用户名: 密码: 验证码:
溶解有机物三维荧光光谱结合多变量分析在赤潮藻识别中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有害赤潮肆虐对我国沿海的海洋生态、资源、环境造成了严重的破坏和重大的经济损失。要预防和减少有害赤潮灾害,首先要能够准确、实时地对发生赤潮的肇事藻种进行识别测定,荧光技术因具有仪器简单、灵敏度高和易于实现现场实时检测等优点而受到广泛的关注。
     目前根据浮游植物活体三维荧光光谱对浮游植物进行种类识别的研究已经取得了一定的成果,而利用浮游植物生长过程中藻滤液的三维荧光光谱进行赤潮藻种类识别的研究还未见报道,本文从赤潮藻滤液的三维荧光光谱着手,选择了我国沿海常见的10种赤潮藻,在实验室条件下进行培养,分别利用平行因子分析、主成分分析和小波分析对赤潮藻生长过程中藻滤液的三维荧光光谱进行特征提取,并用多元线性回归对赤潮藻进行识别测定。
     (1)应用平行因子分析对赤潮藻滤液三维荧光光谱进行分析,得到了各赤潮藻的特征光谱,不同赤潮藻的特征光谱之间存在差异,聚类结果显示同属赤潮藻特征光谱相似性较高。赤潮藻各组分最大荧光峰强度与生长阶段显示出一定的关系:在指数生长期,藻滤液中类蛋白和类腐殖质荧光物质不断积累,稳定期滤液中类色氨酸和类腐殖质荧光物质快速增加,主要来自衰老和死亡细胞的破碎释放,以及细菌降解作用。这和本实验室以往的研究结果一致,说明平行因子分析可以有效的提取赤潮藻荧光特征,并考察赤潮藻各组分荧光峰强度和生长阶段的关系。
     (2)主成分分析在赤潮藻识别中的应用。应用主成分分析对赤潮藻滤液的三维荧光光谱数据进行特征提取,根据Bayes判别的结果选取第一主成分载荷谱作为识别特征谱,利用聚类分析法得到识别标准谱,用多元线性回归(以非负最小二乘法解析)对赤潮藻进行识别。原甲藻属的东海原甲藻和海洋原甲藻的正确识别率较低,其他3种甲藻识别率≧95%,对于硅藻,中肋骨条藻和柔弱角毛藻正确识别率较低,其他3种硅藻识别率≧83%,在属水平上,角毛藻属的正确识别率为96%。
     (3)小波分析在赤潮藻识别中的应用。分别用3种小波函数coif2、db-3和db-7对赤潮藻滤液的三维荧光光谱进行特征提取,根据Bayes判别的结果分别选择第三层尺度分量作为识别特征谱。利用聚类分析方法得到了每种小波函数的识别标准谱。分别用这3种标准谱以多元线性回归法对赤潮藻进行识别,3种标准谱对东海原甲藻、中肋骨条藻和柔弱角毛藻的正确识别率较低,对其他藻种识别率≧80%。在属水平上,3种标准谱对角毛藻属的三种赤潮藻的识别率都为96%。
     (4)4种标准谱对中肋骨条藻和柔弱角毛藻的识别率很低,其他相对较高,其中db-3标准谱的识别结果最好。为进一步提高正确识别率乃至实现现场数据的识别,还要进一步对不同温度、不同光照组合条件下培养的赤潮藻样品进行特征提取,并对混合藻的光谱特征提取及拆分进行研究。
Harmful red tides occur frequently in the China Sea, which have caused severe damage to the ocean ecology, resources and environment. The key to predicting the red tides and reducing the influence is to identify the red tide algae real time and precisely. The fluorescence methods can satisfy the requirements of identifying the red tide algae rapidly and real time due to the high sensitivity and simple equipments, which have attracted more and more attention.
     Some identification methods based on the Excitation-Emission matrix spectroscopy (EEMs) of phytoplankton have been reported while the methods based on the EEMs of the filtrate of phytoplankton culture have never been seen. In this paper, ten algae species which belong to Dinophyta and Bacillariophyta were chosen to culture under laboratory conditions. The Excitation-Emission matrix spectroscopy (EEMs) of the filtrate of each alga culture during its growth process was obtained. Parallel factor analysis (PARAFAC), principal component analysis (PCA) and wavelet methods were chosen to extract the features of the Excitation-Emission matrix spectroscopy. Then multivariate linear regression was used to identify the algae species.
     (1) The EEMs of each alga are combined to form three-dimensional data matrix and analyzed using PARAFAC. The characteristic spectra of each alga are obtained. The characteristic spectra of each alga have dissimilarities. The cluster analysis results show that the characteristic spectra of algae belonging to the same genus are similar. The relationships between the fluorescence intensities and algae growth phases were investigated. In the exponential phase, the protein-like and humic-like substances accumulate in the filtrate of algae culture. In the stationary phase, the protein-like and humic-like fluorescence intensities increased quickly, which suggest that the two kinds of fluorescent substances were produced by the broken algal cells and the degradation by marine bacteria. These results are consistent with our previous research, which imply that the PARAFAC model can be successfully used to extract the features of EEMs and investigate the relationship between fluorescence intensities and algae growth phase.
     (2) The application of PCA in the identification of algae species. The PCA is used to extract features of EEMs. The first principal component loading of EEMs is chosen as the identification characteristic spectra according to the results of Bayes discriminate analysis. The identification feature spectra are established using the cluster analysis. The ten algae are tested using multivariate linear regression (using non-negative least square method) based on the feature spectra. Among the five Dinophyta species, the correct identification rates(CIR) of Prococentrum marinum and Prorocentrum donghaiense are relatively low compared to the other 3 Dinophyta species(≧ 95%). Among the five Bacillariophyta species, CIR of Skeletonema costatum and Chaetoceros debilis are low compared to the other 3 Bacillariophyta species(≧ 83%). In the level of genus, CIR of Chaetoceros can reach 96%.
     (3) The application of wavelet analysis in the identification of algae species. Three wavelet functions coiflet2 (coif2), daubechies-3(db-3) and daubechies-7(db-7) are used to extract the features of the EEMs respectively. The third scale vectors are selected respectively as the identification characteristic spectra for the three wavelet functions according to the results of Bayes discriminate analysis. The identification feature spectra of three wavelet functions are obtained respectively using cluster analysis. The ten algae are tested using multivariate linear regression(using non-negative least square method) based on the three types of identification feature spectra. The results show that the CIR of Prorocentrum donghaiense, Skeletonema costatum and Chaetoceros debilis are relatively low compared the the other 7 species(≧ 80%). In the level of genus, CIR of Chaetoceros are 96% for all the three wavelet function.
     (4) The CIR of Skeletonema costatum and Chaetoceros debilis are relatively low for all 4 types of identification feature spectra. Among the 4 types of identification feature spectra, db-3 provides the best CIR. In order to improve CIR, more work needs to be done such as feature extraction of EEMs of the red tide algae cultured under different temperature & illumination conditions and the research on the EEMs of mixtures of red tide algae.
引文
[1]Culverhouse P F, Simpson R G, Ellis R, et al. Automatic classification of field-collected dinoflagellates by artificial neural network. Marine Ecology Progress Series,1996,139: 281~287
    [2]Sieracki C K, Sieracki M E, Yentsch C S. An image-in-flow system for automated analysis of marine microplankton. Marine Ecology Progress Series,1998,168:285~296
    [3]Lewitus A J, White D L, Tymowski R G, et al. Adapting the CHEMTAX method for assessing phytoplankton taxonomic composition in southeastern U.S. Estuaries,2005,28: 160~172
    [4]Mackey M D, Mackey D J, Higgins H W, et al. CHEMTAX-a program for estimating class abundances from chemical markers:Application to HPLC measurements of phytoplankton. Marine Ecology Progress Series,1996,144:265~283
    [5]Beutler M, Wiltshire K H, Arp M, et al. Fluorescence spectral signatures:The characterization of phytoplankton populations by the use of excitation and emission spectra. Biochimica et Biophysica Acta,2003,1604:33~46.
    [6]Seppaala J, Balode M. The use of spectral fluorescence methods to detect changes in the phytoplankton community. Hydrobiologia,1998,363:207~217
    [7]苏荣国,梁生康,胡序朋,等.我国东海常见6种有毒赤潮藻的三维荧光光谱识别技术.海洋环境科学,2008,27(3):265~268
    [8]苏荣国,胡序朋,张传松,等.荧光光谱结合主成分分析对赤潮藻的识别测定.环境科学,2007,28(7):1529-1533
    [9]苏荣国,梁生康,胡序朋,等.荧光光谱结合主成分分析对硅藻和甲藻的识别测定.海洋科学进展,2007,25(2):238-246
    [10]赵卫红,王江涛,崔鑫,等.海洋浮游植物生长过程中溶解有机物质的三维荧光光谱研究.高技术通讯,2006,16(4):425~430
    [11]任保卫,赵卫红,王江涛,等.海洋微藻生长过程藻液三维荧光特征.光谱学与光谱分析,2008,28(5):1130~1134
    [12]Suzuki K, Handa N, Kiyosawa H, et al. Temporal and spatial distribution of phytoplankton pigments in the central Pacific Ocean along 175°E during the boreal summers of 1992 and 1993. J Oceanogr,1997,53:383~396
    [13]Davis C S, Gallager S M, Solow A R. Micaroaggregations of oceanic plankton observed by towed video microscopy. Science,1992,257:230-232
    [14]Davis C S, Gallager S M, Marra M, et al. Rapid visualization of plankton abundance and taxonomic composition using the video plankton recorder:Deep-Sean Research Ⅱ,1996,43: 1947~1970
    [15]Carr M R, Tarran G A, Burkill P H. Discrimination of marine phytoplankton species through the statistical analysis of their flow cytometric signatures. Journal of Plankton Research,1996, 18:1225~1238
    [16]Simpson R, Williams R, Ellis R, et al. Biological pattern Recognition by Neural Networks. Marine Ecology Progress Series,1992,79:303~308
    [17]Tang X O, Stewart W K, Vincent L, et al. Automatic plankton image recognition. Artificial Intelligence Review,1998,12:177~199
    [18]Johnson G 0, Samset L G, Sakshaug G E. In vivo absorption characteristics in 10 classes of bloom-forming phytoplankton:Taxonomic characteristics and responses to photoadaption by means of discriminant and HPLC analysis. Mar Ecol Prog Set,1994,105:149~157
    [19]Moberg L, Karlberg B, S(?)rensen K, et al. Assessment of phytoplankton class abundance using absorption spectra and chemometrics. Talanta,2002,56(1):153~160
    [20]Mackey M D, Mackey D J, Higgins H W, el al. CHEMTAX-a program for estimating class abundances from chemical markers:application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser,1996,144:265~283
    [21]Tsai-yun Lee, Mikio Tsuzuli, Toshifumi Takeuchi, et al. Quantitative determination of cyanobacteria in mixed phytoplankton assemblages by in vivo fluorimetric method. Analytica Chimica Acta.1995,302:81~87
    [22]Boddy L, Morris C W, Wilkins M F, et al. Identification of 72 phytoplankton species by radial basis function neural network analysis of flow cytometric data. Marine Ecology Progress Series,2000,195:47-59
    [23]Kolbowski J, Schreiber U. Computer-controlled phytoplankton analyzer based on a 4-wavelength PAM Chl fluorometer. Photosynthesis:From Light to Biosphere. Dordrecht/Boston/London:Kluwer Academic Publishers,1995:825~828
    [24]朱桂海,Brooks J M.三维全扫描荧光法探讨长江口临近陆架有机沉积物来源.沉积学报,1989,7(1):117~125
    [25]张前前,类淑河,王修林,等.浮游植物活体三维荧光光谱特征提取.高技术通讯,2005,15(4):75~78
    [26]张前前,类淑河,王修林,等.浮游植物活体三维荧光光谱分类判别方法研究.光谱学与光谱分析,2004,24(10):1227~1229
    [27]张芳,苏荣国,王修林,等.浮游植物荧光特征提取及识别测定技术.中国激光,2008,35(12):2052~2059
    [28]Harvey G R, Boran D A, Chesal L A, et al. The structure of marine fulvic and humic acids. Mar Chem,1983,12:119~132
    [29]Sierra M M D, Giovanela M, Parlanti E, et al. Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques. Chemosphere,2005,58:715~733
    [30]Her N, Amy G, McKnight D, et al. Characterization of DOM as a function of MW by fluorescence EEM and HPLC-SEC using USA, DOC, and fluorescence detection. Water Research,2003,37:4295~4303.
    [31]高洪峰,曹文达,纪明侯.海水腐殖质的基本化学组成研究.海洋与湖沼,1996,27(1):35~39
    [32]Coble P G, Green S, Blough N V, et al. Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature,1990,348:432~435
    [33]Coble P G, Schultz C A, Mopper K. Fluorescence contouring analysis of DOC Intercalibration Experiment samples:a comparison of techniques. Marine Chemistry,1993, 41:173~178
    [34]Coble P G, Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry,1996,51:325-346
    [35]Coble P G, Del Castillo C E, Avril B. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep-Sea Res. Ⅱ,1998,45:2195~2223
    [36]Yamashita Y, Tanoue E. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids. Marine Chemistry,2003,82:255~271
    [37]Matthews B J H, Jones A C, Theodorou N K, et al. Excitation-emission-matrix fluorescence spectroscopy applied to humic acid bands in coral reefs. Marine Chemistry,1996,55: 317~332
    [38]Parlanti P, Worz, Geoffroy L, et al. Dissolved organic matter fluorescence spectroscopy as a tool of estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org. Geochem,2000,31:1765~1781
    [39]夏锦尧.实用荧光分析法,第一版.北京:中国人民公安大学出版社,1992,442
    [40]Mayer L M, Schik L L, Loder T C. Dissolved protein fluorescence in two Maine estuaries. Marine Chemistry,1999,64:171~179
    [41]Determann S, Reuter R, Wagner P, et al. Fluorescent matter in the eastern Atlantic Ocean (Part 1:method of measurement and near-surface distrbution). Deep-Sea Res Ⅰ,1994,41(4): 659~675
    [42]Mopper K, Schultz C A. Fluorescence as a possible tool for studying the nature and water column distribution of DOC components. Marine Chemistry,1993,41:229~238
    [43]Petersen H T. Determination of an Isochrysis galbana algal bloom by L-tryptophan fluorescence. Marine Pollution Bulletin,1989,20 (9):447~451
    [44]季乃云,赵卫红,王江涛.胶州湾赤潮爆发水体中溶解有机物质荧光特性.环境科学,2006b,27(2):257-262
    [45]Chen R F. Bada J L. The fluorescence of dissolved organic matter in seawater. Marine Chemistry,1992,37:191-221
    [46]Cattell R B.'Parallel proportional profiles'and other principles for determining the choice of factors by rotation. Psychometrika,1944,9:267-283
    [47]刘海龙,吴希军,田广军.三维荧光光谱技术及平行因子分析法在绿茶分析及种类鉴别中的应用.中国激光,2008,35(5):685~689
    [48]Stedmon C A, Markager S, Bro R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry,2003,82:239~254
    [49]Stedmon C A, Markager S. Tracing the production and degration of autochthonous fractions of dissolved organic matter by fluorescence analysis. Limnology and Oceanography,2005, 50(5):1415-1426
    [50]WANG Zhi-gang, LIU Wen-qing, ZHAO Nan-jing, et al. Composition analysis of colored dissolved organic matter in Taihu lake based on three dimension excitation-emission fluorescence matrix and PARAFAC model and the potential application in water quality monitoring. Journal of Environmental Sciences,2007,19:787~791
    [51]Stedmon C A, Markager S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnology and Oceanography,2005,50(2):686~697
    [52]凌晓,曹玉珍,莫翠云,等.应用平行因子分析和三维荧光分析法分辨萘、1-萘酚和2-萘酚.分析化学,2001,29(12):1412-1415
    [53]王志刚,刘文清,张玉钧,等.三维荧光光谱法分类测量水体浮游植物浓度.中国环境科学,2008,28(2):136~141
    [54]Bro R, Henk A L K. A new efficient method for determining the number of components in PARAFAC models. Chemometrics,2003,17:274~286
    [55]Stedmon C A, Bro R. Characterizing dissolved organic matter fluorescence with parallel factor analysis:a tutorial. Limnology and Oceanography:Methods,2008,6:572~579
    [56]郑军.小波理论在系统建模与控制中的若干应用研究:[博士学位论文].杭州:浙江大学控制理论与控制工业专业,2005
    [57]Mallat Stephane著,杨力华,戴道清,黄文良,等译.信号处理的小波导引.机械工业出版社,2002
    [58]Walczak B, Bogaert B, Massart D L. Application of Wavelet Packet Transform in Pattern Recognition of Near-IR Data. Anal. Chem.1996,68:1742~1747
    [59]Kim W. Wavelets packet based optimal subband coder. IEEE Proc.ICASSP,1995: 2225~2228
    [60]高协平,张钱.区间小波神经网络(Ⅰ)-理论与实现.软件学报,1998a,9(3):217-221
    [61]高协平,张钱.区间小波神经网络(11)-性质与模拟.软件学报,1998b,9(4):246-250
    [62]Gori L, Pezza L, Pitolli F. Recent results on wavelet bases on the interval generated by GP refinable functions. Applied Numerical Mathematics,2004,51(4):549-563
    [63]Massey DW, Acevedo R, Johnson B R. Additions to the class of symmetric-antisymmetric multiwavelets:Derivation and use as quantum basis functions. J Chem Phys,2006,124, DOI:10.1063/1.2140267
    [64]Goodman TNT, Lee S L. Wavelets of multiplicity. Trans on Amer Math Soc,1994,342: 307~324
    [65]Chui C K, Lian J. A study on orthonormal multiwavelets. J Appl Numer Math,1996,20: 273~298
    [66]Wim S. The lifting Scheme:A New Philosophy in Biorthonormal Wavelets Constructions. Proc. SPIE 2569,1995:68~79
    [67]全海英,杨源,张鼓,等.一种基于第二代小波变换的图像融合算法.系统工程与电子技术,2001,23(5):74~76
    [68]Donoho D L. Digital ridgelet transform via rectopolar coordinate transform. Stanford University, Stanford CA, Tech Rep,1998
    [69]Donoho D L. Orthonormal ridgelets and linear singularities. SIMA J Math Anal,2000,31(5): 1062~1099
    [70]Donoho D L, Duncan M R. Digital curvelet transform:Strategy, implementation and experiments. Proc SPIE,2000,12~29
    [71]Starck J L, Candes E, Donoho D L. The curve transform for Image denoising. IEEE Trans on Image Processing,2002:670~684
    [72]卢璐,苏荣国,胡序朋,等.高斯分解法研究浮游植物荧光激发光谱.中国激光,2007,34(8):1115~1119
    [73]董长虹,高志,余啸海,等.Matlab小波分析工具箱原理与应用.国防工业出版社,2004
    [74]Neto C R, Bube K, Cser A, et al. Multifractal spectrum of a laser beam melt ablation process. Physica A,2004,344:580~586
    [75]Ren S X, Gao L. Simultaneous quantitative analysis of overlapping spectrophotometric signals using wavelet multiresolution analysis and partial least squares. Talanta,2000,50: 1163~1173
    [76]Eriksson L, Trygg J, Johansson E, et al. Orthogonal signal correction, wavelet analysis, and multivariate calibration of complicated process fluorescence data. Analytica Chimica Acts, 2000,420:181~195
    [77]Esteban-DIez I, Gonzalez-Saiz J M, Gomez-Camara D, et al. Multivariate calibration of near infrared spectra by orthogonal Wavelet correction using a genetic algorithm. Analytica Chimica Acta 2006,555:84~95
    [78]Harrington P B, Rauch P J, Cai C S. Multivariate Curve Resolution of Wavelet and Fourier Compressed Spectra. Anal Chem,2001,73:3247~3256
    [79]Olivo-Mann J C. Extraction of spots in biological images using multiscale products. Pattern Recognition,2002,35 (9):1989~1996
    [80]徐永生.基于小波分析的大气颗粒物数字图像的边缘监测:[硕士学位论文].武汉:武汉理工大学控制理论与控制工程专业,2006
    [81]马晓红,杜晓辉,殷福亮.血清字体-共振拉曼光谱的小波分析方法.电路与系统学报,1999,4(3):74-79
    [82]Ding S W, McDowell C A. High resolution, high sensitivity proton NMR spectra of solids obtained using continuous wavelet transform analysis. Chemical Physics Letters,2000,322: 341~350
    [83]王书涛,王玉田,车仁生,等.基于小波变换的叶绿素荧光光谱测量系统研究.应用光学,2005,26(1):49~52
    [84]张芳,王良,苏荣国,等.小波分析在活体浮游植物离散三维荧光光谱特征提取及识别中的应用研究.传感技术学报,2007,20(10):2143~2150
    [85]梁逸增,俞汝勤.北京:化学工业出版社,2000.328,331,346
    [86]Jiji R D, Booksh K S. Mitigation of Rayleigh and Raman spectral interferences in multi-way calibration of excitation-emission matrix fluorescence data. Analytical Chemistry,2000,72 718~725
    [87]Wentzell P D, Nair S S, Guy R D. Three-quay analysis of fluorescence spectra of polycyclic aromatic hydrocarbons with quenching by nitromethane. Analytical Chemistry,2001,73: 1408~1415
    [88]Mcknight D M, Boyer E M, Wsterhoff P K, et al. Spectrofluorometric characterisation of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography,2001,46:38~48
    [89]Richard G Z, Wade N S, Mary A M. Dissolved organic fluorophores in southeastern US coastal waters:correction method for eliminating Rayleigh and Raman scattering peaks in excitation-emission matrix. Marine chemistry,2004,89:15~36
    [90]张芳.基于小波分析的东海浮游植物种类荧光光谱识别技术研究:[博士学位论文]青岛:中国海洋大学海洋化学专业,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700