on Power Electronics, 2001, 16(4): 545-550.
    [192] Dengming P, Lee F C, Boroyevich D. A novel SVM algorithm for multilevel three-phase converters[C]. 2002. 509-513.
    [193]桂红云,姚文熙,吕征宇. DSP空间矢量控制三电平逆变器的研究[J].电力系统自动化, 2004, (11): 62-65.
    [194] Celanovic N, Boroyevich D. A fast space-vector modulation algorithm for multilevel three-phase converters[J]. IEEE Transactions on Industry Applications, 2001, 37(2): 637-641.
    [195] Franquelo L G, Rodriguez J, Leon J I, et al. The age of multilevel converters arrives[J]. IEEE Industrial Electronics Magazine, 2008, 2(2): 28-39.
    [196] Celanovic N, Boroyevich D. A comprehensive study of neutral-point voltage balancing problem in three-level neutral-point-clamped voltage source PWM inverters[J]. IEEE Transactions on Power Electronics, 2000, 15(2): 242-249.
    [197]孟永庆,沈传文,刘正,等.基于零序电压注入的三电平中点箝位整流器中点电位控制方法的研究[J].中国电机工程学报, 2007, (10): 92-97.
    [198] Grigoletto F B, Pinheiro H. Generalised pulse width modulation approach for DC capacitor voltage balancing in diode-clamped multilevel converters[J]. IET Power Electronics, 2011, 4(1): 89-100.
    [199]窦真兰,张同庄,凌禹.三电平NPC整流器空间矢量脉宽调制及中点电位平衡控制[J].电力自动化设备, 2008, (2): 65-69.
    [200]马小亮.高性能变频调速及其典型控制系统[M].北京:机械工业出版社, 2010.
    [201]马小亮,魏学森.数字矢量控制和直接力矩控制调速系统中的电压模型[J].电工技术学报, 2004, 19(3): 65-69.
    [202]田淳,胡育文.一种新颖的电磁式同步电机力矩控制方案[J].南京航空航天大学学报, 2001, (2): 108-112.
    [203] Han-Su J, Seon-Hwan H, Jang-Mok K, et al. Diminution of current-measurement error for vector-controlled AC motor drives[J]. IEEE Transactions on Industry Applications, 2006, 42(5): 1249-1256.
    [204] Kyung-Rae C, Jul-Ki S. Pure-integration-based flux acquisition with drift and residual error compensation at a low stator frequency[J]. IEEE Transactions on Industry Applications, 2009, 45(4): 1276-1285.
    [205] Jacobsen E, Lyons R. The sliding DFT[J]. IEEE Signal Processing Magazine, 2003, 20(2): 74-80.
    [206] Jacobsen E, Lyons R. An update to the sliding DFT[J]. Signal Processing Magazine, IEEE, 2004, 21(1): 110-111.
    [207] The Mathworks I. Optimization toolbox user's guide[EB/OL]. Natick: 2009.
    [208]姚远,李辰. FPGA应用开发入门与典型实例[M].北京:人民邮电出版社, 2010. 427.
    [209] Wang F. Multilevel PWM VSIs[J]. IEEE Industry Applications Magazine, 2004, 10(4): 51-58.
    [210]周志刚.一种感应电机的解耦控制方法[J].中国电机工程学报, 2003, (2): 125-129.
    [211] Jinhwan J, Kwanghee N. A dynamic decoupling control scheme for high-speed operation of induction motors[J]. IEEE Transactions on Industrial Electronics, 1999, 46(1): 100-110.
    [212]周渊深,姜建国.异步电动机的动态解耦控制[J].中小型电机, 2001, (2): 22-26.
    [213] Harnefors L. Modeling of three-phase dynamic systems using complex transfer functions and transfer matrices[J]. IEEE Transactions on Industrial Electronics, 2007, 54(4): 2239-2248.
    [214] Chiasson J. Modeling and high performance control of electric machines (IEEE Press series on power engineering) (hardcover)[M]. Wiley-IEEE Press; 1 edition, 2005.
    [215]高景德,王祥珩,李发海.交流电机及其系统的分析[M].北京:清华大学出版社, 2005.
    [216] Sakharuk T A, Stankovic A M, Tadmor G, et al. Modeling of PWM inverter-supplied AC drives at low switching frequencies[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2002, 49(5): 621-631.
    [217]许琤,王辉,谭健,等.基于新型磁链观测模型的矢量控制系统研究[J].电气传动, 2008, (5): 11-14.
    [218] Jun H, Bin W. New integration algorithms for estimating motor flux over a wide speed range[J]. IEEE Transactions on Power Electronics, 1998, 13(5): 969-977.
    [219]蔡斌军,刘国荣.一种基于直接转矩控制系统低速时磁链观测补偿的新方法[J].电气传动自动化, 2008, (2): 1-5.
    [220]吴轩钦,谭国俊,宋金梅,等.基于混合磁链观测器电励磁同步电机矢量控制[J].电机与控制学报, 2010, (3): 62-67.
    [221] Karanayil B, Rahman M F, Grantham C. An implementation of a programmable cascaded low-pass filter for a rotor flux synthesizer for an induction motor drive[J]. IEEE Transactions on Power Electronics, 2004, 19(2): 257-263.
    [222] Holtz J, Juntao Q. Drift- and parameter-compensated flux estimator for persistent zero-stator-frequency operation of sensorless-controlled induction motors[J]. IEEE Transactions on Industry Applications, 2003, 39(4): 1052-1060.
    [223]李永东.交流电机数字控制系统[M].北京:机械工业出版社, 2002.
    [224] Guidi G, Umida H. A novel stator resistance estimation method for speed-sensorless induction motor drives[J]. IEEE Transactions on Industry Applications, 2000, 36(6): 1619-1627.
    [225] Kyung-Rae C, Jul-Ki S. Correction on current measurement errors for accurate flux estimation of ac drives at low stator frequency[J]. IEEE Transactions on Industry Applications, 2008, 44(2): 594-603.
    [226] Dae-Woong C, Seung-Ki S. Analysis and compensation of current measurement error in vector-controlled AC motor drives[J]. IEEE Transactions on Industry Applications, 1998, 34(2): 340-345.
    [227] Depenbrock M. Direct self-control (DSC) of inverter-fed induction machine[J]. PowerElectronics, IEEE Transactions on, 1988, 3(4): 420-429.
    [228]贾洪平,孙丹,贺益康.基于滑模变结构的永磁同步电机直接转矩控制[J].中国电机工程学报, 2006, (20): 134-138.
    [229] Georgeellis著,刘君华,汤晓君译.控制系统设计指南[M].北京:电子工业出版社, 2006.
    [230] Ellis G. Observers in control systems: a practical guide[M]. San Diego, CA: Academic Press, 2002. 259.
    [231] Texas Instruments Inc. TMS320F28335/ F28334/ F28332/ F28235/ F28234/ F28232 digital signal controllers[EB/OL]. Texas: 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700