用户名: 密码: 验证码:
基于GIS的贵州省滑坡地质灾害易发性多模型综合评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滑坡是世界范围内发生最多的地质灾害,近年来我国山体滑坡事故频发,且规模巨大,对人身和财产安全造成极大威胁。基于GIS的滑坡易发性区划图是现有和潜在滑坡风险的有效评估工具,可用于土地利用和基础设施规划以及发展早期预警系统。本文以贵州省为研究区域,在GIS环境下,结合历史滑坡分布情况,选取高程、坡度、岩性等10个滑坡致灾因子,应用相关区划模型,对潜在危险区进行分区分类,形成滑坡易发性区划图,从而指导土地规划,以期把滑坡造成的损失降到最低程度。
     本论文将主客观线性加权模型(WLC)、Logistics回归模型(LR)、自组织特征映射神经网络模型(SOM),引入滑坡灾害敏感性评估中,主要完成了以下工作:
     (1)根据历史滑坡的面积密度,以信息熵权理论计算一级指标的客观权重,应用梯形模糊数加权(TFNW)方法计算二级指标的主观权重,综合主客观权重利用权重线性组合(WLC)模型编制基于WLC的贵州省滑坡易发性区划图。
     (2)根据历史滑坡灾点面积和滑坡致灾单因子子集面积计算滑坡发生确定性系数(CF),并据此确定滑坡主要的致灾因子。应用Logistic回归模型(LR)、GIS空间分析工具和统计软件SPSS寻求最合适的模型描述灾害是否发生(因变量)和致灾因子(自变量)之间的关系,并编制基于LR的滑坡易发性区划图。
     (3)将自组织特征映射神经网络(SOM)应用于滑坡敏感性聚类分析中,对贵州省内历史滑坡分布在各二级致灾因子中的面积密度数据进行统一训练,反复调试,得出适合滑坡的步长、学习速率、训练次数、拓扑规则、输出结构等参数值,编制基于SOM的滑坡易发性区划图。
     (4)将以上3种模型编制的滑坡易发性区划图进行统一比较,分析各模型的优劣性和适用范围。
     (5)应用ArcGIS Server,将以上研究成果(包括各模型、滑坡致灾因子及图层、贵州省滑坡易发性区划图)进行网络发布,指导地方土地利用及基础设施建设规划。
Landslide is the most widespread geological hazard in the world. A lot of landslides were occurred in the recent years. Some of these landslides seriously threat personal and property safety because of their large scale. As a valuable tool for assessing current and potential landslide risks, landslide susceptibility mapping based on GIS was used for land-use planning and infrastructures layout, and developing the early-warning systems. With combination of landslides inventory and 10 causal factors such as elevation, slope, lithology and so on based on GIS, the paper established the landslide susceptibility map in study area of Guizhou province through using several mathematical models. The results of the study were used by relative departments to decrease the loss of lives and properties of the local people.
     As intensive theoretical models, weighted linear combination model (WLC), logistic regression (LR) and self-organizing map neural network (SOM) have been introduced to evaluate landslides susceptibility in this paper. The achievements of the research work are as followings:
     (1) Entropy-based weighting method was used to calculate objective weights of causal factors according to the area density of occurred landslides. Trapezoidal fuzzy number weighting (TFNW) approach was used to assess the importance of each subclasses of a causal factor. Finally, the landslides susceptibility map of Guizhou province in China was created by using WLC model.
     (2) Selected the key factors of landslide according to Certainty Factor (CF) which was deduced from the area of landslides inventory and the area of subclasses of factors. With the helping of GIS spatial analysis tools and SPSS, LR model, which described the relationship of hazards (dependent) and the key factors, was used to create landslide susceptibility map.
     (3) In order to get reasonable parameters of SOM, vectors which were composited by landslide area densities had been trained 100 times. Then, the landslide susceptibility map was established with SOM model.
     (4) Three models and results of above were compared under the same conditions to get the distinguishing features and applicable conditions of each model.
     (5) In order to guide land utilization and plan infrastructure, the landslide susceptibility map was published on web based on ArcGIS Server.
引文
[1]中国国土资源部.全国地质灾害通报(2009年)[R].北京:中国国土资源部.
    [2]Aronoff S. Geographic Information Systems:a management perspective[M]. Ottawa, WDL Publications,1989:294.
    [3]Coppock J. GIS and natural hazards:an overview from a GIS perspective[C], in:Geographical Information Systems in Assessing Natural Hazards, edited by Carrara A and Guzzetti F,1995:21-34
    [4]Dai F C, Lee C F, Li J, Xu Z W. Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong[J]. Environmental Geology,2001,40(3):381-391
    [5]Baeza C, Corominas J. Assessment of shallow landslide susceptibility by means of multivariate statistical techniques[J]. Earth Surface Processes and Landforms,2001,26(12):1251-1263.
    [6]Clerici A, Perego S, Tellini C, Vescovi P. A procedure for landslide susceptibility zonation by the conditional analysis method[J]. Geomorphology,2002,48(4):349-364.
    [7]Donati L, Turrini M C. An objective method to rank the importance of the factors predisposing to landslides with the GIS Methodology: application to an area of the Apennines (Valnerina; Perugia, Italy)[J]. Engineering Geology,2002,63(3-4):277-289.
    [8]Zhou C H, Lee C F, Li J, Xu Z W. On the spatial relationship between landslides and causative factors on Lantau Island, Hong Kong[J]. Geomorphology,2002,43(3-4):197-207.
    [9]Lee S, Choi U. Development of GIS-based geological hazard information system and its application for landslide analysis in Korea[J]. Geosciences Journal,2003,7(3):243-252.
    [10]Lee S, Choi J, Woo I. The effect of spatial resolution on the accuracy of landslide susceptibility mapping:a case study in Boun, Korea[J]. Geosciences Journal,2004a,8(1):51-60.
    [11]Pistocchi A, Luzi L, Napolitano P. The use of predictive modeling techniques for optimal exploitation of spatial databases:a case study in landslide hazard mapping with expert system-like methods[J]. Environmental Geology,2002,41(7):765-775.
    [12]Lee S, Ryu J H, Won J S, Park H J. Determination and application of the weights for landslide susceptibility mapping using an artificial neural network[J]. Engineering Geology,2004b,71(3-4):289-302.
    [13]Lee S, Evangelista D G. Earthquake-induced landslide-susceptibility mapping using an artificial neural network[J]. Natural Hazards and Earth System Sciences,2006,6:687-695.
    [14]Refice A, Capolongo D. Probabilistic modeling of uncertainties in earthquake-induced landslide hazard assessment[J]. Computers & Geosciences,2002,28(6):735-749.
    [15]Zhou G, Esaki T, Mitani Y, Xie M, Mori J. Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach[J]. Engineering Geology,2003,68(3-4):373-386.
    [16]Carro M, De Amicis M, Luzi L, Marzorati S. The application of predictive modeling techniques to landslides induced by earthquakes:the case study of the 26 September 1997 Umbria-Marche earthquake (Italy) [J]. Engineering Geology,2003,69(1-2):139-159.
    [17]Eastman R. Multi-criteria evaluation and GIS. Chap.35[C] In:Longley PA, Goodchild MF, Maguire DJ, Rhind DW (eds) Geographical information systems, Wiley, New York,1999:493-502.
    [18]Jiang H, Eastman J R. Application of fuzzy measures in multicriteria evaluation in GIS[J]. International Journal of Geographical Information Science,2000,14:173-184.
    [19]Sener B, Suzen M L, Doyuran V. Landfill site selection by using geographic information systems[J]. Environmental Geology, 2006,49:376-388.
    [20]Akggun A, Bulut F. GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region[J]. Environmental Geology,2007, 51:1377-1387.
    [21]He Y, Beighley, R E. GIS-based regional landslide susceptibility mapping:a case study in southern California[J]. Earth Surface Processes and Landforms,2008,33:380-393.
    [22]王卫东,陈燕平,钟晟.应用CF值和Logistic回归模型编制滑坡危险性区 划图[J].中南大学学报(自然版),2009,40(4):1127-1132.
    [23]Van Westen C J. Statistical landslide analysis. ILWIS 2.1. for windows application quide[J]. Enschede:ITC Publication,1997,73-84.
    [24]Cevik E, Topal T. GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey) [J]. Environmental Geology,2003,44:949-962.
    [25]Oztekin B, Topal T. GIS-based detachment susceptibility analyses of a cut slope in limestone, Ankara, Turkey[J]. Environmental Geology, 2005,49:124-132.
    [26]Saaty T L. Axiomatic foundations of the analytic hierarchy process [J]. Management Science,1983,32:841-855.
    [27]Saaty T L, Vargas G L. Models, methods, concepts and applications of the analytic hierarchy process[M]. Boston:Kluwer,2001, pp 333.
    [28]Ayalew L,Yamagishi H, Marui H, Kanno T. Landslide in Sado Island of Japan:part Ⅱ. GIS-based susceptibility mapping with comparison of results from two methods and verifications[J]. Engineering geology,2005,81:432-445.
    [29]Wang W D., Xie C M., Du X G. Landslides susceptibility mapping in Guizhou province based on fuzzy theory[J]. Mining Science and Technology 2009(19):0399-0404.
    [30]Neaupane K M, Piantanakulchai, M. Analytic network process model for landslide hazard zonation[J]. Engineering Geology,2006,85 (3):281-294.
    [31]Wan, S. A spatial decision support system for extracting the core factors and thresholds for landslide susceptibility map[J]. Physics and Chemistry of the Earth,2010,35 (3):162-171.
    [32]Chen C C, Tseng, C Y, Dong, J J. New entropy-based method for variables selection and its application to the debris-flow hazard assessment[J]. Engineering Geology,200794 (1):19-26.
    [33]Bednarik, M, Magulova, B, Matys, M, Marschalko, M. Landslide susceptibility assessment of the Kralovany-Liptovsky Mikulas railway case study[J]. Physics and Chemistry of the Earth,2010,35 (3):162-171.
    [34]王宝亮,陈洪凯.熵权决策法在滑坡治理方案优化选择中的应用[J].重庆交通大学学报(自然科学版),2008,27(6):1112-1130.
    [35]王念秦,姚勇,罗东海.滑坡综合治理方案比选评价模型[J].水土保持 通报,2009,29(1):111-114.
    [36]吴定洪,谢全敏.基于熵权的滑坡治理优化方法及其应用研究[J].路基工程,2009,(1):52-54.
    [37]王宝亮,唐红梅.滑坡治理方案优化的模糊熵权综合法及其应用[J].重庆交通大学学报(自然科学版),2009,28(2):264-267.
    [38]杨宗佶,乔建平.基于信息熵的典型滑坡危险度评价研究[J].四川大学学报(工程科学版),2008,40(4):47-52.
    [39]Lee S. Application of Likelihood Ratio and Logistic Regression Models to Landslide Susceptibility Mapping Using GIS[J]. Environmental Management,2004,34(2):223-232.
    [40]Lee S, Sambath T. Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models[J]. Environmental Geology,2006(50):847-855.
    [41]Lee S, Pradhan B. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models[J]. Landslides, 2007(4):33-41.
    [42]Oh H, Lee S. Chotikasathien W., Kim C. H., Kwon J. H.. Predictive landslide susceptibility mapping using spatial information in the Pechabun area of Thailand[J]. Environmental Geology,2009(57):641-651.
    [43]Duman T Y, Can T, Gokceoglu C, Nefeslioglu H A, Sonmez H. Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey[J]. Environmental Geology,2006(51):241-256.
    [44]Chen Z H, Wang J F. Landslide hazard mapping using logistic regression model in Mackenzie Valley, Canada[J]. Natural Hazards,2007(42):75-89.
    [45]Lamelas M T, Marinoni 0, Hoppe A, Riva J. Doline probability map using logistic regression and GIS technology in the central Ebro Basin (Spain)[J]. Environmental Geology,2008(54):963-977.
    [46]Tunusluoglu M C, Gokceoglu C, Nefeslioglu H A, Sonmez H. Extraction of potential debris source areas by logistic regression technique:a case study from Barla, Besparmak and Kapi mountains (NW Taurids, Turkey) [J]. Environmental Geology,2008(54):9-22.
    [47]Chau K T, Chan J E. Regional bias of landslide data in generating susceptibilitymaps using logistic regression:Case of Hong Kong Island[J]. Landslides,2006(20:280-290.
    [48]李雪平.基于GIS的区域斜坡稳定性评价Logistic回归模型研究[D].武汉:中国地质大学,工程学院,2005.
    [49]王志旺,廖勇龙,李端有.基于逻辑回归法的滑坡危险度区划研究[J].地下空间与工程学报,2006,2(8):1451-1454.
    [50]丛威青,潘懋,李铁锋,等.基于GIS的滑坡、泥石流灾害危险性区划关键问题研究[J].地学前缘,2006,13(1):185-190.
    [51]肖桐.基于GIS的兰州市滑坡空间模拟研究[D].兰州:兰州大学,地图学与地理信息系统,2006.
    [52]秦晓敏.基于GIS的滑坡地质灾害危险性评价研究——以巩留县为例[D].乌鲁木齐:新疆大学,自然地理学,2007.
    [53]尹春荣.基于GIS的滑坡地质灾害危险性分区与预测[D].北京:北京工业大学,桥梁与隧道专业,2008.
    [54]戴福初,姚鑫,谭国焕.滑坡灾害空间预测支持向量机模型及其应用[J].地学前缘,2007,14(6):153-159.
    [55]Kim K B, Kim G H, Je S K. Medical Image Vector Quantizer Using Wavelet Transform and Enhanced SOM Algorithm[J]. Lecture Notes in Computer Science,2005,3339:33-40.
    [56]Prietol B, Merelol J J, Prietol A, Tricas F. Analyzing a Web-Based Social Network Using Kohonen's SOM[J]. Lecture Notes in Computer Science, 2007(4507):911-918.
    [57]Guthrie R H, Deadman P J, Cabrera A R, Evans S G. Exploring the magnitude-frequency distribution:a cellular automata model for landslides[J]. Landslides,2008(5):151-159.
    [58]Ramakrishnan D, Singh T N, Purwar N, Barde K S, Gulati A, Gupta S. Artificial neural network and liquefaction susceptibility assessment:a case study using the 2001 Bhuj earthquake data, Gujarat, India[J]. Computational Geosciences,2008,12(4):491-501.
    [59]Merkevicius, E, Garsva, G, Girdzi jauskas, S A. Hybrid SOM-Altman Model for Bankruptcy Prediction[J], Lecture Notes in Computer Science, 2006(3994):364-371.
    [60]Benavides I A, Everett M E, Pierce Jr C. Unexploded ordnance discrimination using time-domain electromagnetic induction and self-organizing maps[J]. Stoch Environ Res Risk Assess,2009(23): 169-179.
    [61]Mostafa M M. Clustering the ecological footprint of nations using Kohonen's self-organizing maps[J]. Expert Systems with Applications, 2010(37):2747-2755.
    [62]Germen E, Ece D G, Gerek O N. Self Organizing Map (SOM) Approach for Classification of Power Quality Events, Lecture Notes in Computer Science, 2005,3695,403-408.
    [63]Heikkinen M, Kettunen A, Niemitalo E, Kuivalainen R, Hiltunen Y. SOM-Based Method for Process State Monitoring and Optimization in Fluidized Bed Energy Plant[J]. Lecture Notes in Computer Science,2005, 3696:409-414.
    [64]Tambouratzis T. SOM-Based Estimation of Meteorological Profiles[C], in Adaptive and Natural Computing Algorithms, Part Ⅰ, Proceedings of the International Conference in Coimbra, Portugal,2005. pp.173-176.
    [65]Kawabata D, Bandibas J. Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network (ANN)[J]. Geomorphology,2009(113):97-109.
    [66]Liu F, Liu Z B. Application of Self- organizing Feature Map in water quality classification[J], Opencast Mining Technology,2007(5):70-72.
    [67]刘涌江,胡厚田,白志勇.泥石泥危险度评价的神经网络法[J].地质与勘探,2001,37(2):84-87.
    [68]王艳辉,蔡嗣经,宋卫东.基于人工神经网络的地下矿山岩层移动研究[J].北京科技大学学报,2003,25(2):106-109.
    [69]吴秀娟.人工神经网络在大坝监测数据分析中的应用研究[D].武汉:武汉大学,大地测量学与测量工程,2003.
    [70]张中昱.基于BP神经网络和模糊综合评价的环境分析评价系统[D].天津:天津大学,电子信息工程学院,2006.
    [71]林开平.人工神经网络的泛化性能与降水预报的应用研究[D].南京:南京信息工程大学,气象学,2007.
    [72]何璠.基于BP人工神经网络的环境质量评价模型研究[D].成都:四川大学,环境科学,2006.
    [73]张巍.基于BP人工神经网络的道路安全评价研究[D].长安:长安大学,交通运输规划与管理,2006.
    [74]冯夏庭,王泳嘉,卢世宗.边坡稳定性的神经网络估计[J].工程地质学报,1995,3(4):54-61.
    [75]卢才金,胡厚田,徐建平.改进的BP网络在岩质边坡稳定性评判中的应用[J].岩石力学与工程学报,1999,18(3):303-307.
    [76]贺可强,雷建和.边坡稳定性的神经网络预测研究[J].地质与勘探,2001,37(6):72-75.
    [77]汪华斌,徐瑞春.BP神经网络在鱼洞河滑坡稳定性评价中的应用[J].长江科学院院报,2002,19(4):62-64.
    [78]陈涛.基于自组织映射神经网络的词自动聚类[J].北京:清华大学,计算机科学与技术系,2004.
    [79]吴红艳.基于自组织特征映射网络的聚类算法研究[J].重庆:重庆大学,计算机学院,2006.
    [80]Shannon C E, Weaver W. The Mmathematical Theory of Communication[M]. Urbana:The University of Illinois Press,1947.
    [81]Oh H J, Lee S, Wisut Chotikasathien, Chang Hwan Kim, Ju Hyoung Kwon. Predictive landslide susceptibility mapping using spatial information in the Pechabun area of Thailand[J]. Environmental Geology.2009(57): 641-651
    [82]Lee S, Touch Sambath. Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models [J]. Environmental Geology,2006(50):847-855.
    [83]Lee S. Application of Likelihood Ratio and Logistic Regression Models to Landslide Susceptibility Mapping Using GIS[J]. Environmental Management,2004,34(2):223-232.
    [84]Gorum T. Gonencgil B, Gokceoglu C, Nefeslioglu H A. Implementation of reconstructed geomorphologic units in landslide susceptibility mapping:the Melen Gorge(NW Turkey) [J]. Natural Hazards,2008, 46:323-351.
    [85]王卫东,钟晟.基于GIS的Logistic回归模型在地质灾害危险性区划中的应用[J].工程勘察,2009(1):5-10.
    [86]王征征.MAPGIS和SPSS的区域型滑坡危险性区划[D].北京:中国地质大学,地球科学与资源学院,2006.
    [87]张文彤.SPSS统计分析教程(高级篇)[M].北京:北京希望电子出版社,2002.
    [88]Kim K B, Kim G H, Je S K. Medical Image Vector Quantizer Using Wavelet Transform and Enhanced SOM Algorithm[J]. Lecture Notes in Computer Science,2005(3339):33-40.
    [89]Prietol B, Merelol J J, Prietol A, Tricas F. Analyzing a Web-Based Social Network Using Kohonen's SOM[J]. Lecture Notes in Computer Science, 2007(4507):911-918.
    [90]Guthrie R H, Deadman P J, Cabrera A R, Evans S G. Exploring the magnitude-frequency distribution:a cellular automata model for landslides[J]. Landslides,2008(5):151-159.
    [91]Ramakrishnan D, Singh T N, Purwar N, Barde K S, Gulati A, Gupta S. Artificial neural network and liquefaction susceptibility assessment:a case study using the 2001 Bhuj earthquake data, Gujarat, India[J]. Computational Geosciences,2008,12(4):491-501.
    [92]Kawabata D, Bandibas J. Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network (ANN)[J]. Geomorphology,2009(113):97-109.
    [93]Mostafa M M. Clustering the ecological footprint of nations using Kohonen's self-organizing maps[J]. Expert Systems with Applications, 2010(37):2747-2755.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700