用户名: 密码: 验证码:
角质细胞生长因子-2对脂多糖所致急性肺损伤的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
角质细胞生长因子-2(KGF-2)是近年发现的专一作用于上皮细胞的生长因子,它对多种上皮细胞具有潜在的丝裂原活性,包括Ⅱ型肺泡上皮细胞。KGF-2在肺泡上皮细胞增生、分化、凋亡、损伤修复等过程中起重要作用。本文旨在探讨KGF-2提前气道内给药对内毒素所致大鼠急性肺损伤的作用及其机制。
     本实验以LPS 5mg/kg体重气道内注入造成大鼠急性肺损伤模型。KGF-2以5mg/kg体重提前给药,分别在LPS刺激前1天、2天、3天、5天给药,探索KGF-2提前给药时间与肺损伤干预作用的关系。LPS气道内注入后24小时检测动脉血气分析、肺泡灌洗液(BALF)总蛋白浓度、BALF白细胞计数及分类计数、肺组织湿/干重比、肺组织病理。此外,检测BALF炎症因子水平、肺组织炎症因子表达水平、表面活性蛋白表达水平、肺泡Ⅱ型上皮细胞增殖情况等以探索其可能的作用机制。
     实验结果显示,LPS致伤组动脉血氧分压较对照组显著降低,BALF总蛋白浓度、BALF白细胞总数及中性粒细胞数、肺组织湿/干重比、肺组织损伤评分均较对照组显著升高,肺组织病理提示炎症细胞浸润、肺组织实变、间质水肿等损伤表现显著。KGF-2提前1-5天给药对LPS所致肺损伤均有不同程度的减轻作用,但以提前2-3天给药保护作用最显著。LPS致伤组BALF中TNF-α及MIP-2水平、肺组织IL-1β和IL-6 mRNA表达水平较对照组显著升高,而KGF-2提前3天给药组BALF中TNF-α及MIP-2水平、肺组织IL-1β和IL-6 mRNA表达水平均较LPS致伤组显著降低。LPS刺激后肺泡表面活性蛋白A、表面活性蛋白B及表面活性蛋白C mRNA表达水平显著降低,而预先给予KGF-2可部分恢复SPA和SPC的合成水平。此外,KGF-2给药后肺泡Ⅱ型上皮细胞出现明显的增生情况。
     本实验得出结论:KGF-2提前2-3天给药对LPS所致急性肺损伤有显著保护作用,其保护作用可能与KGF-2对LPS所致肺部炎症的调控作用,对肺泡表面活性蛋白合成的促进作用,以及对肺泡Ⅱ型上皮细胞增生的刺激作用这三方面机制有关。
Background:Keratinocyte growth factor-2(KGF-2)plays an essential role in survival,proliferation, and differentiation of distal-alveolar epithelial progenitor cells during lung development.We investigated the role of recombinant human KGF-2(rhKGF-2)in protecting against acute lung injury caused by lipopolysacchride (LPS) and its potential mechanisms.
     Methods:LPS(5mg/kg) was administrated intratracheally to induce acute lung injury in rats.Single dose of rhKGF-2(5 mg/kg)was Intratracheally instilled 1,2,3, or 5 days before LPS challenge. Lung injury was measured by arterial blood gas analysis, lung wet-to-dry weight ratio, total protein, number of leukocytes and neutrophils in bronchoalveolar lavage fluid (BALF),and histological analysis.TNF-a and MIP-2 levels were measured in BALF.The mRNA expression level of IL-1βand IL-6 in lung tissue were analysed by quantitative PCR.Western blotting, quantitative PCR, and immunohistochemistry was done to assess expression of surfactant proteins and alveolar typeⅡepithelial cells proliferation.
     Results:LPS instillation resulted in significantly decreased PaO2,and elevated lung wet-to-dry weight ratio, total protein, number of leukocytes and neutrophils in BALF, lung injury score.Pretreatment of rhKGF-2 resulted in a significant improvement in the above lung injury parameters, and pretreatment given 2 to 3 days before LPS challenge showed evident improvement in lung injury.LPS induced significant elevation of TNF-a and MIP-2 in BALF, and mRNA expression level of IL-1βand IL-6 in lung tissue, whereas pretreatment with rhKGF-2 markedly reduced the levels of TNF-a, MIP-2,IL-1βand IL-6. LPS instillation significantly inhibited the expression of surfactant protein A (SPA),surfactant protein B (SPB),and surfactant protein C(SPC)in lung tissue, while pretreatment of rhKGF-2 partially restored SPA and SPC expression. Furthermore,the improved lung injury was accompanied by increased proportion of alveolar typeⅡepithelial cells in lung parenchyma.
     Conclusion:Topical administration of rhKGF-2 attenuates lung injury induced by LPS, suggesting that rhKGF-2 may be potent as a novel strategy to the treatment of acute lung injury.
引文
[1]Wheeler A P, Bernard G R. Acute lung injury and the acute respiratory distress syndrome:a clinical review.[J].Lancet.2007,369(9572):1553-1564.
    [2]Maccallum N S, Evans T W. Epidemiology of acute lung injury.[J].Curr Opin Crit Care.2005,11(1): 43-49.
    [3]程晓明,钱桂生.急性呼吸窘迫综合征321例临床分析[J].中国危重病急救医学.2002,14(12):713-715.
    [4]Nag V L, Ayyagari A, Venkatesh V, et al. Bacterial isolates from mechanically ventilated patients with nosocomial pneumonia within intensive care unit of a tertiary care center.[J].J Commun Dis.2005, 37(4):281-287.
    [5]Emoto H,Tagashira S, Mattei M G, et al.Structure and expression of human fibroblast growth factor-10.[J].J Biol Chem.1997,272(37):23191-23194.
    [6]Igarashi M,Finch P W, Aaronson S A. Characterization of recombinant human fibroblast growth factor(FGF)-10 reveals functional similarities with keratinocyte growth factor(FGF-7).[J].J Biol Chem.1998,273(21):13230-13235.
    [7]Soler P M, Wright T E, Smith P D, et al.In vivo characterization of keratinocyte growth factor-2 as a potential wound healing agent.[J]. Wound Repair Regen.1999,7(3):172-178.
    [8]Jimenez P A, Rampy M A. Keratinocyte growth factor-2 accelerates wound healing in incisional wounds.[J].J Surg Res.1999,81(2):238-242.
    [9]Xia Y P, Zhao Y, Marcus J, et al. Effects of keratinocyte growth factor-2(KGF-2) on wound healing in an ischaemia-impaired rabbit ear model and on scar formation.[J].J Pathol.1999,188(4):431-438.
    [10]Min H, Danilenko D M, Scully S A, et al.Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless.[J].Genes Dev.1998,12(20): 3156-3161.
    [11]Ohuchi H, Hori Y, Yamasaki M, et al.FGF10 acts as a major ligand for FGF receptor 2 Illb in mouse multi-organ development.[J]. Biochem Biophys Res Commun.2000,277(3):643-649.
    [12]Sandborn W J, Sands B E, Wolf D C, et al.Repifermin(keratinocyte growth factor-2) for the treatment of active ulcerative colitis:a randomized, double-blind, placebo-controlled, dose-escalation trial.[J].Aliment Pharmacol Ther.2003,17(11):1355-1364.
    [13]Robson M C, Phillips T J, Falanga V, et al.Randomized trial of topically applied repifermin (recombinant human keratinocyte growth factor-2) to accelerate wound healing in venous ulcers.[J].Wound Repair Regen.2001,9(5):347-352.
    [14]Upadhyay D, Correa-Meyer E, Sznajder J I, et al. FGF-10 prevents mechanical stretch-induced alveolar epithelial cell DNA damage via MAPK activation.[J].Am J Physiol Lung Cell Mol Physiol. 2003,284(2):L350-L359.
    [15]Upadhyay D, Bundesmann M, Panduri V, et al.Fibroblast growth factor-10 attenuates H2O2-induced alveolar epithelial cell DNA damage:role of MAPK activation and DNA repair.[J].Am J Respir Cell Mol Biol.2004,31(1):107-113.
    [16]Upadhyay D, Panduri V, Kamp D W. Fibroblast growth factor-10 prevents asbestos-induced alveolar epithelial cell apoptosis by a mitogen-activated protein kinase-dependent mechanism.[J].Am J Respir Cell Mol Biol.2005,32(3):232-238.
    [17]Gupte V V, Ramasamy S K, Reddy R, et al.Overexpression of fibroblast growth factor-10 during both inflammatory and fibrotic phases attenuates bleomycin-induced pulmonary fibrosis in mice.[J].Am J Respir Crit Care Med.2009,180(5):424-436.
    [18]Franco-Montoya M L, Bourbon J R, Durrmeyer X, et al.Pulmonary effects of keratinocyte growth factor in newborn rats exposed to hyperoxia.[J].Am J Physiol Lung Cell Mol Physiol.2009.
    [19]Ray P, Devaux Y, Stolz D B, et al.Inducible expression of keratinocyte growth factor(KGF) in mice inhibits lung epithelial cell death induced by hyperoxia.[J]. Proc Natl Acad Sci U S A.2003,100(10): 6098-6103.
    [20]Ulrich K, Stern M, Goddard M E, et al.Keratinocyte growth factor therapy in murine oleic acid-induced acute lung injury.[J].Am J Physiol Lung Cell Mol Physiol.2005,288(6):L1179-L1192.
    [21]Terry N H,Brinkley J, Doig A J, et al.Cellular kinetics of murine lung:model system to determine basis for radioprotection with keratinocyte growth factor.[J].Int. J Radiat Oncol Biol Phys.2004, 58(2):435-444.
    [22]Yi E S, Williams S T, Lee H, et al. Keratinocyte growth factor ameliorates radiation-and bleomycin-induced lung injury and mortality.[J].Am J Pathol.1996,149(6):1963-1970.
    [23]Welsh D A, Summer W R, Dobard E P, et al. Keratinocyte growth factor prevents ventilator-induced lung injury in an ex vivo rat model.[J].Am J Respir Crit Care Med.2000,162(3 Pt 1):1081-1086.
    [24]Viget N B, Guery B P, Ader F, et al.Keratinocyte growth factor protects against Pseudomonas aeruginosa-induced lung injury.[J].Am J Physiol Lung Cell Mol Physiol.2000,279(6):L1199-L1209.
    [25]Nemzek J A, Ebong S J, Kim J, et al.Keratinocyte growth factor pretreatment is associated with decreased macrophage inflammatory protein-2alpha concentrations and reduced neutrophil recruitment in acid aspiration lung injury.[J]. Shock.2002,18(6):501-506.
    [26]Yano T, Deterding R R, Simonet W S, et al.Keratinocyte growth factor reduces lung damage due to acid instillation in rats.[J].Am J Respir Cell Mol Biol.1996,15(4):433-442.
    [27]Yi E S, Salgado M,Williams S, et al.Keratinocyte growth factor decreases pulmonary edema, transforming growth factor-beta and platelet-derived growth factor-BB expression, and alveolar type II cell loss in bleomycin-induced lung injury.[J].Inflammation.1998,22(3):315-325.
    [28]Sugahara K, lyama K, Kuroda M J, et al.Double intratracheal instillation of keratinocyte growth factor prevents bleomycin-induced lung fibrosis in rats.[J].J Pathol.1998,186(1):90-98.
    [29]Deterding R R, Havill A M, Yano T, et al.Prevention of bleomycin-induced lung injury in rats by keratinocyte growth factor.[J].Proc Assoc Am Physicians.1997,109(3):254-268.
    [30]Mason C M,Guery B P, Summer W R, et al.Keratinocyte growth factor attenuates lung leak induced by alpha-naphthylthiourea in rats.[J].Crit Care Med.1996,24(6):925-931.
    [31]Chandel N S, Budinger G R, Mutlu G M, et al.Keratinocyte growth factor expression is suppressed in early acute lung injury/acute respiratory distress syndrome by smad and c-Abl pathways.[J].Crit Care Med.2009,37(5):1678-1684.
    [32]Quesnel C, Marchand-Adam S, Fabre A, et al.Regulation of hepatocyte growth factor secretion by fibroblasts in patients with acute lung injury.[J].Am J Physiol Lung Cell Mol Physiol.2008,294(2): L334-L343.
    [33]Lebeche D, Malpel S, Cardoso W V. Fibroblast growth factor interactions in the developing lung.[J]. Mech Dev.1999,86(1-2):125-136.
    [34]Su X, Wang L, Song Y, et al.Inhibition of inflammatory responses by ambroxol, a mucolytic agent, in a murine model of acute lung injury induced by lipopolysaccharide.[J].Intensive Care Med.2004, 30(1):133-140.
    [35]Ware L B, Matthay M A. Keratinocyte and hepatocyte growth factors in the lung:roles in lung development, inflammation, and repair.[J].Am J Physiol Lung Cell Mol Physiol.2002,282(5): L924-L940.
    [36]白春学,孙波.急性呼吸窘迫综合征[M].上海:复旦大学出版社,2005:56.
    [37]Mulugeta S, Beers M F. Surfactant protein C:its unique properties and emerging immunomodulatory role in the lung.[J].Microbes Infect.2006,8(8):2317-2323.
    [38]Increased and prolonged pulmonary fibrosis in surfactant protein C-deficient mice following intratracheal bleomycin.[J].2005,167(5):1267-1277.
    [39]Wispe J R, Clark J C, Warner B B, et al.Tumor necrosis factor-alpha inhibits expression of pulmonary surfactant protein.[J].J Clin Invest.1990,86(6):1954-1960.
    [40]Bachurski C J, Pryhuber G S, Glasser S W, et al.Tumor necrosis factor-alpha inhibits surfactant protein C gene transcription.[J].J Biol Chem.1995,270(33):19402-19407.
    [41]Lutz C, Carney D, Finck C, et al. Aerosolized surfactant improves pulmonary function in endotoxin-induced lung injury.[J].Am J Respir Crit Care Med.1998,158(3):840-845.
    [42]Spragg R G,Lewis J F, Walmrath H D, et al. Effect of recombinant surfactant protein C-based surfactant on the acute respiratory distress syndrome.[J].N Engl J Med.2004,351(9):884-892.
    [43]Augusto L A, Li J, Synguelakis M, et al.Structural basis for interactions between lung surfactant protein C and bacterial lipopolysaccharide.[J].J Biol Chem.2002,277(26):23484-23492.
    [44]Augusto L, Le B K, Auger G, et al. Interaction of bacterial lipopolysaccharide with mouse surfactant protein C inserted into lipid vesicles.[J].Am J Physiol Lung Cell Mol Physiol.2001,281(4): L776-L785.
    [45]Augusto L A, Synguelakis M, Johansson J, et al.Interaction of pulmonary surfactant protein C with CD14 and lipopolysaccharide.[J].Infect Immun.2003,71(1):61-67.
    [46]Haagsman H P. Interactions of surfactant protein A with pathogens.[J].Biochim Biophys Acta.1998, 1408(2-3):264-277.
    [47]Famuyide M E, Hasday J D, Carter H C, et al.Surfactant protein-A limits Ureaplasma-mediated lung inflammation in a murine pneumonia model.[J].Pediatr Res.2009,66(2):162-167.
    [48]Atochina E N, Beck J M, Preston A M, et al. Enhanced lung injury and delayed clearance of Pneumocystis carinii in surfactant protein A-deficient mice:attenuation of cytokine responses and reactive oxygen-nitrogen species.[J].Infect Immun.2004,72(10):6002-6011.
    [49]Levine A M, Bruno M D, Huelsman K M, et al. Surfactant protein A-deficient mice are susceptible to group B streptococcal infection.[J].J Immunol.1997,158(9):4336-4340.
    [50]Levine A M, Kurak K E, Wright J R, et al.Surfactant protein-A binds group B streptococcus enhancing phagocytosis and clearance from lungs of surfactant protein-A-deficient mice.[J].Am J Respir Cell Mol Biol.1999,20(2):279-286.
    [51]Levine A M, Kurak K E, Bruno M D, et al.Surfactant protein-A-deficient mice are susceptible to Pseudomonas aeruginosa infection.[J].Am J Respir Cell Mol Biol.1998,19(4):700-708.
    [52]Levine A M, Gwozdz J, Stark J, et al.Surfactant protein-A enhances respiratory syncytial virus clearance in vivo.[J].J Clin Invest.1999,103(7):1015-1021.
    [53]Li G,Siddiqui J, Hendry M, et al.Surfactant protein-A--deficient mice display an exaggerated early inflammatory response to a beta-resistant strain of influenza A virus.[J].Am J Respir Cell Mol Biol. 2002,26(3):277-282.
    [54]Goto H, Ledford J G, Mukherjee S, et al.The Role of Surfactant Protein A in Bleomycin-induced Acute Lung Injury.[J].Am J Respir Crit Care Med.2010.
    [55]Haque R, Umstead T M,Ponnuru P, et al.Role of surfactant protein-A (SP-A) in lung injury in response to acute ozone exposure of SP-A deficient mice.[J].Toxicol Appl Pharmacol.2007,220(1): 72-82.
    [56]Sano H, Sohma H, Muta T,et al.Pulmonary surfactant protein A modulates the cellular response to smooth and rough lipopolysaccharides by interaction with CD14.[J].J Immunol.1999,163(1): 387-395.
    [57]Arias-Diaz J, Garcia-Verdugo I, Casals C, et al.Effect of surfactant protein A (SP-A) on the production of cytokines by human pulmonary macrophages.[J].Shock.2000,14(3):300-306.
    [58]Borron P, Mcintosh J C, Korfhagen T R, et al.Surfactant-associated protein A inhibits LPS-induced cytokine and nitric oxide production in vivo.[J].Am J Physiol Lung Cell Mol Physiol.2000,278(4): L840-L847.
    [59]Bates S R, Dodia C, Tao J Q, et al.Surfactant protein-A plays an important role in lung surfactant clearance:evidence using the surfactant protein-A gene-targeted mouse.[J].Am J Physiol Lung Cell Mol Physiol.2008,294(2):L325-L333.
    [60]Quintero O A, Korfhagen T R, Wright J R. Surfactant protein A regulates surfactant phospholipid clearance after LPS-induced injury in vivo.[J].Am J Physiol Lung Cell Mol Physiol.2002,283(1): L76-L85.
    [61]Sadovski J, Kuchenbuch T, Ruppert C, et al.Keratinocyte growth factor prevents intra-alveolar oedema in experimental lung isografts.[J],Eur Respir J.2008,31(1):21-28.
    [62]Fehrenbach H.Alveolar epithelial type II cell:defender of the alveolus revisited.[J].Respir Res.2001, 2(1):33-46.
    [63]Ulich T R, Yi E S, Longmuir K, et al.Keratinocyte growth factor is a growth factor for type Ⅱ pneumocytes in vivo.[J].J Clin Invest.1994,93(3):1298-1306.
    [64]Panos R J, Bak P M, Simonet W S, et al.Intratracheal instillation of keratinocyte growth factor decreases hyperoxia-induced mortality in rats.[J].J Clin Invest.1995,96(4):2026-2033.
    [65]Qiao R, Yan W, Clavijo C, et al.Effects of KGF on alveolar epithelial cell transdifferentiation are mediated by JNK signaling.[J].Am J Respir Cell Mol Biol.2008,38(2):239-246.
    [66]Borok Z, Lubman R L, Danto S I,et al.Keratinocyte growth factor modulates alveolar epithelial cell phenotype in vitro:expression of aquaporin 5.[J].Am J Respir Cell Mol Biol.1998,18(4):554-561.
    [67]Fehrenbach H, Kasper M, Tschernig T, et al.Keratinocyte growth factor-induced hyperplasia of rat alveolar type II cells in vivo is resolved by differentiation into type I cells and by apoptosis.[J].Eur Respir J.1999,14(3):534-544.
    [68]Yano T, Mason R J, Pan T, et al.KGF regulates pulmonary epithelial proliferation and surfactant protein gene expression in adult rat lung.[J].Am J Physiol Lung Cell Mol Physiol.2000,279(6): L1146-L1158.
    [69]Fehrenbach A, Bube C, Hohlfeld J M, et al.Surfactant homeostasis is maintained in vivo during keratinocyte growth factor-induced rat lung type Ⅱ cell hyperplasia.[J].Am J Respir Crit Care Med. 2003,167(9):1264-1270.
    1 Viola A, Luster AD, Chemokines and Their Receptors:Drug Targets in Immunity and Inflammation.Annu. Rev. Pharmacol. Toxicol.48,171-97 (2008).
    2 Baggiolini M.Chemokines and leukocyte traffic. Nature 392,565-8 (1998).
    3 Mariani M,Panina-Bordignon P. Analysis of homing receptor expression on infiltrating leukocytes in disease states.Journal of Immunological Methods 273,103-114 (2003).
    4 Doerschuk CM.Leukocyte trafficking in alveoli and airway passages. Respir.Res.1(3), 136-40 (2000).
    5 Palmqvist C, Wardlaw AJ, Bradding P. Chemokines and their receptors as potential targets for the treatment of asthma.British Journal of Pharmacology 151,725-736 (2007).
    6 Garcia G, Godot V, Humbert M.New chemokine targets for asthma therapy. Curr Allergy Asthma Rep.5(2),155-60 (2005).
    7 Morgan AJ, Symon FA, Berry MA et al. IL-4-expressing bronchoalveolar T cells from asthmatic and healthy subjects preferentially express CCR 3 and CCR 4.J. Allergy Clin. Immunol.116(3),594-600 (2005).
    8 Panina-Bordignon P, D'Ambrosio D. Chemokines and their receptors in asthma and chronic obstructive pulmonary disease.Curr. Opin. Pulm. Med.9(2),104-10 (2003).
    9 Joubert P, Lajoie-Kadoch S, Labonte I, et al. CCR3 expression and function in asthmatic airway smooth muscle cells J. Immunol.175(4),2702-8 (2005).
    10 Pease JE. Asthma, Allergy and Chemokines. Current Drug Targets 7,3-12 (2006).
    11 Humbles AA, Lu B, Friend DS, et al. The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness.Proc. Natl. Acad. Sci. USA.99(3),1479-1484 (2002).
    12 Ma W, Bryce PJ, Humbles AA, et al. CCR3 is essential for skin eosinophilia and airway hyperresponsiveness in a murine model of allergic skin inflammation.J Clin Invest. 109(5),621-628 (2002).
    13 Pope SM, Zimmermann N, Stringer KF;et al. The eotaxin chemokines and CCR3 are fundamental regulators of allergen-induced pulmonary eosinophilia.J Immunol.175(8), 5341-50 (2005).
    14 Fryer AD, Stein LH, Nie Z, et al. Neuronal eotaxin and the effects of CCR3 antagonist on airway hyperreactivity and M2 receptor dysfunction.J Clin Invest.116(1),228-36 (2006).
    15 Farahi N, Cowburn AS, Upton PD, et al. Eotaxin-1/CC chemokine ligand 11:a novel eosinophil survival factor secreted by human pulmonary artery endothelial cells.J Immunol.179(2),1264-73 (2007).
    16 Moon KA, Kim SY,Kim TB, et al. Allergen-induced CD11b+CD11c(int) CCR3+ macrophages in the lung promote eosinophilic airway inflammation in a mouse asthma model.Int Immunol.19(12),1371-81 (2007).
    17 Tliba O, Amrani Y, Panettieri RA. Is airway smooth muscle the "missing link" modulating airway inflammation in asthma?Chest 133,236-242 (2008).
    18 Shen HH, Xu F, Zhang GS, et al. CCR3 monoclonal antibody inhibits airway eosinophilic inflammation and mucus overproduction in a mouse model of asthma.Acta Pharmacol Sin.27(12),1594-9 (2006).
    19 Das AM,Vaddi KG, Solomon KA, et al. Selective inhibition of eosinophil influx into the lung by small molecule CC chemokine receptor 3 antagonists in mouse models of allergic inflammation.J Pharmacol Exp Ther.318(1),411-7 (2006).
    20 Wegmann M,Goggel R, Sel S, et al. Effects of a low-molecular-weight CCR-3 antagonist on chronic experimental asthma.Am J Respir Cell Mol Biol.36(1):61-7 (2007).
    21 Fortin M, Ferrari N, Higgins ME, et al. Effects of antisense oligodeoxynucleotides targeting CCR3 on the airway response to antigen in rats.Oligonucleotides 16(3), 203-12 (2006).
    22 Panina-Bordignon P, Papi A, Mariani M,et al. The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics.J. Clin. Invest.107 (11),1357-1364 (2001).
    23 Bonecchi R, Sozzani S, Stine JT, et al. Divergent effects of interleukin-4 and interferon-on macrophage-derived chemokine Production:An amplification circuit of polarized T helper 2 responses.Blood 92(8),2668-2671 (1998).
    24 Meyer EH, Wurbel MA, Staton TL, et al. iNKT cells require CCR4 to localize to the airways and to induce airway hyperreactivity. J Immunol.179(7),4661-71 (2007).
    25 Andrew DP, Ruffing N, Kim CH, et al. C-C chemokine receptor 4 expression defines a major subset of circulating nonintestinal memory T cells of both Thl and Th2 potential. J Immunol.166(1),103-111 (2001).
    26 Carpenter KJ, Hogaboam CM.et al. Immunosuppressive effects of CCL17 on pulmonary antifungal responses during pulmonary invasive aspergillosis.Infect Immun.73(11), 7198-207 (2005).
    27 Gonzalo JA, Qiu Y, Lora JM,et al. Coordinated involvement of mast cells and T cells in allergic mucosal inflammation:critical role of the CC chemokine ligand 1:CCR8 axis.J Immunol.179(3),1740-50 (2007).
    28 Buckland KF, O'connor EC, Coleman EM,et al. Remission of chronic fungal asthma in the absence of CCR8.J Allergy Clin Immunol.119(4),997-1004 (2007).
    29 Mellado M,Martin de Ana A, Gomez L, et al. Chemokine receptor 2 blockade prevents asthma in a cynomolgus monkey model.J Pharmacol Exp Ther.324(2),769-75 (2008).
    30 Yamashita N, Tashimo H, Matsuo Y, et al. Role of CCL21 and CCL19 in allergic inflammation in the ovalbumin-specific murine asthmatic model.J Allergy Clin Immunol.117(5),1040-6 (2006).
    31 Hintzen G, Ohl L, del Rio ML, et al. Induction of tolerance to innocuous inhaled antigen relies on a CCR7-dependent dendritic cell-mediated antigen transport to the bronchial lymph node.J Immunol.177(10),7346-54 (2006).
    32 Grinnan D, Sung SS, Dougherty JA, et al. Enhanced allergen-induced airway inflammation in paucity of lymph node T cell(plt) mutant mice. J Allergy Clin Immunol. 118(6),1234-41 (2006).
    33 Kaur D, Saunders R, Berger P, et al. Airway smooth muscle and mast cell-derived CC chemokine ligand 19 mediate airway smooth muscle migration in asthma.Am J Respir Crit Care Med.174(11),1179-88 (2006).
    34 Sen Y, Yongyi B, Yuling H, et al. V alpha 24-invariant NKT cells from patients with allergic asthma express CCR9 at high frequency and induce Th2 bias of CD3+ T cells upon CD226 engagement. J Immunol.175(8),4914-26 (2005).
    35 John AE, Gerard CJ, Schaller M,et al. Respiratory syncytial virus-induced exaggeration of allergic airway disease is dependent upon CCR1-associated immune responses.EurJ Immunol.35(1),108-16 (2005).
    36 Schaller MA, Kallal LE, Lukacs NW. A Key Role for CC Chemokine Receptor 1 in T-Cell-Mediated Respiratory Inflammation.American Journal of Pathology.172, 386-394(2008).
    37 Joubert P, Lajoie-Kadoch S, Welman M,et al. Expression and regulation of CCR1 by airway smooth muscle cells in asthma.J Immunol.180(2),1268-75 (2008).
    38Carpenter KJ, Ewing JL, Schuh JM,et al. Therapeutic targeting of CCR1 attenuates established chronic fungal asthma in mice.BrJ Pharmacol.145(8),1160-72 (2005).
    39 Gauvreau GM,Boulet LP, Cockcroft DW, et al. Antisense Therapy against CCR3 and the Common Beta Chain Attenuates allergen-induced Eosinophilic Responses.Am J Respir Crit Care Med. 177,952-958 (2008).
    40 Costa C, Rufino R, Traves SL, et al. CXCR3 and CCR5 chemokines in induced sputum from patients with COPD.Chest 133(1):26-33 (2008).
    41 Freeman CM,Curtis JL, Chensue SW. CC chemokine receptor 5 and CXC chemokine receptor 6 expression by lung CD8+ cells correlates with chronic obstructive pulmonary disease severity. Am J Pathol.171(3),767-76 (2007).
    42 Demedts IK, Bracke KR, Van Pottelberge G, et al. Accumulation of dendritic cells and increased CCL20 levels in the airways of patients with chronic obstructive pulmonary disease.Am J Respir Crit Care Med.175(10),998-1005 (2007).
    43 Bracke KR, D'hulst Al, Maes T, et al. Cigarette smoke-induced pulmonary inflammation and emphysema are attenuated in CCR6-deficient mice.J Immunol.177(7),4350-9 (2006).
    44 Bracke KR, D'hulst Al, Maes T, et al. Cigarette smoke-induced pulmonary inflammation, but not airway remodelling, is attenuated in chemokine receptor 5-deficient mice. Clin Exp Allergy.37(10),1467-79 (2007).
    45 Bocchino V, Bertorelli G, Bertrand CP, et al. Eotaxin and CCR3 are up-regulated in exacerbations of chronic bronchitis. Allergy.57(1),17-22 (2002).
    46 Bone, R.C. Immunologic dissonance.Ann. Intern. Med.125,680-687 (1996).
    47 Gerard C, Frossard JL, Bhatia M, et al. Targeted disruption of the-chemokine receptor CCR1 protects against pancreatitis-associated lung injury.J Clin Invest.100(8), 2022-7 (1997).
    48 He M, Horuk R, Bhatia M. Treatment with BX471, a nonpeptide CCR1 antagonist, protects mice against acute pancreatitis-associated lung injury by modulating neutrophil recruitment. Pancreas.34(2),233-41 (2007).
    49 Bonecchi R, Polentarutti N, Luini W, et al. Up-regulation of CCR1 and CCR3 and induction of chemotaxis to CC chemokines by IFN-in human neutrophils. J Immunol. 162,474-479(1999).
    50 Cheng SS, Lai JJ, Lukacs NW, et al. Granulocyte-macrophage colony stimulating factor up-regulates CCR1 in human neutrophils. J Immunol.166,1178-1184 (2001).
    51 Lee SC, Brummet ME, Shahabuddin S, et al. Cutaneous injection of human subjects with macrophage inflammatory protein-1 induces significant recruitment of neutrophils and monocytes.J Immunol.164,3392-3401 (2000).
    52 Okuma T, Terasaki Y, Sakashita N,et al. MCP-1/CCR2 signalling pathway regulates hyperoxia-induced acute lung injury via nitric oxide production.Int J Exp Path.87, 475-483 (2006).
    53 Boxall C, Holgate ST, Davies DE.The contribution of transforming growth factor-β and epidermal growth factor signalling to airway remodelling in chronic asthma. Eur Respir J.27,208-229(2006).
    54 Blease K, Mehrad B, Standiford TJ, et al. Airway Remodeling Is Absent in CCR1-/-Mice During Chronic Fungal Allergic Airway Disease.J Immunol.165(3),1564-72 (2000).
    55 Fulkerson PC, Fischetti CA, Rothenberg ME. Eosinophils and CCR3 regulate interleukin-13 transgene-induced pulmonary remodeling. Am J Pathol.169(6),2117-26 (2006).
    56 Puxeddu I, Bader R, Piliponsky AM, et al. The CC chemokine eotaxin/CCL11 has a selective profibrogenic effect on human lung fibroblasts.J Allergy Clin Immunol.117(1), 103-10(2006).
    57 Gharaee-Kermani M,Denholm EM,Phan SH.Costimulation of fibroblast collagen and transforming growth factor betal gene expression by monocyte chemoattractant protein-1 via specific receptors. J Biol Chem.271(30),17779-84 (1996).
    58 Moore BB, Paine R 3rd, Christensen PJ, et al. Protection from pulmonary fibrosis in the absence of CCR2 signaling. J Immunol.167(8),4368-77 (2001).
    59 Okuma T, Terasaki Y, Kaikita K, et al. C-C chemokine receptor 2 (CCR2) deficiency improves bleomycin-induced pulmonary fibrosis by attenuation of both macrophage infiltration and production of macrophage-derived matrix metalloproteinases.J Pathol. 204(5),594-604 (2004).
    60 Gharaee-Kermani M,McCullumsmith RE, Charo IF, et al. CC-chemokine receptor 2 required for bleomycin-induced pulmonary fibrosis. Cytokine.24(6),266-76 (2003).
    61 Pierce EM,Carpenter K, Jakubzick C, et al. Therapeutic targeting of CC ligand 21 or CC chemokine receptor 7 abrogates pulmonary fibrosis induced by the adoptive transfer of human pulmonary fibroblasts to immunodeficient mice.Am J Pathol.170(4), 1152-64 (2007).
    62 Pierce EM,Carpenter K, Jakubzick C, et al. Idiopathic pulmonary fibrosis fibroblasts migrate and proliferate to CC chemokine ligand 21.Eur Respir J.29(6),1082-93 (2007).
    63 Huaux F, Gharaee-Kermani M,Liu T, et al. Role of Eotaxin-1(CCL11) and CC chemokine receptor 3(CCR3)in bleomycin-induced lung injury and fibrosis.Am J Pathol.167(6), 1485-96 (2005).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700