用户名: 密码: 验证码:
分子基纳米材料:高核金属氧簇的合成、组装及其性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高核金属氧簇作为一类重要的分子基纳米材料,由于其结构的多样性和性能上的均一性而受到了广泛的关注。这类高核金属氧簇化合物,尤其是具有蛋白质尺寸的金属氧簇化合物,在化学仿生,分子磁体,催化,能量存储以及多功能材料等领域被广泛应用,现不仅成为金属氧簇化学发展的新生长点之一,而且成为金属氧簇化学通往“合成生物学”的桥梁。本论文主要选用含氧多齿配体与过渡金属离子或稀土金属离子,设计合成了多种结构新颖的高核金属氧簇,探讨了这些高核金属氧簇的合成条件与合成规律,分析了新型簇合物结构和功能特性间的关系。
     本文采用常规水溶液方法和水热技术合成了36例高核金属氧簇类化合物,并通过IR、元素分析、ESR、紫外-可见光谱和单晶X-射线衍射分析等方法对晶体结构进行了表征与分析。对这些簇合物的磁学特性、热稳定性、电化学-电催化性质和吸附性能进行了初步研究。
     1.利用缺位型多酸,主要是二缺位的{γ-SiW_(10)},单缺位的{β-SiW_(11)}和六缺位的{P_2W_(12)}为前躯体合成了20个基于Keggin型缺位多酸的钨簇类化合物。化合物1-6是多镍取代的夹心型钨簇,两个缺位多酸片段之间分别含有一个由4到7个Ni2+离子组成的镍簇,其中化合物1和4分别含有两种不同的缺位多酸片段;化合物7-11是多核铜取代的多钨酸盐簇合物,化合物7和8是分别含有14个和10个Cu2+离子的四聚型高核钨簇化合物,化合物7是第一例基于四个{β-SiW_8}的高核钨簇化合物;化合物9-11中,夹心型多酸单元通过自缩合或被表面修饰的Cu2+离子连接构筑成纯无机的一维链状结构;化合物12-17是多锰取代的夹心型钨酸盐簇,其中化合物12和13是含有6个MN_2+离子的夹心型单体化合物,化合物14和15是以夹心型阴离子为建筑单元构筑的纯无机的一维结构,化合物16是由夹心型阴离子构筑的二维结构,化合物17是一个含有6个混价锰离子的双夹心型结构的多钨酸盐,化合18-20是多钴取代的夹心型多钨酸盐。Na_9K[Ni_7(OH)_4(H_2O)(CO_3)_2(HCO_3)(A-α-SiW_9O_(34))(β-SiW_(10)O_37)]·5H_3O·18H_2O (1) K_6Na_4[Ni_6(H_2O)_4(μ2-H_2O)_4(μ3-OH)_2(x-SiW_9O_(34))_2]·17.5H_2O (2) K_(12)[(SiW_8O_(31))_2Ni7(H_2O)_4(OH)_6]·23H_2O (3) K_6Na_(18)[H_2{Ni_5(H_2O)5(OH)_3(x-SiW_9O_(34))(β-SiW_8O_(31))}2]·39H_2O (4) (NH_4)_2[Ni_4(enMe)_8(H_2O)_2Ni_4(enMe)_2(PW_9O_(34))_2]·9H_2O (5) Na_2[H_6N_2(CH_2)_6]_2{Ni_4[H_4N_2(CH_2)_6]_2(H_2PW_9O_(34))_2}·7H_2O (6) Na_(16)[Cu_(14)(OH)_4(H_2O)16(SiW_8O_(31))_4]·20.5H_2O (7) K_(10)Na_(14)[Cu10(H_2O)_2(N3)_4(GeW_9O_(34))_2(GeW_8O_(31))_2]·30H_2O (8) K_2Na_(10)[Cu_4(GeW_9O_(34))_2]·15.5H_2O (9) K_4Na_4[Cu_2(H_2O)_8Cu_4(H_2O)_2(B-α-GeW_9O_(34))_2]·14H_2O (10) K_8[Cu_2(H_2O)_8Cu4(H_2O)_2(B-α-SiW_9O_(34))_2]·4H_2O (11)K_2Na_2MN_2(H_2O)_(12)[MN_2(H_2O)_(10)Mn_4(H_2O)_2(GeW_9O_(34))_2]·18H_2O (12) K_2Na_2MN_2(H_2O)_(12)[MN_2(H_2O)_(10)Mn_4(H_2O)_2(SiW_9O_(34))_2]·18H_2O (13) Na_4[Mn_4(H_2O)_(18)Mn_4(H_2O)_2(GeW_9O_(34))_2]·22H_2O (14) Na_4[Mn_4(H_2O)_(18)Mn_4(H_2O)_2(SiW_9O_(34))_2]·22H_2O (15) K_3Na_5[MN_2(H_2O)_6Mn_4(H_2O)_2(SiW_9O_(34))_2]·23.5H_2O (16) K_3Na_(10)H_3[{MnII(H_2O)}_2MnШ_4(SiW_6O_(26))(SiW_9O_(34))_2]·26H_2O (17) K_4Na6Co2(H_2O)12{Co(H_2O)_4[Co2(H_2O)10Co4(H_2O)_2(B-α-SiW_9O_(34))_2]2}·40H_2O (18) K_4Na4[Co2(H_2O)10Co_4(H_2O)_2(B-α-GeW_9O_(34))_2]·28.5H_2O (19) K_2Na6[Co2(H_2O)10Co_4(H_2O)_2(B-α-SiW_9O_(34))_2]·17H_2O (20)
     2.利用六缺位的Wells-Dawson型多酸{P2W12}与过渡金属离子反应合成了7个基于Dawson型缺位多酸的多钨酸盐簇。化合物21-23是首例基于{P2W12}的三聚冠状高核钨簇,其内部的空穴可以选择性地捕获过渡金属离子以及碱金属离子;化合物24是第一个基于{P4W24}的纯无机的高核钨簇;化合物25是由{P2W12}降解结合W原子和过渡金属离子形成的双Dawson型结构化合物;化合物26是由双Dawson型阴离子25通过表面修饰的铜离子连接形成的具有两种孔道的二维层状结构;化合物27是一个单铜取代的Dawson型单体结构的化合物。K_4Na_(15)[K_3{Mn(H_2O)_4}_2{WO_2(H_2O)_2}_2{WO(H_2O)}_3(P_2W_(12)O_(48))_3]·77H_2O (21) K3Na7Li5.5Ni0.25[Na3{Ni3.5(H_2O)13}{WO2(H_2O)_2}_2{WO(H_2O)}_3(P2W_(12)O_(48))_3]·64H_2O(22) K_6Na_(11)[Na_3{Cu_3(H_2O)9}{WO_2(H_2O)_2}_2{WO(H_2O)}3(P_2W_(12)O_(48))_3]·47H_2O (23) Na_(17)K_3[{W_2Co_2O_8(H_2O)_2}(P_2W_(12)O_(46))_2]·30H_2O (24) K_4Na10[α1-CuP_2W_(17)O_(60)(OH)]2·58H_2O (25) Na_2[H_2en][H_2hn]0.5[Cu(en)_2]4.5[α1-CuP_2W_(17)O_(60)(OH)]2·43H_2O (26) Na3[H_2hn]2.5[α1-P_2W_(17)O_(60)Cu(OH)_2]·14H_2O (27)
     3.利用缺位的Keggin型多酸与过渡金属和稀土金属离子反应得到了4个含有3d-4f混合金属簇的多钨酸盐。化合物28是由两个{β-SiW_8O_(31)}片段中心包括一个{CeMnШ4}簇构成的,其中的四个锰离子组成了近立方烷的构型;化合物29含有一个经典的四核夹心型结构,然后通过表面修饰的Nd3+离子连接形成了(3,6)-连接的框架结构;化合物30和31是分别含有6个Dy-Fe和Tb-Fe簇的六聚高核钨簇,是目前含有3d-4f混合金属簇数目最多的高核钨簇。K_(10)Na[{CeMnШ_4(u_3-OH)_2O2(H_2O)(HCO_3)}(β-SiW_8O_(31))_2]·21.5H_2O (28) K_3Na_3{Nd_2(H_2O)12Cu_4(H_2O)_2(SiW_9O_(34))_2}·21H_2O (29) (H_2en)12[Na_2K9?Dy_6Fe_6(H_2O)12(SiW_(10)O_38)6]·36H_2O (30) K_4Na_(14)[H_2en]4[K_9?Tb_6Fe_6(H_2O)_(12)(SiW_(10)O_38)6]·41H_2O (31)
     4.首先利用钨酸钠与Fe3+离子在硫酸溶液中自组装合成了一个含有30个Fe3+离子Keplerate型的球型簇(化合物32),该簇中12个五角星型的{W(W)5}片段作为十齿配体与30个Fe3+配位形成了高核含铁金属氧簇。通过前几项的研究可以发现,多酸作为无机含氧多齿配体可以和过渡金属离子形成各种各样的簇合物结构。这里利用手性有机含氧多齿配体与Fe3+离子反应合成了4个高核铁簇。化合物33和34是一对旋光纯的手性对应异构体,分别含有具有蛋白质尺寸的Fe168笼;化合物35和36也是一对旋光纯的手性对应异构体,是含有28核Fe3+的高核铁轮。K_6{[W6(SO4)(H_2O)_3O21]12[Fe(H_2O)_2]30}·106H_2O (32) Na96[Na_24Fe168(L-Tart)96(μ3-O)_48(HCOO)144]·310H_2O (33) Na96[Na_24Fe168(D-Tart)96(μ3-O)_48(HCOO)144]·310H_2O (34) K_2Na18[Fe28(μ3-O)_8(L-(–)-tart)16(CH3COO)_24]·29H_2O (35) K_2Na18[Fe28(μ3-O)_8(D-(+)-tart)16(CH3COO)_24]·29H_2O (36)
High-nuclearity metal-oxygen clusters, as one kind of important molecule-based nanomaterials, have attracted great attention owing to their unique structural variety and interesting physicochemical properties. The high-nuclearity metal-oxygen clusters, especially for molecule-based protein-sized complexes, can be used in the area of chemical bionics, moleculer magnets, catalysis, energy storage and multifunctional materials. Now, they have not only become a new growing point of the metal-oxygen cluster chemistry, but also become a bridge for the metal-oxygen cluster chemistry leading to the“synthetic biology”. In this paper, a series of novel high-nuclearity metal-oxygen clusters have been synthesized by the use of the inorganic or organic oxo-containing polydentate ligands, transition metal cations and/or the Ln cations. The studies on the synthetic conditions and rules for high-nuclearity metal-oxygen clusters, and the relationships between structures and properties for these new clusters were also carried out.
     Thirty-six metal-oxygen clusters have been synthesized by the conventional aqueous solution methods and hydrothermal technique, and structurally characterized by IR, elemental analyses, ESR, UV-vis and single crystal X-ray diffractions. The magnetic properties, thermal stabilities, electrochemical-electrocatalytic properties and adsorption property of these compounds have been studied.
     1. Twenty new heteropolytungstate clusters have been synthesized by the use of the divacant {γ-SiW10}, monovacant {β-SiW11} and the hexavacant {P2W12} POM building blocks. Compounds 1-6 are the multi-nickel-substituted sandwich-type polytungstate clusters. There are four to seven Ni2+ ions sandwiched between two lacunary POM fragments. Compounds 1 and 4 contain two different lacunary POM fragments. Compounds 7-11 are the multi-copper-substituted polytungstate clusters. Compounds 7 and 8 are all the tetramers, which contain 14 and 10 Cu2+ ions, respectively. Compound 7 represents the first tetramer composed of four tetravacant {β-SiW8} units. In compounds 9-11, the sandwich-type polyoxoanions are all exhibit the 1D chain-like structure. Compounds 12-17 are the multi-manganese-substituted sandwich-type polytungstates. Compounds 14 and 15 are the 1D chains constructed from the sandwich-type polyoxoanions. Compound 16 is the 2D layer constructed from the sandwich-type polyoxoanions. Compound 17 is a double-sandwich structure containing six manganese ions in the two sandwich sets. The six manganese ions are in the +3 and +2 valence. Compounds 18-20 are the multi-Co-substituted sandwich-type popytungstates. Na_9K[Ni7(OH)_4(H_2O)(CO_3)_2(HCO_3)(A-α-SiW_9O_(34))(β-SiW_(10)O_37)]·5H3O·18H_2O (1) K_6Na4[Ni6(H_2O)_4(μ2-H_2O)_4(μ3-OH)_2(x-SiW_9O_(34))_2]·17.5H_2O (2) K_(12)[(SiW_8O_(31))_2Ni7(H_2O)_4(OH)6]·23H_2O (3) K_6Na18[H_2{Ni5(H_2O)5(OH)_3(x-SiW_9O_(34))(β-SiW_8O_(31))}2]·39H_2O (4) (NH_4)_2[Ni_4(enMe)_8(H_2O)_2Ni_4(enMe)_2(PW_9O_(34))_2]·9H_2O (5) Na_2[H_6N_2(CH_2)6]2{Ni_4[H_4N_2(CH_2)6]2(H_2PW_9O_(34))_2}·7H_2O (6) Na_(16)[Cu14(OH)_4(H_2O)16(SiW_8O_(31))_4]·20.5H_2O (7) K_(10)Na14[Cu_(10)(H_2O)_2(N3)_4(GeW_9O_(34))_2(GeW_8O_(31))_2]·30H_2O (8) K_2Na_(10)[Cu4(GeW_9O_(34))_2]·15.5H_2O (9) K_4Na_4[Cu2(H_2O)_8Cu4(H_2O)_2(B-α-GeW_9O_(34))_2]·14H_2O (_(10)) K_8[Cu2(H_2O)_8Cu4(H_2O)_2(B-α-SiW_9O_(34))_2]·4H_2O (11) K_2Na_2MN_2(H_2O)12[MN_2(H_2O)_(10)Mn4(H_2O)_2(GeW_9O_(34))_2]·18H_2O (12) K_2Na_2MN_2(H_2O)12[MN_2(H_2O)_(10)Mn4(H_2O)_2(SiW_9O_(34))_2]·18H_2O (13) Na_4[Mn_4(H_2O)18Mn_4(H_2O)_2(GeW_9O_(34))_2]·22H_2O (14) Na_4[Mn_4(H_2O)18Mn_4(H_2O)_2(SiW_9O_(34))_2]·22H_2O (15) K_3Na_5[MN_2(H_2O)_6Mn_4(H_2O)_2(SiW_9O_(34))_2]·23.5H_2O (16) K_3Na_(10)H_3[{MnII(H_2O)}2MnШ4(SiW_6O_(26))(SiW_9O_(34))_2]·_(26)H_2O (17) K_4Na_6Co_2(H_2O)12{Co(H_2O)_4[Co2(H_2O)_(10)Co_4(H_2O)_2(B-α-SiW_9O_(34))_2]2}·40H_2O (18) K_4Na_4[Co_2(H_2O)_(10)Co_4(H_2O)_2(B-α-GeW_9O_(34))_2]·28.5H_2O (19) K_2Na_6[Co_2(H_2O)_(10)Co_4(H_2O)_2(B-α-SiW_9O_(34))_2]·17H_2O (20)
     2. Seven polyoxotungstate clusters have been synthesized by reaction of the hexavacant Wells-Dawson polyoxoanions {P2W12} with the transition metal cations. Compounds 21-23 are all the crown-type high-nuclearity clusters composed of three {P2W12} subunits, the cavity in these three compounds have potentially adjustable capability of combining“guest”metal ions, which was observed for the first time in the POM chemistry. Compound 24 is a dimeric structure consisting of the {P2W12} units, which represent the first pure inorganic cluster based on the {P4W24} units. Compound 25 is a double-Dawson type polyoxoanions, and compound _(26) is the first 2D layer constructed from the double-Dawson type polyoxoanions. Compound 27 is a copper-substituted Dawson-type monomer. K_4Na15[K3{Mn(H_2O)_4}2{WO2(H_2O)_2}2{WO(H_2O)}3(P2W12O48)_3]·77H_2O (21) K3Na7Li5.5Ni0.25[Na3{Ni3.5(H_2O)13}{WO2(H_2O)_2}2{WO(H_2O)}3(P2W12O48)_3]·64H_2O(22) K_6Na11[Na3{Cu3(H_2O)9}{WO2(H_2O)_2}2{WO(H_2O)}3(P2W12O48)_3]·47H_2O (23) Na17K3[{W2Co2O8(H_2O)_2}(P2W12O46)_2]·30H_2O (24) K_4Na_(10)[α1-CuP_2W_(17)O_(60)(OH)]2·58H_2O (25) Na_2[H_2en][H_2hn]0.5[Cu(en)_2]4.5[α1-CuP_2W_(17)O_(60)(OH)]2·43H_2O (_(26)) Na3[H_2hn]2.5[α1-P_2W_(17)O_(60)Cu(OH)_2]·14H_2O (27)
     3. Four 3d-4f heterometallic clusters have been synthesized by reaction of the lacunary Keggin polyoxoanions with the transition metal and Ln cations. Compound 28 is a sandwich-type structure composed of two {β-SiW_8O_(31)} units sandwiching a {CeMnШ4} cluster. The four MnШin compound 28 constitute a cubane-like unit. Compound 29 is a (3,6)-connected 2D layer-like structure composed of the sandwich polyoxoanions and the Nd3+ linkers. Compounds 30 and 31 are the hexamers containing six 3d-4f heterometallic clusters Dy-Fe and Tb-Fe, respectively. K_(10)Na[{CeMnШ4(u_3-OH)_2O_2(H_2O)(HCO_3)}(β-SiW_8O_(31))_2]·21.5H_2O (28) K_3Na_3{Nd_2(H_2O)12Cu4(H_2O)_2(SiW_9O_(34))_2}·21H_2O (29) (H_2en)12[Na_2K9?Dy6Fe6(H_2O)12(SiW_(10)O_38)6]·36H_2O (30) K_4Na14[H_2en]_4[K_9?Tb_6Fe_6(H_2O)12(SiW_(10)O_38)6]·41H_2O (31)
     4. Firstly, a Keplerate-type sphere-like cluster has been synthesized by self-assembly of the Na_2WO_4 and the Fe3+ions in the vitriol solution (compound 32), which contains 12 pentagram {W(W)5} fragments linked by 30 Fe3+ ions. Here, the chiral tartaric acid ligands are used to react with the Fe3+ ions, and four enantiomerically pure chiral ferric aggregates are obtained. Compounds 33 and 34 are a pair of enantiomers composed of the protein-sized Fe168 cages. Compounds 35 and 36 are also a pair of enantiomers containing a high-nuclear Fe28 wheel. K_6{[W_6(SO_4)(H_2O)_3O21]12[Fe(H_2O)_2]30}·106H_2O (32) Na_(96)[Na_24Fe168(L-Tart)96(μ3-O)_48(HCOO)144]·310H_2O (33) Na96[Na_24Fe168(D-Tart)96(μ3-O)_48(HCOO)144]·310H_2O (34) K_2Na_(18)[Fe28(μ3-O)_8(L-(–)-tart)16(CH_3COO)_24]·29H_2O (35) K_2Na_(18)[Fe28(μ3-O)_8(D-(+)-tart)16(CH_3COO)_24]·29H_2O (36)
引文
[1] Wang E B, Hu C W, Xu L. Concise of Polyoxometalate Chemistry [M]. Beijing: Chemical Industrial Publishing Company, 1998. 4–5.
    [2] Müller A, Peters F, Pope M T, et al. Polyoxometalates: Very Large Clusters Nanoscale Magnets [J]. Chem Rev, 1998, 98 (1): 239–271.
    [3] Pope M T. Heteropoly and Isopoly Oxometalates [M]. Berlin: Springer-Verlag. 1983. 1–10.
    [4] Wang E B, Li Y G, Lu Y, et al. Conspectus of Polyoxometalate Chemistry [M]. Changchun: Northeast Normal University Press, 2009. 36–84.
    [5]王素娜,江国庆,白俊峰,等.无机分子纳米材料的研究进展[J].无机化学学报, 2005, 21 (1): 1-11.
    [6] Müller A, Krickemeyer E, B?gge H, et al. Organizational Forms of Matter: An Inorganic Super Fullerene and Keplerate Based on Molybdenum Oxide [J]. Angew Chem Int Ed, 1998, 37 (24): 3359–3363.
    [7] Todea Ana Maria, Merca Alice, B?gge Hartmut, et al. Extending the {(Mo)Mo5}12M30 Capsule Keplerate Sequence:A {Cr30} Cluster of S=3/2 Metal Centers with a {Na(H_2O)12} Encapsulate [J]. Angew Chem Int Ed, 2007, 46 (32): 6106–6110.
    [8] Müller A, Sarkar S, Shah S Q N, et al. Archimedean Synthesis and Magic Numbers: Sizing Giant Molybdenum-Oxide-Based Molecular Spheres of the Keplerate Type [J]. Angew Chem Int Ed, 1999, 38 (21): 3238–3241.
    [9] Zhang Jie, Li Dong, Liu Guang, et al. Lag Periods During the Self-Assembly of {Mo72Fe30} Macroions: Connection to the Virus Capsid Formation Process [J].J Am Chem Soc, 2009, 131 (42): 15152–15159.
    [10] Müller Achim, Todea Ana Maria, B?gge Hartmut, et al. Formation of a‘‘less stable’’polyanion directed and protected by electrophilic internal surface functionalities of a capsule in growth: [{Mo6O19}22{MoVI72FeIII30O252(ac)_20(H_2O)92}]4- [J]. Chem Commun, 2006, 3066–3068.
    [11] Müller Achim, Sousa Filipa L., Merca Alice, Supramolecular Chemistry on a Cluster Surface: Fixation/Complexation of Potassium and Ammonium Ions with Crown-Ether-Like Rings [J]. Angew Chem Int Ed, 2009, 48: 5934–5937.
    [12] Müller A, Beckmann E, B?gge H, et al. Inorganic Chemistry Goes Protein Size: A MO_368 Nano-Hedgehog Initiating Nanochemistry by Symmetry Breaking [J]. Angew Chem Int Ed, 2002, 41 (7): 1162–1167.
    [13] Zhang S W, Liao D Q, Shao M C, et al. X-Ray crystal structure of the unusual clathrate compound, [MO_36O110(NO)_4(H_2O)14]·52H_2O [J]. J Chem Soc, Chem Commun, 1986, 835–836.
    [14] Tytko K H, Sch?nfeld B, Buss B, et al. A Macroisopolyanion of Molybdenum: MO_36O8-112 [J]. Angew Chem, Int Ed Engl, 1973, 12 (4): 330–332.
    [15] Ma J, Li Y G, Wang E B, A polyethylene-glycol-functionalized ring-like isopolymolybdate cluster [J]. Inorg Chim Acta, 2009, 362: 2413–2417.
    [16] Liang Da Dong, Liu Shu Xia, Wang Chun Ling, et al. A novel nanomolecular organic–inorganic hybrid compound: Na_2[NH(CH_2CH_2OH)_3]4{MO_36O112(OH_2)14[OHCH_2CH_2NH(CH_2CH_2OH)_2]2}·nH_2O (n≈72) exhibiting a supramolecular one-dimensional chainlike structure [J]. Journal of Solid State Chemistry 2007, 180: 558–563.
    [17] Müller Achim, Krickemeyer Erich, Meyer Jochen, et al. [Mo154(NO)14O420(OH)_28(H_2O)70](25±5)-: A Water-Soluble Big Wheel with More than 700 Atoms and a Relative Molecular Mass of About 24000 [J]. Angew Chem, Int Ed Engl, 1995, 34 (19): 2122–2124.
    [18] Miras Haralampos N, J T Cooper Geoffrey, Long De Liang, et al. Unveiling the Transient Template in the Self-Assembly of a Molecular Oxide Nanowheel [J]. Science 2009, 327: 72–74.
    [19] Shishido Sayaka, Ozeki Tomoji. The pH Dependent Nuclearity Variation of {Mo154-x}-type Polyoxomolybdates and Tectonic Effect on Their Aggregations [J]. J Am Chem Soc, 2008, 130 (32): 10588–10595.
    [20] Jiang C C, Wei Y G, Liu Q, et al. Self-assembly of a novel nanoscale giant cluster: [Mo176O496(OH)_32(H_2O)_80] [J]. Chem Commun, 1998, 1937–1938.
    [21] Müller A, Toma L, B?gge H, et al. Synergetic activation of silent receptor sites leading to a new type of inclusion complex: integration of a 64-membered ring comprising K+ and SO42– ions into a molybdenum oxide-based nanoobject [J]. Chem Commun, 2003, 2000–2001.
    [22] Imai Hiroyuki, Akutagawa Tomoyuki, Kudo Fumito, et al. Structure, Magnetism, and Ionic Conductivity of the Gigantic {Mo176}-WheelAssembly: Na15Fe3Co16[Mo176O528H3(H_2O)_80]Cl27·450H_2O [J]. J Am Chem Soc, 2009, 131 (38): 13578–13579.
    [23] Wang S, Lin X, Wan Y, Yang W B, et al. A Large, Bowl-Shaped {Mo51V9} Polyoxometalate [J]. Angew Chem Int Ed, 2007, 46 (19): 3490–3493.
    [24] Bi Li-Hua, Kortz Ulrich, Keita Bineta, et al. The Palladium(II)-Substituted, Lone Pair Containing Tungstoarsenates(III) [Na_2(H_2O)_2PdWO(H_2O)(-AsW9O_33)_2]10- and [Cs2Na(H_2O)_8Pd3(-AsW9O_33)_2]9-[J]. Eur J Inorg Chem, 2005, 3034–3041.
    [25] Chang Song, Zhang Zhiming, Li Yangguang, et al. Giant Polytungstoarsenate Clusters Derived from New [As4W19O68(H_2O)]14- Building Blocks [J]. Aust J Chem 2010, 63, ASAP.
    [26] Yoshida Akihiro, Yoshimura Masayuki, Uehara Kazuhiro, et al. Formation of S-Shaped Disilicoicosatungstate and Efficient Baeyer–Villiger Oxidation with Hydrogen Peroxide [J]. Angew Chem, 2006, 118 (12): 1990–1994.
    [27] Yoshida Akihiro, Nakagawa Yoshinao, Uehara Kazuhiro, et al. Inorganic Cryptand: Size-Selective Strong Metallic Cation Encapsulation by a Disilicoicosatungstate (Si2W20) Polyoxometalate [J]. Angew Chem Int Ed, 2009, 48 (38): 7055–7058.
    [28] Ritchie Chris, Ferguson Alan, Nojiri Hiroyuki, et al. Polyoxometalate-Mediated Self-Assembly of Single-Molecule Magnets: {[XW_9O_(34)]2[MnIII4MnII2O4(H_2O)_4]}12- [J]. Angew Chem Int Ed, 2008, 47 (30): 5609–5612.
    [29] Yamase T, Fukaya K, Nojiri H, et al. Ferromagnetic Exchange Interactions for Cu612+ and Mn612+ Hexagons Sandwiched by Two B-α-[XW9O_33]9- (X = AsIII and SbIII) Ligands in D3d-Symmetric Polyoxotungstates [J]. Inorg Chem, 2006, 45 (19): 7698–7704.
    [30] Wu Qiong, Li Yang Guang, Wang Yong Hui, et al. Mixed-Valent {Mn14} Aggregate Encapsulated by the Inorganic Polyoxometalate Shell: [MnIII13MnIIO12(PO4)_4(PW_9O_(34))_4]31- [J]. Inorg Chem, 2009, 48 (4): 1606–1612.
    [31] Bi L H, Kortz U, Nellutla S, et al. Structure, Electrochemistry, and Magnetism of the Iron(III)-Substituted Keggin Dimer, [Fe6(OH)_3(A-α-GeW_9O_(34)(OH)_3)_2]11- [J]. Inorg Chem, 2005, 44 (4): 896–903.
    [32] Anderson T M, Neiwert W A, Hardcastle K I, et al. Multi-Iron Silicotungstates: Synthesis, Characterization, and Stability Studies of Polyoxometalate Dimers [J]. Inorg Chem, 2004, 43 (23), 7353–7358.
    [33] Compain Jean–Daniel, Mialane Pierre, Dolbecq Anne, et al. Iron Polyoxometalate Single-Molecule Magnets [J]. Angew Chem Int Ed, 2009, 48 (17): 3077–3081.
    [34] Bassil B S, Kortz U, Tigan A S, et al. Cobalt-Containing Silicotungstate Sandwich Dimer[{CO_3(B-β-SiW9O_33(OH))(B-β-SiW8O29(OH)_2)}2]22- [J]. Inorg Chem, 2005, 44 (25), 9360–9368.
    [35] Bassil B S, Nellutla S, Kortz U, et al. The Satellite-Shaped Co-15 Polyoxotungstate, [Co6(H_2O)_30{Co9Cl2(OH)_3(H_2O)9(β-SiW_8O_(31))_3}]5- [J]. Inorg Chem, 2005, 44 (8), 2659–2665.
    [36] Lisnard L, Mialane P, Dolbecq A, et al. Effect of Cyanato, Azido, Carboxylato, and Carbonato Ligands on the Formation of Cobalt(II) Polyoxometalates: Characterization, Magnetic, and Electrochemical Studies of Multinuclear Cobalt Clusters [J]. Chem Eur J, 2007, 13 (12), 3525–3536.
    [37] Pichon C, Mialane Pierre, Dolbecq Anne, et al. Octa- and Nonanuclear Nickel(II) Polyoxometalate Clusters: Synthesis and Electrochemical and Magnetic Characterizations [J].Inorg Chem, 2008, 47 (23), 11120–11128.
    [38] Clemente-Juan Juan M, Coronado Eugenio, Galán-Mascarós JoséR, et al. Increasing the Nuclearity of Magnetic Polyoxometalates. Syntheses, Structures, and Magnetic Properties of Salts of the Heteropoly Complexes [Ni3(H_2O)_3(PW10O_39)H_2O]7-, [Ni_4(H_2O)_2(PW_9O_(34))_2]10-, and [Ni9(OH)_3(H_2O)6(HPO4)_2(PW_9O_(34))_3]16- [J]. Inorg Chem, 1999, 38 (1), 55–63.
    [39] Drewes Daniel, Limanski Eva Melanie, Krebs Bernt. The First Sandwich-Type Heteropolytungstates Consisting of Trivacant Gallium(III)-Substituted Keggin Fragments [J]. Eur J Inorg Chem, 2005, 1542–1546.
    [40] Bi L H, Kortz U, Synthesis and Structure of the Pentacopper (II) Substituted Tungstosilicate [Cu5(OH)_4(H_2O)_2(A-α-SiW9O_33)_2]10- [J]. Inorg Chem, 2004, 43 (25), 7961–7962.
    [41] Liu Hongsheng, Gómez-García Carlos J, Peng Jun, et al. Ferromagnetically Coupled Dimer of CuII-Substitutedγ-Decatungstosilicate [J]. Inorg Chem, 2007, 46 (24), 10041–10043.
    [42] Liu Hong, Qin Chao, Wei Yong-Ge, et al. Copper-Complex-Linked Polytungsto-Bismuthate (-Antimonite) Chain Containing Sandwich Cu(II) Ions Partially Modified with Imidazole Ligand [J]. Inorg Chem, 2008, 47 (10), 4166–4172.
    [43] Kim G S, Zeng H D, Hill C L, et al. A Supramolecular Tetra-Keggin Polyoxometalate [Nb4O6(α-Nb3SiW9O40)_4]20- [J]. Angew Chem Int Ed, 1999, 38 (21): 3205–3207.
    [44] Bassil B S, Dickman M H, U. Kortz, Synthesis and Structure of Asymmetric Zirconium-Substituted Silicotungstates, [Zr6O2(OH)_4(H_2O)_3(β-SiW10O_37)_3]14- and [Zr4O2(OH)_2(H_2O)_4(β-SiW10O_37)_2]10- [J]. Inorg Chem, 2006, 45 (6): 2394–2396.
    [45] Sib Sankar Mal, Nadeen H. Nsouli, Mauro Carraro, et al. Peroxo-Zr/Hf-Containing Undecatungstosilicates and–Germanates[J]. Inorg Chem, 2010, 49 (1): 7–9.
    [46] Zhao Junwei, Jia Hongpeng, Zhang Jie, et al. A Combination of Lacunary Polyoxometalatesand High-Nuclear Transition-Metal Clusters under Hydrothermal Conditions. Part II: From Double Cluster, Dimer, and Tetramer to Three-Dimensional Frameworks [J]. Chem Eur J, 2007, 13 (36), 10030–10045.
    [47] Zhao Junwei, Wang Chunmei, Zhang Jie, et al. Combination of Lacunary Polyoxometalatesand High-Nuclear Transition Metal Clusters under Hydrothermal Conditions: IX. A Series of Novel Polyoxotungstates Sandwiched by Octa-Copper Clusters [J]. Chem Eur J, 2008, 14 (30), 9223–9239.
    [48] Zheng Shou-Tian, Yuan Da-Qiang, Jia Hong-Peng, et al. Combination between lacunary polyoxometalates and high-nuclear transition metal clusters under hydrothermal conditions: I from isolated cluster to 1-D chain [J]. Chem Commun, 2007, 1858–1860.
    [49] Schaming Delphine, Canny Jacqueline, Boubekeur Kamal, et al. An UnprecedentedTrinuclear Dawson Sandwich Complex with Internal Lacuna: Synthesis and 31P NMR Spectroscopic Analysis of the Symmetrical [NaNi3(H_2O)_2(P2W15O56)_2]17– and [CoNi3(H_2O)_2(P2W15O56)_2]16– Anions [J]. Eur J Inorg Chem, 2009, 5004–5009.
    [50] Kortz Ulrich, Hamzeh Shadia S, Niveen A Nasser. Supramolecular Structures of Titanium(IV)-Substituted Wells-Dawson Polyoxotungstates [J]. Chem Eur J, 2003, 9 (13): 2945–2952.
    [51] Pradeep Chullikkattil P, Long De-Liang, K?gerlerb Paul, et al. Controlled assembly and solution observation of a 2.6 nm polyoxometalate‘super’tetrahedron cluster: [KFe12(OH)18(α-1,2,3-P2W15O56)_4]29– [J]. Chem Commun, 2007, 4254–4256.
    [52] Fang Xikui, Speldrich Manfred, Schilder Helmut, et al. Switching slow relaxation in a MnIII3MnIV cluster: an example of grafting single-molecule magnets onto polyoxometalates [J]. Chem Commun, 2010, inpress.
    [53] Contant Roland, AndréTézé, A New Crown Heteropolyanion, K_28Li5H7P8W48O184·92H_2O: Synthesis, Structure, and Properties [J]. Inorg Chem, 1985, 24 (26), 4610–4614.
    [54] Judd Deborah A, Chen Qin, Campana Charles F, et al. Synthesis, Solution and Solid State Structures, and Aqueous Chemistry of an Unstable Polyperoxo Polyoxometalate: [P2W12(NbO2)6O56]12- [J]. J Am Chem Soc, 1997, 119 (23): 5461–5462.
    [55] Contant Roland, Abbessi Mostefa, Thouvenot René, et al. Dawson Type Heteropolyanions. 3. Syntheses and 31P, 51V, and 183W NMR Structural Investigation of Octadeca(molybdo-tungsto-vanado)diphosphates Related to the [H_2P2W12O48]12- Anion [J]. Inorg Chem, 2004, 43 (12), 3597–3604.
    [56] Godin Beatrice, Chen Ya-Guang, Vaissermann Jacqueline, et al. Coordination Chemistry of the Hexavacant Tungstophosphate [H_2P2W12O48]12- with Fe Ions: Towards Original Structures of Increasing Size and Complexity [J]. Angew Chem Int Ed, 2005, 44 (20), 3072–3075.
    [57] Godin Beatrice, Vaissermann Jacqueline, Herson P, et al. Coordination chemistry of the hexavacant tungstophosphate [H_2P2W12O48]12- 2: synthesis and characterization of iron(III) complexes derived from the unprecedented {P2W14O54} fragment [J]. Chem Commun, 2005, 5624.
    [58] Mal Sib Sankar, Kortz Ulrich, The Wheel-Shaped {Cu20} Tungstophosphate [Cu20Cl(OH)_24(H_2O)12(P8W48O184)]25- Ion [J]. Angew Chem Int Ed, 2005, 44 (24): 3777–3780.
    [59] Mal S S, Dickman M H, Kortz U, et al. Nucleation Process in the Cavity of a 48-Tungstophosphate Wheel Resulting in a 16-Metal-Centre Iron Oxide Nanocluster [J]. Chem Eur J, 2008, 14 (4), 1186–1195.
    [60] Müller A, Pope M T, Todea A M, et al. Metal-Oxide-Based Nucleation Process underConfined Conditions: Two Mixed-Valence V6-Type Aggregates Closing the W48 Wheel-Type Cluster Cavities [J]. Angew Chem Int Ed, 2007, 46 (24): 4477–4480.
    [61] Sous Filipa L a, B?gge Hartmut, Merca Alice, et al. Vectorial growth/regulations in a {P8W48}-type polyoxotungstate compartment: trapped unusual molybdenum oxide acts as a handle [J]. Chem Commun, 2009, 7491–7493.
    [62] Zhang Lan-Cui, Zheng Shu-Li, Xue Han, et al. New tetra(organotin)-decorated boat-like polyoxometalate [J]. Dalton Trans, 2010, inpress.
    [63] Wassermann K, Dickman M H, Pope M T. Self-Assembly of Supramolecular Polyoxometalates: The Compact, Water-Soluble Heteropolytungstate Anion [Ln16As12W148O524(H_2O)_36]76– [J]. Angew Chem, Int Ed Engl, 1997, 36 (13–14), 1445–1448.
    [64] Hussain Firasat, Spingler Bernhard, Conrad Franziska, Caesium-templated lanthanoid-containing polyoxotungstates [J]. Dalton Trans, 2009, 4423–4425.
    [65] Bassil B S, Dickman M H, R?mer I, et al. The Tungstogermanate [Ce20Ge10W100O_376(OH)_4(H_2O)_30]56-: A Polyoxometalate Containing 20 Cerium(III) Atoms [J]. Angew Chem Int Ed, 2007, 46 (32): 6192–6195.
    [66] AlDamen Murad A, Clemente-Juan Juan M, Coronado Eugenio, et al. Mononuclear Lanthanide Single-Molecule Magnets Based on Polyoxometalates [J]. J Am Chem Soc, 2008, 130 (28): 8874–8875.
    [67] Hussain Firasat, Conrad Franziska, Patzke Greta R. A Gadolinium-Bridged Polytungstoarsenate(III) Nanocluster: [Gd8As12W124O432(H_2O)_22]60- [J]. Angew Chem Int Ed, 2009, 48 (48): 9088–9091.
    [68] Hussain Firasat, Gable Robert W, Speldrich Manfred, et al. Polyoxotungstate-encapsulated Gd6 and Yb10 complexes [J]. Chem Commun, 2009, 328–330.
    [69] Chen Weilin, Li Yangguang, Wang Yonghui, et al. A new polyoxometalate-based 3d–4f heterometallic aggregate: a model for the design and synthesis of new heterometallic clusters [J]. Dalton Trans, 2008, 865–867.
    [70] Yao Shuang, Zhang Zhiming, Li Yangguang, et al. Two Heterometallic Aggregates Constructed from the {P2W12}-Based Trimeric Polyoxotungstates and 3d-4f Heterometals [J]. Cryst Growth Des 2010, 10: 135–139.
    [71] Fang X, K?gerler P. A polyoxometalate-based manganese carboxylate cluster [J]. Chem Commun, 2008, 3396–3398.
    [72] Fang X, K?gerler P. PO43--Mediated Polyoxometalate Supercluster Assembly [J]. Angew Chem Int Ed, 2008, 47 (42): 8123–8126.
    [73] Nohra Brigitte, Mialane Pierre, Dolbecq Anne, et al. Heterometallic 3d–4f cubane clusters inserted in polyoxometalate matrices [J]. Chem Commun, 2009, 2703–2705.
    [74] Reinoso Santiago, Galán-Mascarós J Ramón. Heterometallic 3d-4f PolyoxometalateDerived from the Weakley-Type Dimeric Structure [J]. Inorg Chem, 2010, 49 (2), 377–379.
    [75] Sch?ffer Christian, Merca Alice, B?gge Hartmut, et al. Unprecedented and Differently Applicable Pentagonal Units in a Dynamic Library: A Keplerate of the Type {(W)W5}12{Mo2}30 [J]. Angew Chem Int Ed, 2009, 48 (1): 149–153.
    [76] Todea Ana Maria, Merca Alice, B?gge Hartmut, et al. Porous Capsules {(M)M5}12FeIII30 (M=MoVI, WVI): Sphere Surface Supramolecular Chemistry with 20 Ammonium Ions, Related Solution Properties, and Tuning of Magnetic Exchange Interactions [J]. Angew Chem Int Ed, 2010, 49 (3): 514–519.
    [77] Todea Ana Maria, Merca Alice, B?gge Hartmut, et al. Polyoxotungstates now also with pentagonal units: Supramolecular chemistry and tuning of magnetic exchange in {(M)M5}12V30 Keplerates (M = Mo, W) [J]. Chem Commun, 2009, 3351–3353.
    [78] Li Yan, Li Yangguang , Zhang Zhiming, et al. A new polyoxotungstate-based {W72V30} spherical cage [J]. Inorganic Chemistry Communications. 2009, 12: 864–867.
    [79] Müller A, Rohlfing R, D?ring J, et al. Formation of a Cluster Sheath around a Central Cluster by a Self-Organization Process: the Mixed Valence Polyoxovanadate [V34O82]10- [J]. Angew Chem, Int Ed Engl, 1991, 30 (5): 588–590.
    [80] Spandl J, Brüdgam I, H. Hartl. Solvothermal Synthesis of a 24-Nuclear, Cube-Shaped Squarato-oxovanadium(IV) Framework: [N(nBu)_4]8[V24O24(C4O4)12(OCH3)_32] [J]. Angew Chem Int Ed, 2001, 40 (21): 4018–4020.
    [81] Chen L, Jiang F L, Lin Z Z, et al. A basket tetradecavanadate cluster with blue luminescence. [J]. J Am Chem Soc, 2005, 127 (24): 8588–8589.
    [82] Breen J M, Schmitt W. Hybrid Organic-Inorganic Polyoxometalates: Functionalization of VIV/VV Nanosized Clusters to Produce Molecular Capsules. [J]. Angew Chem Int Ed, 2008, 47 (36): 6904–6908.
    [83] Nyman May, Alam Todd M, Bonhomme 1 F, et al. Solid-state Structures and Solution Behavior of Alkali Salts of the [Nb6O19]8-- Lindqvist Ion, [J]. Journal of Cluster Science, 2006, 17: 197–219.
    [84] Nyman May, Bonhomme Fran?ois, Alam Todd M, et al. A General Synthetic Procedure for Heteropolyniobates [J]. Science, 2002, 297: 996–998.
    [85] Niu J Y, Ma P T, Niu H Y, et al. Giant Polyniobate Clusters Based on [Nb7O22]9- Units Derived from a Nb6O19 Precursor [J]. Chem Eur J, 2007, 13 (31): 8739–8748.
    [86] Tsunashima Ryo, Long De-Liang, Miras Haralampos N, et al. The Construction of High-Nuclearity Isopolyoxoniobates with Pentagonal Building Blocks: [HNb27O76]16- and [H10Nb31O93(CO_3)]23- [J]. Angew Chem Int Ed, 2010, 49 (1): 113–116.
    [87] Tasiopoulos Anastasios J, Vinslava Alina, Wernsdorfer Wolfgang, et al. Giant Single-Molecule Magnets: A {Mn84} Torus and Its Supramolecular Nanotubes [J]. AngewChem Int Ed, 2004, 43 (16): 2117–2121.
    [88] Liu Tao, Zhang Yanjuan, Wang Zheming, et al. A 64-Nuclear Cubic Cage Incorporating Propeller-like FeIII8 Apices and HCOO- Edges [J]. J Am Chem Soc, 2008, 130 (32): 10500–10501.
    [89] Bi Yanfeng, Wang Xiuteng, Liao Wuping, et al. {CO_32} Nanosphere Supported by p-tert-Butylthiacalix[4]arene [J]. J Am Chem Soc, 2009, 131 (33): 11650–11651.
    [90] Dearden Angela L, Parsons Simon, Winpenny Richard E P. Synthesis, Structure, and Preliminary Magnetic Studies of a Ni24 Wheel [J]. Angew Chem Int Ed, 2001, 40 (1): 152–154.
    [91] Wang Wenguo, Zhou Aiju, Zhang Weixiong, et al. Giant Heterometallic Cu17MN_28 Cluster with Td Symmetry and High-Spin Ground State [J]. J Am Chem Soc, 2007, 129 (5): 1014–1015.
    [92] Kong Xiangjian, Ren Yanping, Long Lasheng, et al. A Keplerate Magnetic Cluster Featuring an Icosidodecahedron of Ni(II) Ions Encapsulating a Dodecahedron of La(III) Ions [J]. J Am Chem Soc, 2007, 129 (22): 7016–7017.
    [93] Kong Xiangjian, Ren Yanping, Chen Wenxian, et al. A Four-Shell, Nesting Doll-like 3d–4f Cluster Containing 108 Metal Ions [J]. Angew Chem Int Ed, 2008, 47 (13): 2398–2401.
    [1] Weakley T J R, Evans H T Jr, Showell J S, et al. 18-Tungstotetracobalto(II)diphosphate and related anions: a novel structural class of heteropolyanions [J]. J Chem Commun., 1973, 4: 139-140.
    [2] Laurent Ruhlmann, Jacqueline Canny, Roland Contant, et al. Di- and Tricobalt Dawson Sandwich Complexes: Synthesis, Spectroscopic Characterization, and Electrochemical Behavior of Na18[(NaOH_2)_2Co2(P2W15O56)_2] and Na17[(NaOH_2)CO_3(H_2O)(P2W15O56)_2] [J]. Inorg Chem, 2002, 41: 3811-3819.
    [3] Zhang X, Chen Q, Duncan D. C, et al. Multiiron Polyoxoanions. Synthesis, Characterization, X-ray Crystal Structure, and Catalytic H_2O-Based Alkene Oxidation by [(n-C4H9)_4N]6[FeIII4(H_2O)_2(PW_9O_(34))_2] [J]. Inorg Chem, 1997, 36: 4381-4386.
    [4]胡长文,许林,王恩波.杂多金属氧酸盐的磁性[J].科学通报, 1998, 43(12): 1234-1236.
    [5] Tang Jing, Yang Xiu-Li, Zhang Xian-Wei, et al. A functionalized polyoxometalate solid for selective oxidation of styrene to benzaldehyde [J]. Dalton Trans., 2010, ASAP.
    [6] Zheng S T, Wang M H, Yang G Y, Extended Architectures Constructed from Sandwich Tetra-Metal-Substituted Polyoxotungstates and Transition-Metal Complexes [J]. Chem Asian J, 2007, 2: 1380-1387.
    [7] Wang J P, Ma P T, Shen Y, et al. Tetra-Transition-Metal Substituted Weakley-Type Sandwich Germanotungstates and their Derivatives Decorated by Transition-Metal Complexes [J]. Cryst Growth Des, 2008, 8: 3130-3133.
    [8] Bassil B S, Kortz U, Tigan A S, et al. Cobalt-Containing Silicotungstate Sandwich Dimer [{CO_3(B-β-SiW9O_33(OH))(B-β-SiW8O29(OH)_2)}2]22- [J]. Inorg Chem, 2005, 44 (25): 9360–9368.
    [9] Clemente-Juan J M, Coronado E, Galán-Mascarós J R, et al. Increasing the Nuclearity of Magnetic Polyoxometalates. Syntheses, Structures, and Magnetic Properties of Salts of the Heteropoly Complexes [Ni3(H_2O)_3(PW10O_39)H_2O]7-, [Ni_4(H_2O)_2(PW_9O_(34))_2]10-, and [Ni9(OH)_3(H_2O)6(HPO4)_2(PW_9O_(34))_3]16- [J]. Inorg Chem, 1999, 38 (1): 55–63.
    [10] Mbomekalle I M, Keita B, Nierlich M, et al. Structure, Magnetism, and Electrochemistry of the Multinickel Polyoxoanions [Ni6As3W24O94(H_2O)_2]17-, [Ni3Na(H_2O)_2(AsW_9O_(34))_2]11-, and [Ni_4MN_2P3W24O94(H_2O)_2]17- [J]. Inorg Chem, 2003, 42 (17): 5143–5152.
    [11] Zheng S T, Yuan D Q, Jia H P, et al. Combination between lacunary polyoxometalates and high-nuclear transition metal clusters under hydrothermal conditions: I. from isolatedcluster to 1-D chain [J]. Chem Commun, 2007, 1858–1860.
    [12] Gomez-Garcia C J, Coronado E, Ouahab L. A Novel Polyoxotungstate Containing a triangulo Ni3II Cluster with Ferromagnetic Exchange Interactions and an S = 3 Ground State [J]. Angew Chem Int Ed Engl, 1992, 31 (5): 649–651.
    [13] Kortz U, TézéA, HervéG. A Cubane-Substituted Polyoxoanion: Structure and Magnetic Properties of Cs2[H_2PW9Ni_4O_34(OH)_3(H_2O)6]·5H_2O [J]. Inorg Chem, 1999, 38 (9): 2038–2042.
    [14] Gladfelter W L, Lynch M W, Schaefer W P, et al. Synthesis, physical properties, and crystal structure of the cubane compound bis(.mu.-acetato)-tetra-.mu.-methoxo-bis[.mu.-(2,5-dimethyl-2,5-diisocyanohexane)]-tetranickel(II) tetraphenylborate [J]. Inorg Chem, 1981, 20 (8): 2390–2397.
    [15] Mialane P, Dolbecq A, Marrot J, et al. A Nonanuclear Copper(II) Polyoxometalate Assembled Around a -1,1,1,3,3,3-Azido Ligand and Its Parent Tetranuclear Complex [J]. Chem Eur J, 2005, 11 (6): 1771–1778.
    [16] Wang C M, Zheng S T, Yang G Y. Novel Copper-Complex-Substituted Tungstogermanates [J]. Inorg Chem, 2007, 46 (3): 616–618.
    [17] Nellutla Saritha, Tol Johan van, Dalal Naresh S, et al. Magnetism, Electron Paramagnetic Resonance, Electrochemistry, and Mass Spectrometry of the Pentacopper(II)-Substituted Tungstosilicate [Cu5(OH)_4(H_2O)_2(A-α-SiW9O_33)_2]10-, A Model Five-Spin Frustrated Cluster [J]. Inorg Chem, 2005, 44 (26): 9795–9806.
    [18] Keita B, Mbomekalle I M, L Nadjo. Redox behaviours and electrocatalytic properties of copper within Dawson structure-derived sandwich heteropolyanions [Cu4(H_2O)_2(X2W15O56)_2]16? (X=P or As) [J]. Electrochem Commun 2003, 5 (9): 830–837.
    [19] Keita B, Abdeljalil E, Nadjo L, et al. First examples of efficient participation of selected metal-ion-substituted heteropolyanions in electrocatalytic nitrate reduction [J]. Electrochem Commun 2001, 3 (2): 56–62.
    [20] Pichon C, Mialane P, Dolbecq A, et al. Characterization and Electrochemical Properties of Molecular Icosanuclear and Bidimensional Hexanuclear Cu(II) Azido Polyoxometalates [J]. Inorg Chem, 2007, 46 (13): 5292–5301.
    [21] Dolbecq Anne, Compain Jean-Daniel, Mialane Pierre, et al. Water Substitution on Iron Centers: from 0D to 1D Sandwich Type Polyoxotungstates [J]. Inorg Chem, 2008, 47 (8): 3371–3378.
    [22] Kortz Ulrich, Isber Samih, Dickman Michael H, et al. Sandwich-Type Silicotungstates: Structure and Magnetic Properties of the Dimeric Polyoxoanions [{SiM2W_9O_(34)(H_2O)}2]12- (M = MN_2+, Cu2+, ZN_2+) [J]. Inorg Chem, 2000, 39 (13): 2915–2922.
    [23] Wang Y H, Hu C W, Peng J, et al. Synthesis, characterization and X-ray crystal structureof a novel polyoxotungstoarsenate: K_6[{Cu(β-Ala)_2(H_2O)_2}2{Cu4(H_2O)_2(AsW_9O_(34))_2}]·17H_2O (β-Ala =β-alanine) [J]. J Mol Struct, 2001, 598 (2-3, 5): 161–169.
    [24] Gomez-Garcia C J, Coronado E, Gomez-Romero P, et al. A tetranuclear rhomblike cluster of manganese(II). Crystal structure and magnetic properties of the heteropoly complex K10[Mn4(H_2O)_2(PW_9O_(34))_2].cntdot.20H_2O [J]. Inorg Chem, 1993, 32 (15): 3378–3381.
    [25] Kortz U, Nellutla S, Stowe A C, et al. Structure and Magnetism of the Tetra-Copper(II)-Substituted Heteropolyanion [Cu4K_2(H_2O)_8(α-AsW9O_33)_2]8- [J]. Inorg Chem, 2004, 43 (1): 144–154.
    [26] Borrás-Almenar J J, Clemente-Juan J M, Coronado E, et al. High-Nuclearity Magnetic Clusters: Generalized Spin Hamiltonian and Its Use for the Calculation of the Energy Levels, Bulk Magnetic Properties, and Inelastic Neutron Scattering Spectra [J]. Inorg Chem, 1999, 38 (26): 6081–6088.
    [27] Borrás-Almenar J J, Clemente-Juan J M, Coronado E, et al. MAGPACK1 A package to calculate the energy levels, bulk magnetic properties, and inelastic neutron scattering spectra of high nuclearity spin clusters [J]. J Comput Chem, 2001, 22 (9): 985–991.
    [28] Clemente-Juan J M, Coronado E, Forment-Aliaga A, et al. A New Heptanuclear Cobalt(II) Cluster Encapsulated in a Novel Heteropolyoxometalate Topology: Synthesis, Structure, and Magnetic Properties of [Co7(H_2O)_2(OH)_2P2W25O94]16- [J]. Inorg Chem, 2004, 43 (8): 2689–2694.
    [29] Ritorto M D, Anderson T M, Neiwert W A, et al. Decomposition of A-Type Sandwiches. Synthesis and Characterization of New Polyoxometalates Incorporating Multiple d-Electron-Centered Units [J]. Inorg Chem, 2004, 43 (1): 44–49.
    [30] Andres H, Clemente-Juan J M, Aebersold M, et al. Magnetic Excitations in Polyoxometalate Clusters Observed by Inelastic Neutron Scattering: Evidence for Anisotropic Ferromagnetic Exchange Interactions in the Tetrameric Cobalt(II) Cluster [Co4(H_2O)_2(PW_9O_(34))_2]10-. Comparison with the Magnetic and Specific Heat Properties [J]. J Am Chem Soc, 1999, 121 (43): 10028–10034.
    [31] Gómez-Garcia C J, Coronado E, Borrás-Almenar J. Magnetic characterization of tetranuclear copper(II) and cobalt(II) exchange-coupled clusters encapsulated in heteropolyoxotungstate complexes. Study of the nature of the ground states [J]. Inorg Chem, 1992, 31 (9): 1667–1773.
    [1] Mal S S, Kortz U. The Wheel-Shaped {Cu20} Tungstophosphate [Cu20Cl(OH)_24(H_2O)12(P8W48O184)]25- Ion [J]. Angew Chem Int Ed, 2005, 44 (24): 3777–3780.
    [2] Müller A, Pope M T, Todea A M, et al. Metal-Oxide-Based Nucleation Process under Confined Conditions: Two Mixed-Valence V6-Type Aggregates Closing the W48 Wheel-Type Cluster Cavities [J]. Angew Chem Int Ed, 2007, 46 (24): 4477–4480.
    [3] Godin Béatrice, Chen Ya-Guang, Vaissermann Jacqueline, et al. Coordination Chemistry of the Hexavacant Tungstophosphate [H_2P2W12O48]12- with FeIII Ions: Towards Original Structures of Increasing Size and Complexity [J]. Angew Chem Int Ed, 2005, 44 (20): 3072–3075.
    [4] Mal S S, Dickman M H, Kortz U, et al. Nucleation Process in the Cavity of a 48-Tungstophosphate Wheel Resulting in a 16-Metal-Centre Iron Oxide Nanocluster [J]. Chem Eur J, 2008, 14 (4), 1186–1195.
    [5] Godin B, Vaissermann J, Herson P, et al. Coordination chemistry of the hexavacant tungstophosphate [H_2P2W12O48]12- 2: synthesis and characterization of iron(III) complexes derived from the unprecedented {P2W14O54} fragment [J]. Chem Commun, 2005, 5624.
    [6] Ostuni Angelo, Pope Michael T. A large heteropolytungstotetracerate(III) based on a new divacant lacunary derivative of the Wells–Dawson tungstophosphate anion[J]. C. R. Acad. Sci. Paris, Série IIc, Chimie/Chemistry, 2000, 3: 199-204.
    [7] Sous Filipa L a, B?gge Hartmut, Merca Alice, et al. Vectorial growth/regulations in a {P8W48}-type polyoxotungstate compartment: trapped unusual molybdenum oxide acts as a handle [J]. Chem Commun, 2009, 7491–7493.
    [8] Keita Bineta, Mialane Pierre, Sécheresse Francis, et al. Electrochemical generation of high-valent manganese catalysts in aqueous solutions from the sandwich-type polyoxoanion [(MnIII(H_2O))_3(SbW9O_33)_2]9? [J]. Electrochem Commun, 2007, 9 (1): 164–172.
    [9] Bi Li-Hua, Foster Kevin, McCormac Timothy, et al. Preparation of multilayer films containing a crown heteropolyanion and an osmium functionalised pyrrole monomer [J]. J Electroanal Chem, 2007, 605 (1): 24–30.
    [10] Cheng Long, Zhang Xiumei, Xi Xiaodan, et al. Electrochemical behavior of the molybdotungstate heteropoly complex with neodymium, K10H3[Nd(SiMo7W4O_39)_2]·xH_2O in aqueous solution [J]. J Electroanal Chem, 1996, 407 (1-2): 97–103.
    [11] Keita Bineta, Lu Yu Wei, Nadjo Louis, et al. Salient electrochemical and electrocatalyticbehaviour of the crown heteropolyanion K_28Li5H7P8W48O184·92H_2O [J]. Electrochem Commun, 2000, 2 (10): 720–726.
    [12] Sadakane Masahiro, Steckhan Eberhard. Electrochemical Properties of Polyoxometalates as Electrocatalysts [J]. Chem Rev, 1998, 98 (1): 219–238.
    [13] Contant Roland, Teze Andre. A new crown heteropolyanion K_28Li5H7P8W48O184.92H_2O: synthesis, structure, and properties [J]. Inorg Chem, 1985, 24 (26): 4610–4614.
    [14] Hussain Firasat, Kortz Ulrich, Keita Bineta, et al. Tetrakis(dimethyltin)-Containing Tungstophosphate [{Sn(CH3)_2}4(H_2P4W24O92)_2]28-: First Evidence for a Lacunary Preyssler Ion [J]. Inorg Chem, 2006, 45 (2): 761–766.
    [15] Luo Qun-Hui, Howell Robertha C, Dankova Michaela, et al. Coordination of Rare-Earth Elements in Complexes with Monovacant Wells?Dawson Polyoxoanions [J]. Inorg Chem, 2001, 40 (8): 1894–1901.
    [16] Boglio Cécile, Lenoble Géraldine, Duhayon Carine, et al. Production and Reactions of Organic-Soluble Lanthanide Complexes of the Monolacunary Dawson [α1-P2W17O61]10- Polyoxotungstate [J]. Inorg Chem, 2006, 45 (3): 1389–1398.
    [17] Huang Wenlin, Schopfer Mark, Zhang Cheng, et al. 31P Magic Angle Spinning NMR Spectroscopy of Paramagnetic Rare-Earth-Substituted Keggin and Wells?Dawson Solids [J]. J Am Chem Soc, 2008, 130 (2): 481–490.
    [18] Boglio Cécile, Micoine Kevin, Rémy Pauline, et al. Increased Lewis Acidity in Hafnium-Substituted Polyoxotungstates [J]. Chem Eur J, 2007, 13 (19): 5426–5432.
    [19] Bartis Judit, Kunina Yuliya, Blumenstein Michael, et al. Preparation and Tungsten-183 NMR Characterization of [α-1-P2W17O61]10-, [α-1-Zn(H_2O)P2W17O61]8-, and [α-2-Zn(H_2O)P2W17O61]8- [J]. Inorg Chem, 1996, 35(6): 1497–1501.
    [20] Contant Roland, Richet Martine, Lu Yu Wei, et al. Isomerically Pure 1-Monosubstituted Tungstodiphosphates: Synthesis, Characterization and Stability in Aqueous Solutions [J]. Eur J Inorg Chem, 2002, 2587–2593.
    [21] Lin Bi-Zhou, He Li-Wen, Xu Bai-Huan, et al. Two Polyoxophosphotungstates Formed by Wells-Dawson Cores Linked through W-O-W Linkages[J]. Cryst Growth Des, 2009, 9 (1): 273–281.
    [1] Chen Weilin, Li Yangguang, Wang Yonghui, et al. A new polyoxometalate-based 3d–4f heterometallic aggregate: a model for the design and synthesis of new heterometallic clusters [J]. Dalton Trans, 2008, 865–867.
    [2] Yao Shuang, Zhang Zhiming, Li Yangguang, et al. Two Heterometallic Aggregates Constructed from the {P2W12}-Based Trimeric Polyoxotungstates and 3d-4f Heterometals [J]. Cryst Growth Des 2010, 10: 135–139.
    [3] Fang X, K?gerler P. A polyoxometalate-based manganese carboxylate cluster [J]. Chem Commun, 2008, 3396–3398.
    [4] Fang X, K?gerler P. PO43--Mediated Polyoxometalate Supercluster Assembly [J]. Angew Chem Int Ed, 2008, 47 (42): 8123–8126.
    [5] Nohra Brigitte, Mialane Pierre, Dolbecq Anne, et al. Heterometallic 3d–4f cubane clusters inserted in polyoxometalate matrices [J]. Chem Commun, 2009, 2703–2705.
    [6] Reinoso Santiago, Galán-Mascarós J Ramón. Heterometallic 3d-4f Polyoxometalate Derived from the Weakley-Type Dimeric Structure [J]. Inorg Chem, 2010, 49 (2), 377–379.
    [7] Wu C D, Lu C Z, Zhuang H H, et al. Hydrothermal Assembly of a Novel Three-Dimensional Framework Formed by [GdMo12O42]9- Anions and Nine Coordinated GdIII Cations[J]. J Am Chem Soc, 2002, 124: 3836-3387.
    [8] Niu Jingyang, Wang Kaihua, Chen Huanni, et al. Assembly Chemistry between Lanthanide Cations and Monovacant Keggin Polyoxotungstates: Two Types of Lanthanide Substituted Phosphotungstates [{(α-PW11O_39H)Ln(H_2O)_3}2]6- and [{(α-PW11O_39)Ln(H_2O)(η2,μ-1,1)-CH3COO}2]10-[J]. Cryst Growth Des, 2009, 9:4362–4372.
    [9] Keita Bineta, Mbomekalle Israel-Martyr, Nadjo Louis. Redox behaviours and electrocatalytic properties of copper within Dawson structure-derived sandwich heteropolyanions [Cu4(H_2O)_2(X2W15O56)_2]16? (X=P or As) [J]. Electrochem. Commun, 2003, 5 (9): 830–837.
    [10] Nellutla Saritha, Tol Johan van, Dalal Naresh S, et al. Magnetism, Electron Paramagnetic Resonance, Electrochemistry, and Mass Spectrometry of the Pentacopper(II)-Substituted Tungstosilicate [Cu5(OH)_4(H_2O)_2(A-α-SiW9O_33)_2]10-, A Model Five-Spin Frustrated Cluster [J]. Inorg Chem, 2005, 44 (26): 9795–9806.
    [11] Keita Bineta, Lu Yu Wei, Nadjo Louis, et al. Salient electrochemical and electrocatalytic behaviour of the crown heteropolyanion K_28Li5H7P8W48O184·92H_2O [J]. Electrochem Commun, 2000, 2 (10): 720–726.
    [12] Nicoara Adrian, Patrut Adrian, Margineanu Dragos, et al. Electrochemical investigation of molecular growth of the {Mo57V6} polyoxometalate cluster [J]. Electrochem Commun, 2003, 5 (6): 511–518.
    [13] Kortz Ulrich, Jeannin Yves P, TézéA, et al. A Novel Dimeric Ni-Substituted a-Keggin Silicotungstate: Structure and Magnetic Properties of K12[{β-SiNi2W10O_36(OH)_2(H_2O)}2]·20H_2O [J]. Inorg Chem, 1999, 38 (16), 3670–3675.
    [14] Hongsheng Liu, Jun Peng, Zhongnin Su, et al. Synthesis and Structural Characterization of Sandwich-Type Keggin-γ-Lacunary Silicotungstates with an Open Wells–Dawson-Like Structure [J]. Eur J Inorg Chem, 2006, 23: 4827–4833.
    [1] Müller A, Shah S Q N, B?gge H, et al. Molecular growth from a Mo176 to a Mo248 cluster [J]. Nature, 1999, 397: 48–50.
    [2] Tasiopoulos A J, Vinslava A, Wernsdorfer W, et al. Giant Single-Molecule Magnets: A {Mn84} Torus and Its Supramolecular Nanotubes [J]. Angew Chem Int Ed, 2004, 43 (16): 2117–2121.
    [3] Dearden A L, Parsons S, P Winpenny R E. Synthesis, Structure, and Preliminary Magnetic Studies of a Ni24 Wheel [J]. Angew Chem Int Ed, 2001, 40 (1): 151–154.
    [4] Liu Rui, Zhao Xiang, Wu Tao, et al. Tunable Redox-Responsive Hybrid Nanogated Ensembles [J]. J Am Chem Soc, 2008, 130 (44): 14418–14419.
    [5] Chin Jik, Lee Soo Suk, Lee Kyung Joo, et al. A metal complex that bindsα-amino acids with high and predictable stereospecificity [J]. Nature, 1999, 401: 254–257.
    [6] Prins Leonard J, Huskens Jurriaan, Jong Feike de, et al. Complete asymmetric induction of supramolecular chirality in a hydrogen-bonded assembly [J]. Nature, 1999, 398: 498–502.
    [7] Soghomonian V, Chen Q, Haushalter R C, et al. An Inorganic Double Helix: Hydrothermal Synthesis, Structure, and Magnetism of Chiral [(CH3)_2NH_2]K_4[V10O10(H_2O)_2(OH)_4(PO4)7]·4H_2O [J]. Science, 1993, 259, 1596–1599.
    [8] Rikken G L J A, Raupach E. Observation of magneto-chiral dichroism [J]. Nature, 1997, 390: 493–494.
    [9] Gerbier Philippe, Domingo Neus, Gomez-Segura Jordi et al. Chiral, single-molecule nanomagnets: synthesis, magnetic characterization and natural and magnetic circular dichroism [J]. J Mater Chem, 2004, 14: 2455–2460.
    [10] Wang Y, Yu J H, Guo M, et al. [{ZN_2(HPO4)_4}{Co(dien)_2}]H3O: A Zinc Phosphate with Multidirectional Intersecting Helical Channels [J]. Angew Chem Int Ed, 2003, 42 (34): 4089–4092.
    [11] Minguet M, Luneau D, Lhotel E, et al. An Enantiopure Molecular Ferromagnet[J]. Angew Chem Int Ed, 2002, 41 (4): 586–589.
    [12] Fang Xi Kui, Anderson T M, Hill C L. Enantiomerically Pure Polytungstates: Chirality Transfer through Zirconium Coordination Centers to Nanosized Inorganic Clusters [J]. Angew Chem Int Ed, 2005, 44 (23): 3540–3544.
    [13] Li G, Yu W B, Ni J, et al. Self-Assembly of a Homochiral Nanoscale Metallacycle from a Metallosalen Complex for Enantioselective Separation [J]. Angew Chem Int Ed, 2008, 47 (7): 1245–1249.
    [14] A G Hu, G T Yee, W B Lin. Magnetically Recoverable Chiral Catalysts Immobilized on Magnetite Nanoparticles for Asymmetric Hydrogenation of Aromatic Ketones [J]. J Am Chem Soc, 2005, 127 (36): 12486–12487.
    [15] Lin Zhuojia, Slawin Alexandra M Z, Morris Russell E. Chiral Induction in the Ionothermal Synthesis of a 3-D Coordination Polymer [J]. J Am Chem Soc, 2007, 129 (16): 4880–4881.
    [16] Fang X K, Anderson T M, Hill C L. Enantiomerically Pure Polytungstates: Chirality Transfer through Zirconium Coordination Centers to Nanosized Inorganic Clusters [J]. Angew Chem, 2005, 117 (23): 3606–3610.
    [17] Xue M, Zhu G, Ding H, et al. Six Three-Dimensional Metal?Organic Frameworks with (3,4)-, (4,5)-, and (3,4,5)-Connected Nets Based on Mixed Ligands: Synthesis, Structures, and Adsorption Properties [J]. Crys Growth Des, 2009, 9 (3): 1481–1488.
    [18] Guo Hailing, Zhu Guangshan, Hewitt Ian J, et al.“Twin Copper Source”Growth of Metal?Organic Framework Membrane: Cu3(BTC)_2 with High Permeability and Selectivity for Recycling H_2 [J]. J Am Chem Soc, 2009, 131 (5): 1646–1647.
    [19] Kawamoto Ryosuke, Uchida Sayaka, Mizuno Noritaka. Amphiphilic Guest Sorption of K_2[Cr3O(OOCC2H5)6(H_2O)_3]2[α-SiW12O40] Ionic Crystal [J]. J Am Chem Soc, 2005, 127 (30): 10560–10567.
    [20] Uchida S, Hashimoto M, Mizuno N. A Breathing Ionic Crystal Displaying Selective Binding of Small Alcohols and Nitriles: K3[Cr3O(OOCH)6(H_2O)_3][SiW12O40]16 H_2O [J]. Angew Chem Int Ed, 2002, 41 (15): 2814–2817.
    [21] Raptopoulou C P, Tangoulis V, Devlin E. [{Fe(OMe)_2[O2CC(OH)PH_2]}12]: Synthesis and Characterization of a New Member in the Family of Molecular Ferric Wheels with the Carboxylatobis(alkoxo) Bridging Unit [J]. Angew Chem, 2002, 114 (13), 2492–2495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700