用户名: 密码: 验证码:
含高浓度铁锰及氨氮的地下水生物净化效能与工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物固锰除锰理论为地下水除锰技术开辟了新径,以“弱跌水曝气+一级生物过滤”为典型工艺流程的地下水铁锰生物同层净化技术得到了广泛应用,半个世纪以来地下水除锰难的困扰有了经济高效的解决办法。然而由于我国地域广阔,东西南北水文地质构造以及环境条件相差悬殊,造成各地地下水水质千差万别,铁锰生物同层净化技术在推广应用过程中自然会出现各种新问题,需要更深入研究,从而逐步完善生物固锰除锰理论。地下水厂实际生产运行经验表明,在高浓度亚铁离子存在的情况下,铁锰同层净化生物滤层的培养周期被大大延缓,从正常的1~2个月延缓至6~8个月,且成熟生物滤层的运行稳定性欠佳;另外在地下水中有氨氮存在的情况下,生物除锰滤层的培养受到抑制,只有在氨氮完全硝化之后,才能出现锰离子的完全去除。为此本文针对高浓度亚铁离子以及氨氮对生物除锰的影响进行高铁高锰含氨氮地下水的生物同层净化研究,旨在寻求高铁和氨氮双重影响下的铁锰氨氮生物同层净化滤层的快速启动,并建立高铁高锰含氨氮地下水生物同层净化示范工程。
     生物除铁除锰滤层中铁锰氧化还原关系的研究结果表明:在生物滤池中存在着复杂的铁锰氧化还原过程,并且与原水水质密切相关,当原水中Fe2+浓度超过3mg/L,高浓度的亚铁离子足以成为高价态的锰生物氧化物还原的电子供体,溶出Mn2+离子,从而破坏除锰生物膜结构及生物除锰滤层。因此只有当Fe2+在滤层上部氧化历程完成之后,在滤层中下部才能构筑高速率的生物化学除锰滤层,Fe2+、Mn2+离子可以在同一滤层中去除,但并非同时去除。在高铁高锰地下水生物同层净化滤池中,滤池上层为除铁段并有微弱的除锰能力,中下层才是高效除锰段,滤层厚度要求较厚。
     针对高铁型地下水生物除锰滤层成熟期长的问题,根据高浓度亚铁离子对生物除锰滤层的破坏作用这一发现,提出了高铁水质情况下除锰生物滤膜培养受损模型:在使用单层滤料进行生物除锰滤层的培养过程中,反冲洗后滤料的混层会致使部分除锰生物膜与源水中高浓度亚铁离子直接接触从而遭受破坏,延缓除锰生物膜的积累,延缓培养周期。为此又提出了采用双层滤料进行生物除锰滤层快速启动的设想,滤柱实验表明,在双层滤料的使用下,源水水质Fe2+为15mg/L,Mn2+为1.5mg/L时,铁锰生物同层净化滤层成熟周期成功缩短至2个月。
     含氨氮地下水在生物净化过程中溶解氧需求较大,在本实验水质条件下(Fe2+约为15mg/L,Mn2+约为1.5mg/L,NH4+-N约为1mg/L),要达到铁锰氨氮的同层净化,进水溶解氧需要控制在7.5mg/L以上。溶解氧主要消耗在滤层上部亚铁、氨氮以及其它还原性物质的氧化上,中下部生物除锰滤层能否得到足够的剩余溶解氧是生物滤层除锰成败的关键因素。根据地下水中氨氮的含量,在生物净化过程中需要对曝气工艺乃至整个工艺流程进行充分考虑,实验水质条件下,弱跌水曝气(DO约4~5mg/L)不能满足水质净化供氧需求,需要采用喷淋以及机械曝气等强曝气方式(DO约8.5~11mg/L);当氨氮含量再增大时,受水中氧气饱和溶解度限制,原水一次充氧将无法满足净化需求,从而重新尝试了两次曝气充氧的两级串联过滤方式和持续曝气充氧的曝气生物过滤方式。
     氨氮对于生物除锰滤层培养过程中的影响来源于氨氮硝化过程中亚硝氮的积累,只有当亚硝酸盐的积累完全消失以后,才会迎来锰的完全去除。含氮地下水生物除锰滤层的快速启动关键在于硝化菌的快速积累,尝试了循环培养生物滤柱启动试验,结果表明循环培养方式加速了硝化菌、以及除锰菌的积累,成功将高铁高锰含氨氮地下水的同层生物净化滤层启动周期缩短至20d。
     最后通过对松北水厂曝气系统改造、滤池滤层结构的调整以及生物滤层的培养,成功将水厂原有的两级过滤流程改造为一级过滤流程,滤池出水铁锰氨氮浓度控制在0.2mg/L,0.05mg/L及0.2mg/L以下。并对滤池微生物群落结构以及演替规律进行了研究,结果表明滤层不同深度微生物群落结构变化不明显,Zoogloea是滤池的常驻菌群,适应能力较强,对系统的稳定起一定作用。从滤池中分离到一株低温高效除锰功能菌Chryseobacterium sp·MSB-4,与鞘细菌(Sphingobacterium)具有较近的亲缘关系。
The purification of groundwater containing manganese has been solved well by biological technology of manganese removal. The typical process flow has been widely used to remove iron and manganese by single filter. But it should be improved by further study to adapt diverse groundwater quality and to be used throughout the country. It is reported that the required start-up period of biofilter for the removal of Mn is typically 1-2 months, but when water contains ammonia, biological Mn removal can take place only after complete nitrification, and when water contains high concentration of Fe2+, the start-up period may be 6-8 months. So in this work we study in the effect of high concentration of Fe2+ and ammonia on the biological removal of manganese in order to shorten the start-up period of biofilter and build demonstration plant for the removal of Fe2+, Mn2+ and ammonia in a single biofilter.
     According to the research of redox relationship between Fe and Mn in the biofilter, the reduction of biological manganese oxide takes place under high concentration of Fe2+ (>3mg/L), inducing the release of Mn2+ and the destruction of Mn-removal biofilm. Fe2+ and Mn2+ can be removed in a single biofilter, but the efficient manganese removal can only take place in the middle-lower part of the filter after the complete oxidation of Fe2+, so a thick layer is needed for the biofilter. Considering the destruction of Mn-removal biofilm by high concentration of Fe2+, we suppose that: in the culture process of single-media biofilter for Mn-removal, partly formed Mn-removal biofilm would be destroyed by contacting high concentration of Fe2+ in the raw water because of mixed-layer structure of biofilter after backwashing, which would delay the accumulation of biofilm and prolong the start-up period. And dual-media filter is put forward to solve this problem, the result of the filter-column experiment proves that: the start-up period of the dual-media biofilter for the removal of Fe2+ and Mn2+ is shortened to 2 months when the concentration of Fe2+ and Mn2+ is respectively 15mg/L and 1.5mg/L in the raw groundwater.
     The DO in the influent should be raised above 7.5mg/L for the simultaneous removal of Fe2+, Mn2+ and NH4+-N from groundwater( Fe2+ about 15mg/L, Mn2+ about 1.5mg/L, NH4+-N about 1mg/L). The dissolved oxygen is mostly consumed at the upper part of the filter for oxidization of Fe2+, NH4+-N and other reducing agents. The residual dissolved oxygen concentration in the middle and lower part of the biofilter determines the result of the biological removal of manganese. The aeration system, even the process flow for the biological purification of groundwater should be taken fully into account according to the concentration of NH4+-N in raw water. When the weak cascaded aeration couldn’t afford enough dissolved oxygen for the purification, strong aeration technology should be adopted, for example, spray aeration and mechanical aeration. With the further increasing of NH4+-N, one-stage aeration couldn’t supply adequate dissolved oxygen due to the limitation of saturation of dissolved oxygen, and we try the two-stage filtration process which has two-stage aeration and the aerated biofilter process.
     The accumulation of NO2--N inhibits the culture process of Mn-removal biofilter and until it disappears, the complete removal of Mn could come true. The accumulation of nitrifying bacteria is the key part for the rapid start-up of biofilter for Mn-removal from groundwater containing NH4+-N. So we try cycling culture for rapid start-up of the biofilter, the result turns out that: the period is shortened to 20 days.
     In the end, the two-stage filtration process is transformed to one-stage filtration after transformation of aeration system, adjustment of filter structure and culture of biofilm in Songbei water plant, and the concentration of iron, manganese and NH4+-N in the filtrate is lower than 0.2mg/L, 0.05mg/L and 0.2mg/L. Structure and dynamics analysis of microbial community from biofilters indicate that the variation of the structure is inapparent, and Zooglowa has a role to the stability of the biofilter for its wide distribution and great adaptability. A strain Chryseobacterium sp.MSB-4 is isolated, which is efficient for the Mn-removal under low temperature and has close relationship with sheathed bacteria (Sphingobacterium).
引文
1解文多,关铁声.地下水管理模型在开采微铁锰地下水中的应用.吉林地质. 1994, 13(4): 59~67
    2杨景田.新型地下水及设施污染控制技术.环境科学进展. 1994, 2(4): 38~45
    3我国主要城市和地区地下水水情通报.国土资源部. 2000-2001: 5~9
    4张杰,李冬,杨宏等.生物固锰除锰机理与工程技术.中国建筑工业出版社. 2005: 14~17
    5李圭白,刘超.地下水除铁除锰.第二版.中国工业出版社. 1989: 4~12
    6我国主要城市和地区地下水水情通报.国土资源部. 2005~2006: 3
    7董历新,仲爱青.生物接触除铁除锰水厂的设计与运行.中国给水排水. 1999, 15(3): 28~30
    8张杰,李冬,杨宏等.生物固锰除锰机理与工程技术.中国建筑工业出版社. 2005: 17~22
    9 C. Trembly, A. Beaubien, P. Charles. Control of Biological Iron Removal from Drinking Water Using Oxidation-Reduction Potential. Water Sci.Tech.1998,
    38(6): 121~128
    10 P. Mouchet. From Conventional to Biological of Iron and Manganese in France. JAWWA. 1992, 84(4): 158~167
    11 J. Karpinska, M. Kulikowska. Simultaneous Determination of Zinc (Ⅱ) and Iron (Ⅱ) in Pharmaceutical Preparations. Journal of Pharmaceutical and Biomedical Analysis. 2002, 29(1-2): 153~158
    12 N. Raffard, V. Balland, J. Simaan. Bio-inspired Iron Catalysts for Degradation of Aromatic Pollutants and Alkane Hydroxylation. C.R.Chime. 2002, 5(2): 99~109
    13 K. Vaaramaa, J. Lehto. Removal of Metals and Anions from Drinking Water by Ion Exchange. Desalination. 2003, 155(2): 157~170
    14 Trace Inorganic Substance Committee. Research Need for the Iron and Manganese. AWWA. 1987, 9: 119~122
    15 O. P. Lacall. Contribution of Nitrogen and Phosphorus by Precipitation in the Drainage Basin of the Santillana Reservoir (Madrid). Environmental Geology. 1994, 23(2): 99~104
    16朱济成.化学氮肥与地下水污染.水文地质工程地质. 1986, (5): 38~41
    17黎耀辉.科学施用氮肥防止水体污染.资源开发与保护. 1986, 2(1): 32~34
    18邱汉学.青岛地区的环境水文地质问题及对策.海洋湖沼报. 1991, (4): 12~15
    19 M. N. Almasri. Nitrate Contamination of Groundwater: A Conceptual Management Framework. Environmental Impact Assessment Review, 2007, 27(3): 220~242
    20刘晓晨,孙占祥.地下水硝态氮污染现状及研究进展.辽宁农业科学. 2008, (5): 41~44
    21杨荣,苏永中.黑河中游绿洲农区地下水硝态氮污染调查研究.冰川冻土. 2008,30(6): 983~988
    22陈建耀,王亚,张洪波等.地下水硝酸盐污染研究综述.地理科学进展. 2006, 25 (1): 35~41
    23赵新峰,杨丽蓉,施西等.东北海伦地区农村地下饮用水硝态氮污染特征及其影响因素分析. 2008,29(11): 2993~2998
    24刘晓晨,汪仁,孙占祥.辽宁省三种类型作物产区饮用水硝态氮污染状况研究.灌溉排水学报. 2008, 27(5): 9~12
    25刘宏斌,李志宏.北京平原地下水硝态氮污染状况及其影响因素研究.土壤学报.2006, 43(3): 405413
    26赵秀春,王成见,孟春霞.青岛市地下水中硝酸盐氮的污染及其影响因素分析.水文. 2008, 28(5): 94~96
    27刘宏斌,张云贵.北京市平原农区深层地下水硝态氮污染情况研究.土壤学报.2005, 42(3): 411~418
    28 R. F. Spalding, M. E. Exner. Occurrence of Nitrate in Groundwater A Review. Journal of Environmental Quality. 1993, 22(3): 382~402
    29 B. T. Nolan, B.C. Ruddy. Risk of Nitrate in Groundwater of the United States A National Perspective. Environmental Science and Technology. 1997, 31(8): 2229~2236
    30郭战玲,沈阿林,寇长林等.河南省地下水硝态氮污染调查与监测.监测分析. 2008, 25(5): 125~128
    31邱汉学,刘贯群,焦超颖.三氮循环与地下水污染——以辛店为例.青岛海洋大学学报. 1997, 27(4): 533~538
    32李志萍,张金炳.污染河水中氨氮对浅层地下水的影响.中国地质大学学报. 2004, 29(3): 363~368
    33刘波,张艳,高静等.北京市通州区农村地下水氨氮浓度及其影响因素.环境与健康杂志. 2006, 24(4): 328~330
    34 A. Trembly, P. Beaubien. Control of Biological Iron Removal from Drinking Water Using Oxidation-Reduction Potential. Water Sci.Tech.1998, 38(6): 121~128
    35刘灿生,黄毅轩,陈牧民.关于地下水除铁除锰机理的探讨.给水排水. 1996,22(10): 17~19
    36张吉库,傅金祥.地下水除铁除锰技术与发展趋势.沈阳建筑工程学院学报.2003, 19(3): 212~214
    37 M. C. Hodgkinson. Importance of High Aesthetic Quality Potable Water in Tourist and Recreational Areas. Wat.Sci.&Tech.1989, 21(2): 183~187
    38张杰,戴镇生.强氧化剂除锰原理与应用.给水排水. 1997, 22(3): 16~18
    39张杰,李冬,杨宏等.生物固锰除锰机理与工程技术.中国建筑工业出版社. 2005: 99~101
    40陈宇辉,余健.地下水除铁除锰研究的问题与发展.工业用水与废水. 2003, 34(3): 1~4
    41余健,郭照光,傅国楷.两级过滤除铁除锰水厂的设计与运行.中国农村水利水电. 2002, (1): 4~5
    42 H. L. Ehrlich. Bacteriology of Manganese Nodules Manganese Oxidation By A Cell-Free Extract from A Manganese Nodule Bacterium. Appl. Microbiol. 1968, 16(2): 197~202
    43 H. L. Ehrlich, W. C. Ghiorse, G.. L. Johnson.. Distribution of Microbes in Manganese Nodules from the Atlantic and Pacific Oceans. Dsv. Ind. Microbid. 1972, (13): 57~65
    44 P. A. Larock, H. L. Ehrlich. Observations of Bacterial Microcdonies on the Surface of ferro manganese nodules from Black Plateau by Scanning Electron Microscopy. Microb. Ecd. 1975, (2): 84~96
    45杨宏.生物固锰除锰技术微生物学研究.哈尔滨工业大学博士学位论文. 2004: 34~36
    46李冬,杨宏,张杰.生物滤层同时去除地下水中铁、锰离子研究.中国给水排水. 2001, 17(8): 1~5
    47张杰,杨宏,李冬等.生物滤层中Fe 2+的作用及对除锰的影响.中国给水排水. 2001, 17(9): 14~16
    48姜安玺,韩玉花,杨宏等.生物除铁除锰滤池的曝气溶氧研究.中国给水排水. 2001, 17(10): 16~20
    49 H. Yang, D. Li, J. Zhang. Design of Biological Filter for Iron and Manganese Removal from Water. Journal of Environmental Science and Health–Part A Toxic/Hazardous Substances and Environmental Engineering. 2004, 39(6): 1447~1454
    50高洁,丁时宝,张杰.生物除铁除锰滤池稳定运行阶段反冲洗研究.湘潭矿业学院学报. 2003, 18(4): 83~87
    51张杰,李冬,杨宏等.生物固锰除锰机理与工程技术.中国建筑工业出版社. 2005: 209~231
    52 B. Pernot, M. euvtard, P. Simon. Effects of Iron and Manganese on the Scaling Potentiality of Water. J. Water SRT-Aqua.1998, 47(1): 21~29
    53 N. Terauchi, T. Ohtani, K. Yamanaka. Studies on a Biological Filter for Musty Odor Removal in Drinking Water Treatment Process. Water Sci.&Tech. 1995, 31(11): 229~235
    54胡国强,许胜先.工业冷却水中除锰除铁的试验研究.给水排水. 1999, 25(6): 41~43
    55 Y. M. Nelson, W. Leonardw. New Evidence for the Importance of Mn and Fe Oxides. Wat.Res. 2000, 34(2): 427~436
    56张杰,杨宏,李冬.生物滤层中Fe 2+的作用及对除锰的影响.中国给水排水. 2001, 17(9): 14~16
    57 I. A. Katsoyiannis, A. I. Zouboulis. Biological Treatment of Mn(II) and Fe(II) Containing Groundwater: Kinetic Considerations and Product Characterization. Water research. 2004, (38): 1922~1932
    58 J. M. Gomez, D. Cantero. Kinetic Study of Biological Ferrous Sulphate Oxidizing Bacteria in Continous Stirred Tank and Packed Bed Biochemistry. 2003,(38): 867~875
    59 P. Berbenni, A. Pollice. Removal of Iron and Manganese from Hydrocarbon Contaminated Groundwaters. Bioresource Technology. 2000, 74(2): 109~114
    60 I. A. Katsoyiannis, A. I. Zouboulis. Biological Treatment of Mn(II) and Fe(II) Containing Groundwater: Kinetic Considerations and Product Characterization. Water research. 2004, (38): 1922~1932
    61 V. A. Pacini, A. M. Ingallinella, G.. Sanquinetti. Removal of Iron and Manganese Using Biological Roughing Up Flow Filtration Technology. Water Research. 2005, 39(18): 4463~4475
    62 P. Berbenni, A. Pollice, R. Canziani, L. Stabile. Removal of Iron and Manganese from Hydrocarbon-Contaminated Groundwater. Bioresource Technoligy. 2000, (74): 109~114
    63 Tamara ?tembal, Marinko Marki′c, Nata?a Ribiˇci′c. Removal of Ammonia, Iron and Manganese from Groundwater of Northern Croatia—Pilot Plant Studies. Process. Biochemistry. 2005, (40): 327~335
    64 D. A. White, A. A. Siddique. Removal Manganese and Iron from Drinking Water Using Hydrous Manganese Dioxide. Solvent Extraction and Iron Exchange. 1997, 15(6): 1133~1145
    65 K. O. Neyman, R. Bray. Evaluation of the Effectivity of Selected Filter Beds for Iron and Manganese Removal. Water Sci. & Tech. 2001, 1(2): 159~165
    66 A. Gouzinis. Removal of Mn and Simultaneous Removal of NH3, Fe and Mn from Potable Water Using a Trickling Filter. Wat.Res.1998, 32(8): 2442~2450
    67 A. Katsobiannis. Use of Iron and Manganese Oxidizing Bacteria for the Combined Removal of Iron, Manganese and Arsenic from Contaminated Groundwater. Water Quality Research Journal of Canada. 2006, 41(2):117~129
    68 U. Rott, C. Mever, M. Friedle. Residue-Free Removal of Arsenic, Iron, manganese and Ammonia from Groundwater. Water Sci. & Tech. 2002, 2(1): 17~24
    69 A. Zouboulis. Recent Advances in the Bioremediation of Arsenic-Contaminated Groundwater. Environment International. 2005, 31(2): 213~21
    70 I. Katsoviannis, A. Zouboulis, H. Althoff. As(III) Removal from Groundwaters using Fixed-Bed Upflow Bioreactors. Chemosphere. 2002, 47(3): 325~332
    71 I. Katsoviannis, I. A. Zouboulis. Kinetics of Bacterial As(III) Oxidation and Subsequent As(V) Removal by Sorption onto Biogenic Manganese Oxides during Groundwater Treatment. Industrial and Engineering Chemistry Research. 2004, 43(2): 486~493
    72岳舜琳.给水中的氨氮问题.净水技术. 2001, 20(2): 12~15
    73周国华,完颜华,刘艳球.微污染水源中的氨氮及其处理技术.环境科学与管理. 2006, 31(6): 19~21
    74刑昌梅,吕锡武.跌水曝气生物接触氧化预处理太湖水的研究.江苏环境科技. 2007, 20(1): 4~8
    75 G. J. Brouwers, E. Vijgenboom, Corstjens PLAM. Bacterial Mn2+ Oxidizing Systems and Multicopper Oxidases. An Overview of Mechanisms and Functions. Geomicrobiol J., 2000, 17(1): 1~24
    76 B. R. Rittmann, P. M. Huck. Biological Treatment of Public Water Supplies. CRC Critical Rev Environ Control, 1989, 19(2): 119~184
    77 H. Ehrlich. Manganese Oxidizing Bacteria from a Hydrothermally Active Region on the Galapagos. Rift Ecol Bull, 1983, 35: 357~366
    78 H. Ehrlich, J. Salerno. Energy Coup Ling in Manganese Oxidation by a Marine Bacterium. Arch Microbiol, 1990, 54(1): 12~17
    79 M. Haygood, B. M. Tebo. Unusual Ribulose-1, 5-Biphosphate Carboxylase /Oxigenase Genes from a Marine Manganese-Oxidizing Bacterium. Microbio-logy, 1996, (142): 2549~2559
    80 B. M. Tebo, W. C. Ghiorse. Bacterially Mediated Mineral Formation: In Sightsinto Manganese (II) Oxidation from Molecular Genetic and Biochemical Studies. Rev Mineral, 1997, 35(1): 225~266
    81 S. Kieber, W. D. Sunda, D. J. Kieber. Oxidation of Humic Substances by Manganese Oxides Yields Low Molecular-Weight Organic Substrates. Nature, 1994, 367: 62~64
    82 B. Toner, S. Fakra, M. Villalobos, T. Warwick, G. Sposito. Spatially resolved Characterization of Biogenic Manganese Oxide Production within a Bacterial Biofilm. Appl Environ Microbiol, 2005, (71):1300~1310
    83 F. C. Boogerd, J. P. M. de Vrind. Manganese Oxidation by Leptothrix Discophora. Bacteriol, 1987, 169(2): 489~494
    84 J. Bargar, B. Tebo, J. Villinski. In Situ Characterization of Mn (Ⅱ) Oxidation by Spores of the Marine Bacillus Sp. Strain SG-1. Geochimica et Cosmochimica Acta, 2000, 64 (16):2775~2778
    85 OkazakiM, T. Sugita, M. Shimizu, Y. Ohode, K. Lwamoto. Partial Purification and Characterization of Manganese-Oxidizing Factors of Pseudom Onas. Appl & Environ Microbiol, 1997, 63(12):4703~4799
    86 L. Adams, W. Ghiorse. Oxidation State of the Mn in the Mn Oxide Produced by Leptothrix Discophora SS-1. Geochim et Coschim Acta, 1988,52:2073~2076
    87 K. H. Nealson, M. Bradley. The Isolation and Characterization of Marine Bacteria which Catalyze-Manganese Oxidation. Environ Biogeochem Geomic-robiol, 1978, 3: 847~858
    88 C. A. Francis, E. M. Co, B. M. Tebo. Enzymatic Manganese (II) Oxidation by a Marine-Proteobacterium. Appl Environ Microbiol, 2001, (67):4024~4029
    89 J. de Vrind, A. de Groot, GJ. Brouwers. et.al. Identification of a Novel Gsp-Related Pathway Required for Secretion of the Manganese-Oxidizing Factor of Pseudomonas Putida Strain GB-1. Mole Microbiolo, 2003, 47(4): 993~1006
    90 B. M. Tebo, J. R. Bargar, B. G. Clement.et.al. Webb. Biogenic Manganese Oxides: Properties and Mechanisms of Formation. Ann Rev Earth Planet Sci, 2004, (32):287~328
    91 J. S. Parikh, Jon Chorover. FTIR Spectroscopic Study of Biogenic Mn-oxide Formation by Pseudomonas Putida GB-1. Geomicrobiol J, 2005, 22(5):207~218
    92 W. H. Krumbein, J. Altmann. A New Method for the Detection and Enumeration of Manganese Oxidizing and Reducing Microorganisms. Helgoland Marine Research, 1973, 25(2-3):347~356
    93赵焱,李相昆,曾辉平等.高铁高锰生物滤池微生物群落DGGE基因指纹分析.浙江大学博士论坛. 2008
    94张杰,李冬,杨宏等.生物固锰除锰机理与工程技术.北京:中国建筑工业出版社. 2005:3~8
    95李冬,张杰,王洪涛.生物除铁除锰滤池的快速启动研究.中国给水排水. 2005, 12(21): 35~38
    96 T. Stembal , M. Markic, F. Briski , L. Sipos. Rapid Start-Up of Biofilters for Removal of Ammonium, Iron and Manganese from Groundwater. Journal of Water Supply Research and Technology-Aqua 2004, 53(7): 509~518
    97 C. K. Hope, T. R. Bott. Laboratory Modeling of Manganese Biofiltration Using Biofilms of Leptothrix Discophora Water Research, 2004, (38): 1853~1861
    98 M. S. Burger, C. A. Krentz, S. S. Mercer. Manganese Removal and Occurrence of Manganese Oxidizing Bacteria in Full-Scale Bilfilters. Journal of Water Supply: Research and Technology-Aqua,2008, 57(5):351~359
    99 M. S. Burger, S. S. Mercer, Manganese Removal during Bench-Scale Biofiltration. Water Research. 2008, 42(19): 4733~4742
    100李冬,张杰,陈立学.生物除铁除锰在地下水处理厂的应用.中国给水排水. 2004, 20(12): 85~88
    101李冬,杨昊,李相昆.无烟煤滤料应用于生物除铁除锰水厂的优势研究.沈阳建筑大学学报. 2007,23(5): 818~821
    102张晓慧,李德生,孙文俊.关于自然形成生物锰砂滤池对氨氮去除效果的研究.环境科学与管理. 2007, 32(5): 61~64
    103范懋功.澳大利亚微生物法除铁除锰技术.公用科技, 1994, 10(3): 24~26
    104B. E. Rittmann and V. L. Snoeyinck. Achieving Biologically Stable Drinking Water. J. AWWA.1984, 76(10): 156~174
    105J. Vandenabeele, D. De Beer, R. Germonrpe, R. Van de Sande and W. Berstrate. Influence of Nitrate on Manganese Removing Microbial Consortia from Sand Filters. Wat. Res. 1995, 29(2): 579~587
    106P. Mouchet From Conventional to Biological Removal of Iron and Manganese in France. J. Am. Water Works Assoc. 1992, 84(4): 158~162
    107H. Frischherz, F. Zibuschka, H. Jung and W. Zerobin. Biological Elimination of Iron and Manganese. Wat. Supply, 1985, 3(2): 125~136
    108G. Michalakos. Dimitrakos, J. Martinez Nieva, D. V. Vayenas and G. Lyberatos. Removal of Iron from Potable Water Using a Tricking Filter. Wat. Res. 1997, 31(5): 991~996
    109D. V. Vayenas and G. Lyberatos. A Novel Model for Nitrifying Trickling Filters. Wat. Res. 1994, 28(6): 1275~1284
    110D. V. Vayenas and G. Lyberatos. On the Design of Mitrifying Tricking Filters forPotable Water Treatment. Wat. Res. 1994, 29(4): 1079~1084
    111A. G. Tekerlekopoulou, D. V. Vayenas. Ammonia,Iron and Manganese Removal from Potable Water Using Trickling Filters. Desalination. 2007, 210(1-3): 225~235
    112A. G.. Tekerlekopoulou, D. V. Vayenas. Simultaneous Biological Removal of Ammonia, Iron and Manganese from Potable Water Using Trickling Filter. Biological Engineering Journal. 2008, 39(1): 215~220
    113A. G. Tekerlekopoulou, N. Kosmidis, D, V, Vayenas and G. Lyberatos. Removal of Mn and Simultaneous Removal of NH3, Fe and Mn from Potable Water Using a Trickling Filter. Wat. Res. 1998, 32(8): 2442~2450
    114杨宏.地下水除铁除锰生物学及系统生态稳定性研究.哈尔滨工业大学博士学位论文. 2004. 19~21
    115J.Vandenabeele, D. Beer. Manganese Oxidation by Microbial Consortia from Sand Filters. Microb. Ecol., 1992,(24): 91~108
    116APHA,AWWA﹠WPCF合编.水和废水标准检验法.第15版.宋仁元,张亚杰,王维一等译.北京:中国建筑工业出版社, 1985,194-195
    117马放,任南琪,杨基先.污染控制微生物学实验.哈尔滨:哈尔滨工业大学出版社, 2002, 53-63
    118A.Wilmotte, G.. V. Auwera and R. D. Wachter. Structure of the 16S Ribosomal RNA of the Thermophilic Cynobacterium Chlorogloeopsis HTF (Mastigocladus laminosus HTF) Strain PCC7518, and Phylogenetic Analysis. FEBS Letters, 1993, 317: 96~100
    119夏北成, J. Z. Zhou.分子生物学方法在微生物生态学中的应用.中山大学学报, (自然科学版) 1998, 37(2): 97~101
    120B. J. Bassam, P. M. Gresshoff. Fast and Sensitive Silver Staining of DNA in Polyacrylamide Gels. Anal. Biochem. 1991, 196(1): 80~83
    121F. Schwieger, C. C. Tebbe. A New Approach to Utilize PCR-Single-Strand Conformation Polymorphism for 16S rRNA Gene-Based Microbial Community Analysis. Appl Environ Microbiol. 1998, 64(12): 4870~4876
    122张杰,曾辉平,李冬等.维系生物除铁除锰滤池持续除锰能力的研究.中国给水排水. 2007, 23(3): 1~4
    123吕耀.农业生态系统中氮素造成的非点源污染.农业环境保护. 1998, 17(1): 35~39
    124耿土锁.生物膜法去除地面水中氨氮的效果与比较分析.贵州环保科技, 1997,3(4):12~16
    125A. G.. Tekerlekopoulou, N. Kosmidis, D. V. Vayenas. Removal of Mn andSimultaneous Removal of NH3, Fe and Mn from Potable Water Using a Trickling Filter. Wat. Res.1998, 32(8): 2442~2450
    126朱南文,高廷耀等.饮用水生物脱氮技术现状.水处理术, 1999, 25(4): 214~218
    127夏立江,许立孝,温小乐.城市垃圾渗滤液引起地下水氮污染的研究.农业环境保护. 2001, 20 (2): 108~110
    128董维红,林学钰.浅层地下水氮污染的影响因素分析——以松嫩盆地松花江北部高平原为例.吉林大学学报(地球科学版). 2004, 34(2): 231~235
    129高洁,李碧清,杨宏等.生物滤层中锰去除反应动力学研究.哈尔滨工业大学学报. 2005, 37(10): 1339~1343
    130陈志云,郑强.松花江区浅层地下水资源质量评价综述,水文,2007,27(2),78-81
    131周铭涛,高洪,肖鹏等. PCR-SSCP技术应用研究进展.动物医学进展. 2009,30(6): 90~93
    132N. Brinkmann, R. Martens, C. C. Tebbe, et al. Origin and Diversity of Metabolically Active Gut Bacteria from Laboratory-Bredlarvae of Manduca Sexta. Appl Environ Microbiol. 2008, 74(23): 7189~7196
    133A. Caroli, F. Chiatti, S. Chessa, et al. Characterization of the Casein Gene Complex in West African Goats and Description of a New Alpha(s1)-Casein Polymorphism. J Dairy Sci, 2007, 90(6): 2989~2996
    134米文秀,谢冰,徐亚同等. PCR-SSCP技术用于脱臭微生物群落结构的研究.环境科学, 2008, 29(7): 1992~1997
    135赵阳国,王爱杰,任南琪等. SSCP技术分析不同废水处理系统中微生物群落结构.环境科学. 2007, 22(7): 1429~1433
    136任南琪,赵阳国,王爱杰等. PCR-SSCP技术分析碱度影响下硫酸盐还原反应器中微生物群落动态.中国科学(C辑), 2006, 36(1): 51~58
    137刘小琳,刘文君.生物陶粒与生物活性炭上微生物群落结构的PCR-SSCP技术解析.环境科学, 2007, 28(4): 924~928
    138王岩,沈锡权,吴祖芳等. PCR-SSCP技术在微生物群落多态性分析中的应用进展.生物技术, 2009, 19(3): 84~87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700