用户名: 密码: 验证码:
建筑物动态能耗分析用气象仿真模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可持续发展给暖通工程师提出的要求是,设计合理、高效、优化的HVAC系统。HVAC系统的优化设计,以全年能耗分析为基础,而能耗分析必须输入可靠的气象数据。我国能耗分析用的气象数据非常欠缺,为推广先进的全年能耗分析方法,构成能耗分析用的气象数据是我国暖通界迫切的任务。
     全年能耗分析用的全年气象数据,可以根据若干年的观测,按一定方法统计构成典型年,也可用数学模型模拟产生。论文选择数学模拟方法,因为该方法具有较少主观性、比较简洁,并且更适合我国现有气象观测客观条件的优点。论文主要以北京、西安、重庆和成都的数据为基础,辅以昆明和福州的少量数据进行分析。建模参数选择了对能耗分析最重要的三个要素,即辐射、气温和水汽压。根据我国目前逐日气象记录相对充分,而逐时观测稀少的客观条件,论文采用了分阶段建模和模拟的方法。即先模拟逐日气象参数,在此基础上再模拟逐时气象参数。
     逐日气象参数包括日总辐射、日均气温、气温日较差、日均水汽压和水汽压日较差。逐日气象参数既有周期性变化趋势,又有随机特点,由于两者对能耗分析都有显著影响,因此对逐日气象参数建立了组合模型,即确定性模型+随机模型。确定性模型描述周期性变化,是由少量的显著频率构成的傅立叶级数。这些显著频率通过傅立叶变换及频谱分析确定。5个逐日气象参数的周期变化最多用显著频率0、1、2、3、4[周/年]来描述就足够了。
    逐日气象参数分离确定项之后的随机项是均值平稳(零均值)、方差时变,并且存在互相关的非正态分布的随机序列。这些序列可以认为是分段(逐月)平稳的,因此用每个月的标准差进行标准化可得到方差也平稳的序列。本文对该标准序列采用误差函数成功进行了正态变换,这保证了模拟仿真数据与原始数据具有相同的分布。对平稳化正态化之后的随机序列,论文建立了多维满系数ARX模型即来进行模拟。模型以辐射序列为输入,模拟输出温湿度参数。模型阶数根据相关分析和FPE准则确定,参数估计采用了最小二乘法。ARX模型的残差通过了白噪声及正态检验。辐射作为相对独立的要素,单独建立一元AR(2)模型模拟。多元ARX模型与多元AR模型即相比的明显好处是,充分保证了随机序列之间的互相关,特别是0步互相关。因为多维ARX模型模拟温湿度参数时使用了同一时刻的辐射,而多维AR模型不可能用同一天的辐射计算温湿度。经检验ARX模型的模拟数据不但与建模数据具有相同的相关关系,还具有相同的分布特征。
     论文的逐日气象组合模型形式,Fourier模型+ARX模型是国内首次提出,并首次进行了正态变换,模型在数据相关系数,分布特征方面也保持得最好。日散射或日直射没有与日总射同时进入随机模型,因为随机模拟时难以保证散射或直射不大
    
    于日总射。故论文另外建立了一个日散射系数Kd多项式分离模型,在日总辐射已知的情况下估计日总辐射。该模型的估计数据与原始数据具有一致的月均值,对长期能耗分析具有足够的准确性。还建立了日散射概率密度模型。
     逐时辐射模型采用了确定性模型。通过对原始逐时总辐射数据进行傅立叶变换,确定了显著频率,高频部分为1、2、3、4[周/日]及以上每个频率的4个旁瓣,低频部分为0、1、2、3、4[周/年],用显著频率构成逐时总辐射的傅立叶级数模型。模拟时,该模型用日总辐射调整,以保证逐时值之和与日值相当。在逐日总射和逐时总射基础上,建立了逐时散射系数kd多项式模型。该逐时散射模型考虑了大气质量的影响,即不同大气质量下给出不同的拟合式,精度比笼统的拟合模型显著提高。
     对昆明和福州的资料分析表明,逐时气温用日均气温和气温日较差进行标准化后,可以建立一个全年适用的傅立叶模型。该标准化逐时气温模型的显著频率是1、2[周/天]。就日均气温的计算而言,逐时资料和日4次定时值+最高最低值资料是一致的。因此对只有日4次定时值+最高最低值资料的北京、西安、成都和重庆,建立的逐时气温模型具有足够的准确性。本文按北京时间建立逐时气温模型,注意了最高最低气温的出现时间。
     与逐时气温一样,逐时水汽压也进行了标准化处理。逐时资料和日4值资料计算的日均水汽压可以认为一致,但水汽压日较差有明显区别。我国大多数地区只有水汽压日4值资料,根据日4值资料建立逐时化模型存在先天不足,决定了任何复杂的模型都不可能准确。因此采用了简单组合模型:傅立叶模型+白噪声模型,其中白噪声标准差统一取0.28。为了保证随机模拟的水汽压不超过当时的饱和水汽压,建立了修正模型,该修正模型认为月均逐时相对湿度与月均逐时标准气温呈线性关系。
     气象参数本质上是非平稳、非线性时间序列,论文除了用组合模型进行模拟外,还探讨了用线性神经网络和BP网络对其进行预报和模拟。研究表明,如果以一步预报为目的,神经网络比常规时间序列分析方法优越,因此可以用在HVAC系统的实时控制。但就随机模拟能耗分析用的全年气象数据而言,神经网络并不适合。因此,如果以能耗分析为目的,本文推荐采用组合逐日模型以及相应的逐时化模型,不推荐神经网络方法。
     论文给出了气象组合模型模拟软件(suSim)的整体框架,以及北京、西安、重
HVAC engineers must design reasonable, high efficient and optimum HVAC systems to meat the trend of sustainable development. Only on the basis of annual energy analysis, would optimum design be archived. Energy analysis begins with cooling/heating loads calculation, which require climatic data as inputs. However, there isn't sufficient climatic data for energy analysis in China. So research work as to this aspect is emergent.
    
    Climatic data may be constructed to form TRY/TMY by statistic methods or synthesized by stochastic models. Stochastic models are chosen because they have the advantages of conciseness and less subjective, and are more suitable for the original data in China. Analysis is carried out on the data base of Beijing, Xi'an; Chongqing and Chengdu. Part data of Kunming and Fuzhou is also employed. Three climatic factors including solar radiation, temperature and humidity are considered, to which building energy analysis is most sensitive. Conditioned by the fact that daily records are sufficient while hourly records are insufficient, two-stage models are supposed. That means that models do not generate hourly variables directly. Daily variables would be simulated at first and then hourly variables would be simulated on basis of daily data.
    
    Daily variables including daily total solar radiation, daily mean and range of temperature, daily mean and range of water-vapor pressure are modeled. Daily climatic variables consist in deterministic and stochastic components, both of which have important impacts on energy analysis. Thus combination models :deterministic models + stochastic models are established. Deterministic models describe the periodic variation and are Fourier series with only significant cycles. Significant cycles are identified by Fourier transfer and spectrum analysis. The most significant frequencies of daily climatic variables are 0,1,2,3,4 cycles/day.
    
    Stochastic components formed by subtracting deterministic components from the original data are non-normal, cross-related series with stationary means and time-varying variances. The series become weak stationary after standardized with monthly variance. Normal transfers are performed on the standard series, which ensure that simulated data
    
    have the same distributions of the original data. The normal series are described by multivariate ARX model, of which input is solar variable and outputs are temperature and water-vapor pressure variables. The orders are determined by correlation analysis and FPE criteria, and parameters are estimated by least square mean technique. The stochastic solar variables are separately modeled by univariate AR(2). The supposed multivariate ARX models have the advantage of keeping the same cross-correlation among daily variables over the common multivariate AR model. The reason is that the solar variable of the n'th day comes into effect when simulating temperature and water-vapor pressure variables of the n'th day by ARX.
    
    The form of Fourier model plus ARX model is employed first time in China, and have the best performance of keeping cross-correlation and distribution. Daily diffuse radiation wasn't included in combination model, because stochastic model can not ensure that daily diffuse radiation is not more than daily total radiation. Polynomial models are built to estimate daily diffuse radiation from daily total radiation. A probability density model has been supposed also.
    
    Models for hourly solar radiation are deterministic ones. Hourly total radiation models are Fourier series models with significant frequencies determined by Fourier transfer,which include 1,2,3,4 cycles/day and 4 bandsides of every frequency above and frequencies of 0,1,2,3,4 cycles/year . The Fourier models should be adjusted by daily values generated by combination models. Polynomial models separating hourly diffuse radiation from hourly total are built under different air mass. Polynomial fits under different air mass are more accurate than general model for the whole day.
    
    Fourier models with freq
引文
前 言
    1. 严治军.建筑传热计算理论.重庆建筑工程学院.1987年2月
    2. 何雪冰等.中央空调节能有关问题的研讨.重庆建筑大学学报.1999.Vol.21,No.4.P40-44
    3. J. Marx Ayres et. al. Historical development of building energy calculation.ASHRAE Transactions.1995(1). P841-848
    4. Edward F. Swell et. al. Evolution of building energy simulation methodology.ASHRAE Transactions.1995(1).P850-855
    5. Gideon Shavit.Short-time-step analysis and simulation of homes and buildings during the last 100 years.ASHRAE Transactions.1995(1).P856-868
    6. David E. Knebel. ASHRAE technical committee 4.7 development of simplified energy analysis procedures.ASHRAE Transactions.1995(1)P869-881
    7. Drury B. Crawly et. al. EnergyPlus:energy simulation program.ASHRAE Journal,April,2000.P49-56
    8. www.chinahavcr.net
    9. Donald G. Colliver et. al. Development of the design climatic data for the 1997 ASHRAE Handbook-Fundamental.ASHRAE Transactions,2000(2).P3-13
    10. http://rredc.nrel.gov.solar/old_data/nsrdb/tmy2/.
    11. 《采暖通风与空气调节设计规范》国家标准管理组.‘建筑能耗—气象资料统计研讨会’会议纪要.2000.6.4
    第1章
    [1]. 电子工业部第十设计研究院主编.《空气调节设计手册》.北京:中国建筑工业出版社,第二版,1995,11.
    [2]. ASHRAE .Climatic Design Information.1997 ASHRAE Handbook-Fundamentals,Chapter 26.
    [3]. Donald G. Colliver et. al. Development of design climatic data for the 1997 ASHRAE Handbook-Fundamentals.ASHRAE Transactions,2000(2).P3-13
    [4]. Lewis G. Harriman III et. al. New weather data for energy calculation. ASHRAE Journal,Mar,1999.P31-45
    [5]. Donald G. Colliver . Sequence of extreme temperature and humidity for design calculation. ASHRAE Transactions,1998(1).P133-143
    [6]. David D. Schmitt . Automated generation of hourly design sequences. ASHRAE Transactions,2000(2).P158-168
    [7]. Brury B. Which weather data should you use for energy simulations of commercial buildings. ASHRAE Transactions,1998(2).P499-515
    [8]. NCDC. Test Reference Year(TRY),tape reference manual,TD-9706. Asheville,North Carolina:National Climatic Data Center,U.S. Department of Commerce,1976
    [9]. NCDC. Typical meteorological year user's manual. TD-9734,hourly solar radiation-Surface meteorological observations. Asheville,North Carolina:National Climatic Data Center,U.S. Department of Commerce,1981
    
    
    [10]. Hall I. J. Generation of Typical Year for 26 SOLMET stations. Sandia Laboratories Report SAND78-1601,Sandia Laboratories,Albuquerque,NM.1978.P189-200
    [11]. D. Pissimanis . The generation of a Typical Meteorological Year for the city of Athens.Solar Energy.1988.Vol. 40,NO. 5. P405-411
    [12]. A. Argiriou . Comparison of methodologies for TMY generation using 20 years data for Athens,Greece. Solar Energy.1999.Vol. 66,NO. 1.P33-45
    [13]. http://rredc.nrel.gov.solar/old_data/nsrdb/tmy2/.
    [14]. James R. Augustyn. WYEC2 user's manual and software toolkit. ASHRAE Transactions,1998(2). P32-40
    [15]. Thomas L. Stoffel . Production of the Weather Year for Energy calculations Version 2 (WYEC2) Data Files. ASHRAE Transactions,1998(2).P487-497
    [16]. 田胜元、李百战.空调动态负荷计算用气象资料构成方法研究.重庆建筑工程学院学报,1986(6).P54-58
    [17]. Joe Huang. The impact of different weather data on simulated residential heating and cooling loads. ASHRAE Transactions,1998(2).P516-527
    [18]. 张家诚等.中国气候.上海:上海科学技术出版社,1986.P251-260
    [19]. 林振山.长期预报的相空间近邻等距法.大气科学. 1992.Vol.16,No.5.P530-537
    [20]. Christian Gueymard. Critical analysis and performance assessment of clear sky solar irradiance models using theoretical and measured data. Solar Energy. 1993.Vol.51,No.2.P121-138
    [21]. E. L. Maxwell. METSTAT-the solar radiation model used in the production of national solar radiation data base. Solar Energy. 1998.Vol.62,No.4.P263-279
    [22]. C. Gueymard. Prediction and performance assessment of mean hourly global radiation.Solar Energy. 2000.Vol.63,No.3.P285-303
    [23]. B. E. Psiloglou. On the atmospheric water vapor transmission function for solar radiation models.Solar Energy. 1993.Vol.53,No.5.P445-453
    [24]. Jan Asle Olseth. Characteristics of hourly global irradiance modeled from cloud data. Solar Energy. 1993.Vol.51,No.3.P197-204
    [25]. J. Samimi. Estimation of height-dependent solar irradiation and application to the solar climate of Iran. Solar Energy. 1994.Vol.52,No.4.P256-260
    [26]. Alberto Coronas Salcedo. Fourier analysis of meteorological data to obtain a typical annual time function. Solar Energy. 1984.Vol.32,No.4.P479-488
    [27]. J. M. Baldasano. Fourier analysis of daily solar radiation data in Spain. Solar Energy. 1988.Vol.41,No.4.P327-333
    [28]. W. F. Phillips. Harmonic analysis of climatic data. Solar Energy. 1984.Vol.32,No.3.P319-328
    [29]. Michael G. Smart. Fourier-synthesized weather data for building energy estimation.Building and Environment . 1984.Vol. 19,No. 1.P41-48
    [30]. Hollands K. G. Effect of random fluctuations in ambient air temperature on solar system performance .Solar Energy. 1989.Vol.42,No.4.P337-342
    [31]. Gansler R. A. Assessment of the accuracy of generated meteorological data for use in solar energy estimation. Solar Energy. 1994.Vol.54,No.3.P279-287
    [32]. V. A. Graham et al. A time series model for Kt with application to global synthetic weather generation . Solar Energy. 1988.Vol.40, No.2,P83-92
    
    
    [33]. H. Yoshida. Modeling of weather data by time series analysis for air-conditioning load calculations. ASHRAE Transactions,1992.P328-345
    [34]. Shuichi Hokoi. Impact of the stochastic nature of climate on building thermal analysis. ASHRAE Transactions,1994.P787-797
    [35]. John Boland. Time-series analysis of climatic variables. Solar Energy. 1995.Vol.55,No.5.P377-389
    [36]. John Boland. The importance of the stochastic component of climatic variables in simulating the thermal behaviour of domestic dwellings. Solar Energy. 1997.Vol.60,No.6.P359-366
    [37]. Delgeman L. O. Predicting instantaneous sensible heat gains and heat losses in building the Monte Carlo computer techinque . PB193874
    [38]. Delgeman L. O. A weather simulation method for building energy analysis. ASHRAE Transactions.1976.P321-329
    [39]. A. W. Boeke. A synthetic outdoor climate reference year for calculation of yearly energy consumption. XV International Congress of Refrigeration,1979
    [40]. Z. O. Cumali. Spectral analysis of coincident weather data for application in building heating,cooling load and energy consumption calculations. ASHRAE Transactions,1970.P241-255
    [41]. Box G. E. P,Jenkins G. M. Time series analysis,forecasting and control. Holend-Day,1970
    [42]. B. J. Brinkworth. Autocorrelation and stochastic modelling of insolation sequences. Solar Energy. 1977.Vol.19.P343-347
    [43]. C. Mustacchi. Stochastic simulation of hourly global radiation sequences. Solar Energy. 1979.Vol. 23.P
    [44]. R. H. B. Exell. A mathematical model for solar radiation in south-east Asia(Thailand). Solar Energy. 1981.Vol.26.P161-168
    [45]. D.C Hitlle & C. O. Pedersen. Periodic and stochastic behaviour of weather data. ASHRAE Transactions,1981(2).P173-183
    [46]. A. Baloukstsis. Stochastic simulation model of hourly total solar radiation. Solar Energy. 1986.Vol.37,No. 2.P119-126
    [47]. V.A. Graham & Hollands. A time series model for Kt with application to global synthetic weather generation. Solar Energy.1988.Vol.40,No. 2.P
    [48]. R.J. Aguiar et. al. Simple procedure for generating sequences of daily radiation values using a library of Markov transition matrices. Solar Energy. 1988.Vol.40,No. 3.P269-279
    [49]. J.M. Gordon & T.A. Reddy. Time series analysis of daily horizontal solar radiation. Solar Energy. 1988.Vol.41,No. 3.P423-429
    [50]. J.M. Gordon & T.A. Reddy. Time series analysis of hourly horizontal solar radiation .Solar Energy.1988.Vol.41,No. 5.P215-225
    [51]. V.A. Graham & Hollands. A method to generate synthetic hourly solar radiation globaly. Solar Energy. 1990.Vol.44,No. 6.P333-341
    [52]. R. Aguiar et. Al. TAG: A time-dependent ,autoregressive, Gaussian model for generating synthetic hourly radiation. Solar Energy. 1992.Vol.49,No. 3.P167-174
    [53]. Boland et. al. Time series analysis of climatic variables. Solar Energy.1995.Vol.55,No. 5.P377-389
    LL.Mora-Lopez et. al..Characterization and simulation of hourly exposure series of global
    
    [54]. radiation. Solar Energy. 1997.Vol.60,No. 5.P257-270
    [55]. 江亿.空调负荷计算用随机气象模型.制冷学报. 1981.NO.3.P45-55
    [56]. Liu.The interrelationship and characteristic distribution of direct ,diffuse and total solar radiation. Solar Energy.1960.No. 3.P1-19
    [57]. 田胜元.建筑能耗用随机气象模型研究资料.个人资料.1989
    [58]. 田胜元.建筑能耗用随机气象模型研究资料.个人资料.1990
    [59]. Wenbin Hu. Grey model of direct solar radiation intensity on the horizontal plane for cooling loads calculation. Building and Environment,35(2000).P587-593
    [60]. 邓聚龙.灰色系统理论.武汉:华中工学院出版社,1986
    [61]. 田胜元.空调动态负荷计算方法的研究.重庆建筑工程学院学报.1986.2.P143-148
    [62]. Samuel B. T. Sensitivity analysis for building thermal loads. ASHRAE Transactions:Research,1997.P356-366
    [63]. Richard H. Jones.时间序列分析-时间域.见史国宁等译.大气科学中的概率统计和决策.第6章.气象出版社.1991.1
    [64]. 张素宁,田胜元.建筑能耗分析用逐日气象数学模型的建立.暖通空调. 2000.Vol.30,No.3.P64-66
    [65]. 郎四维.建筑能耗分析逐时气象资料的开发研究.暖通空调.2002,Vol.32,No.4.P1-5
    
    第2章
    [1]. 中华人民共和国城乡建设环境保护部部标准.建筑气象参数标准JGJ 35-87(试行).北京:中国建筑工业出版社.1987
    [2]. 张家诚主编.中国气候总论.北京:气象出版社.1991年12月
    [3]. 田胜元.建筑能耗用随机气象模型研究资料.个人资料,1989
    [4]. 中国气象局编定.气象辐射观测方法.北京:气象出版社.1996年9月
    [5]. 中国气象局编定.地面气象观测规范.北京:气象出版社.1979年12月
    
    第3章
    [1]. [美]D.格罗比著.梁泽环译.时间序列分析辩识与适应性滤波.北京:科学出版社.1987.5
    [2]. 同济大学数学教研室编.概率论.北京:高等教育出版社.1982.10
    [3]. 张福渊等编著.概率统计及随机过程.北京;北京航空航天大学出版社.2000.9
    [4]. 编委会.现代应用数学手册?概率统计与随机过程卷..北京:清华大学出版社.2000.7
    [5]. 方兆本,缪柏其编著.随机过程.合肥:中国科学技术大学出版社.1993.1
    [6]. 毛用才,胡奇英编著.随机过程.西安:西安电子科技大学出版社.1998.7
    [7]. 钱敏平,龚光鲁著.随机过程论. 北京:北京大学出版社.1997.10(第二版)
    [8]. 钱敏平,龚光鲁著.应用随机过程.北京:北京大学出版社.1998.10
    [9]. 龚光鲁.随机微分方程引论.北京:北京大学出版社.1995.11(第二版)
    [10]. 项静恬等.动态数据处理—时间序列分析. 北京:气象出版社.1986.9
    [11]. 安鸿志等.时间序列的分析与应用.合肥:中国科学技术大学出版社.1993
    [12]. 张树侠,吴简彤编著.数据建模及预报. 哈尔滨:哈尔滨工程大学出版社.1999.4
    [13]. 杨位钦,顾岚编著.时间序列分析与动态数据建模. 北京:北京工业学院出版社.1986.12
    [14]. 邓必鑫.信号分析基础. 北京:北京理工大学出版社.1994.4
    
    
    [15]. 关肇直等.信号分析与处理. 北京:科学出版社.1986.7
    [16]. 林振山.杨修群.理论气候学. 南京:南京大学出版社.1995
    [17]. 余剑莉.统计天气预报.北京:气象出版社.1994.12
    [18]. 张贤达.时间序列分析—高阶统计量方法.北京:清华大学出版社,1996.2
    [19]. 同第1章Ref.56
    [20]. 同第1章Ref.55
    [21]. P. Bendt et al..The frequency distribution of daily insolation values.Solar Energy, 1981.Vol.27.No.1.p214
    [22]. K. G. T. Hollands et al. A probability density function for the clearness index,with applications. Solar Energy . 1983.Vol.30.P195
    [23]. J.A. Olseth et al..A probability density function for daily insolation within temperates storm belts. Solar Energy. 1984.Vol. 33.P533-542
    [24]. G. Y. Saunier et al. A monthly probability distribution function of daily global irradition values appropriate for both tropical and temperate locations.Solar Energy . 1987.Vol.38.P169-177
    [25]. H. Suehrcke et al. The frequency distribution of instantaneous insolation values.Solar Energy. 1988.Vol. 40.P413-422
    [26]. J.A. Olseth et al. A probability density model for hourly total and beam irradiance on arbitrarily orientated planes. Solar Energy . 1987.Vol.39.P343-351
    [27]. A. Skartvent et al.The probability density and autocorrelation of short-term global and beam irradiance. Solar Energy. 1992.Vol.49.P477-487
    [28]. R. Aguiar et al. Statistical properties of hourly global radiation. Solar Energy . 1992.Vol.48.P157-167
    [29]. F. O. Akuffo et al. The frequency distribution of daily global irradiation at Kumasi. Solar Energy . 1993.Vol.50.P145-154
    [30]. J.Tovar et al. One-minute global irradiance probability density distributions condtioned to the optical air mass. Solar Energy . 1998.Vol.62.P387-393
    [31]. Erbs et al. Estimation of Degree-Days and ambient temperature Bin data from monthly average temperatures.ASHRAE Journal . 1983.Vol.25.P60-65
    [32]. V. V. Satyamurty et al. Frequency distributions of daily ambient temperatures through generalizes parameters. Journal of Solar Energy Engineering . 1999.Vol.121.P176-183
    [33]. 徐钟济编著.蒙特卡罗方法.上海:上海科学出版社.1986年6月
    [34]. 杨耀臣著. 蒙特卡罗方法与人口仿真学.合肥:中国科学技术大学出版社.1999年7月
    [35]. 王梓坤主编.常用数学公式大全.重庆:重庆出版社.1991年6月
    [36]. 周概容主编.应用统计方法辞典.北京:中国统计出版社.1993年6月
    [37]. 王宏禹著.非平稳随机信号分析与处理.北京:国防工业出版社.1999年1月
    [38]. 史国宁等译.大气科学中的概率统计和决策.北京:气象出版社.1991.1
    
    第4章
    [1]. 王宏禹著.非平稳随机信号分析与处理..北京.国防工业出版社.1999年1月
    [2]. 张素宁,田胜元.建筑能耗分析用逐日气象数学模型的建立.暖通空调. 2000.Vol.30,No.3,P64-66
    Allan.Hurphy等编,史国宁等译.大气科学中的概率、统计和决策.北京.气象出版社.1991年
    
    [3]. 4月
    [4]. J.M.Baldasano et.al. Fourier analysis of daily solar radiation data in Spain. Solar Energy. 1988.Vol.41,No.4,P327-333
    [5]. C.S.Alberto et.al. Fourier analysis of meteorological data to obtain a typical annual time function. Solar Energy. 1984.Vol.32,No.4,P479-488
    [6]. M.G.Smart et.al..Fourier-synthesized weather data for building energy use estimation. Solar Energy. 1984.Vol.19,No.1,P41-48
    [7]. W.F.Phillips. Harmonic analysis of climatic data. Solar Energy. 1984.Vol.32,No.3,P319-328
    [8]. A.K.Athienitis. A method and algorithm for estimation of transmitted solar radiation and its long-term averages using fourier series. Solar Energy. 1990.Vol.45,No.5,P257-263
    [9]. 邓必鑫编著.信号分析基础.北京.北京理工大学.1994年4月
    [10]. J.M Gordan and T.A.Reddy. Time series analysis of daily horizontal solar radiation. Solar Energy. 1988Vol.41,No.3,P215-226
    [11]. 田胜元等编著.实验设计与数据处理. 北京.中国建筑工业出版社.1988年11月
    [12]. 汪荣鑫著.数理统计. 西安:西安交通大学出版社.1986年10月
    [13]. R.J.Aduiar et.al. Simple procedure for generating sequences of daily radiation values using a library of Markov transition martrices. Solar Energy. 1988.Vol.40,No.3,p269-279
    [14]. 杨耀臣著.蒙特卡罗方法与人口仿真学.合肥.中国科学技术大学出版社.1999年7月
    [15]. 徐钟济编著.蒙特卡罗方法.上海.上海科学技术出版社.1985年6月
    [16]. Box G. E. P,Jenkins G. M. Time series analysis,forecasting and control. Holend-Day,1970
    [17]. 杨位钦等编著.时间序列分析与动态数据建模.北京.北京工业学院出版社.1986年12月
    [18]. 安鸿志等编著.时间序列的分析与应用.北京.科学出版社.1983年7月
    [19]. 项静恬等编著.动态数据处理—时间序列分析.北京.气象出版社.1986年9月
    [20]. John Boland. Time series analysis of climatic variables. Solar Energy. 1995.Vol.55,No.5,P377-388
    
    第5章
    [1]. Delgeman,L.O: A weather simulation method for building energy analysis .Ashrae Transactions. 1976.Vol.72.P35-41
    [2]. J.M Gordan and Hochman.On correlation between beam and global radiation. Solar Energy. 1984.Vol.42,No.3.P161-168
    [3]. H.D.Berh. Solar radiation on tilted south oriented surfaces:Validation of transfer-models. Solar Energy. 1997.Vol.61,No.5.P399-413
    [4]. Kathly L. Young et al. Simple approaches to modelling solar radiation in Arctic. Solar Energy.1995.Vol.54,No.1.P33-40
    [5]. Mehreen S.Gul et al.:Models for obtaining solar radiation from other meteorological data. Solar Energy. 1998.Vol.64,No.1-3.P99-108
    [6]. J.A.Davies et al. Estimation solar radiation from incomplete cloud data. Solar Energy. 1988.Vol.41,No.1.P15-18
    [7]. R.B.Benson et al. Estimation of daily and monthly direct,diffuse and global solar radiation from sunshine duration measurements. Solar Energy. 1984.Vol.32,No.4.P
    I. A. Raja:Insolation-sunshine relation with elevation and latitude. Solar Energy.
    
    [8]. 1994.Vol.53,No.1.P53-56
    [9]. K.K Gopinathan. Estimation of hourly global and diffuse solar radiation from hourly sunhine duration. Solar Energy. 1992.Vol.48,No.1.P3-5
    [10]. Liu&Jordan: The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Solar Energy. 1960.Vol. IV, No. 3.P1-19
    [11]. N.Al-Hamdani et al.Estimation of the diffuse fraction of daily and monthly average global radiation for Fydhaliyah,Baghdad(IRAQ). Solar Energy. 1989.Vol.42,No.1.P25-31
    [12]. F.J. Newland: A study of solar radiation models for the coastal region of south China. Solar Energy. 1989.Vol.43,No.4.P227-235
    [13]. Lin Wenxian.A general correlation for estimating the monthly average daily radiation incident on a horizontal surface in Yunnan Province,China. Solar Energy. 1988.Vol.41,No.1.P1-3
    [14]. Danny H.W. Li et al.An analysis of climatic parameters and sky condition classification. Building and Enivronment. 2001.Vol.36.P435-445
    [15]. K.K.Gopinathan. Solar sky radiation estimation techniques. Solar Energy. 1992. Vol.49 ,No.1.P9-11
    [16]. C.R Nagarajia Rao. The diffuse component of the daily global solar irradiation at Corvallis,Oregon(U.S.A). Solar Energy. 1984. Vol.32,No.5.P637-641
    [17]. 江亿:空调负荷计算用随机气象模型.制冷学报,1984(NO.3).P45-55
    [18]. 田胜元等编著:实验设计与数据处理.中国建筑工业出版社.1988年11月
    [19]. 汪荣鑫著:数理统计.西安交通大学出版社.1986年10月
    [20]. 张素宁,田胜元:建筑能耗分析用逐日气象数学模型的建立.暖通空调. 2000.Vol.30,No.3.P64-66
    [21]. F. Vignola and D.K. McDaniels. Diffuse-global correlation: seasonal variations. Solar Energy. 1984.Vol.33,No.5,P397-402
    [22]. K.G.T Hollands,S.J. Crha: A probability density function for the diffuse fraction,with applications. Solar Energy. 1987.Vol.38,No.4,P533-542
    [23]. J.Tovar et. al: One-minute global irradiance probability density distributions conditioned to the optical mass. Solar Energy, 1998.Vol.62,No.6,P387-393
    [24]. 杨凤详等.数值分析.天津大学出版社.1996年9月
    [25]. 祝昌汉.我国散射辐射的计算方法及其分布.太阳能学报. 1984.5(3),P242-249
    [26]. 祝昌汉.我国直接辐射的计算方法及其分布特征.太阳能学报. 1985.6(1),P1-11
    [27]. 王炳忠.中国大陆散射日射与总日射和地外日射的关系. 太阳能学报. 1994.15(3),P201-205
    
    第6章
    [1]. J.M. Gordon and T.A.Reddy. Time series analysis of hourly global horizontal solar radiation. Solar Energy. 1988.Vol.41,No.5,P423-429
    [2]. A. Skartiveit and J.A. Olseth. The probability and autocorrelation of short-term and beam irradiation. Solar Energy. 1992.Vol.49,No.6,P477-487
    [3]. V.A.Graham and K.G.T Hollands. A method to generate synthetic hourly solar radiation globally. Solar Energy. 1990.Vol.44,No.5,P333-341
    [4]. R.Aguiar et.al.:TAG. A time-dependent,autoregressive Gaussian model for generating synthetic hourly radiation . Solar Energy. 1992Vol.49,No.3,P167-174
    
    
    [5]. LL.Mora-Lopez et.al. Characterization and simulation of hourly exposure series of global radiation. Solar Energy. 1997.Vol.60,No.5,P257-270
    [6]. LL.Mora-Lopez et.al. Multiplicative ARMA models to generate hourly series of global irradition. Solar Energy. 1998.Vol.63,No.5,P283-291
    [7]. J.Remund et.al. On the generation of hourly shortwave radiation on tilted surfaces. Solar Energy. 1998.Vol.62,No.5,P331-344
    [8]. Heinrich Morf. The stochastic two-state solar irradiance model (STSIM) . Solar Energy. 1998.Vol.62,No.2,P101-112
    [9]. 江亿.空调负荷计算用随机气象模型.制冷学报.1984(NO.3).P45-55
    [10]. 林文胜. 建筑能耗分析用逐日气象数学模型. 新能源.,1995,No.3,P48-52
    [11]. John Boland.Time series analysis of climatic variables. Solar Energy. 1995.Vol.55,No.5,P377-388
    [12]. 李百战.建筑热过程模拟、调节和控制.重庆建筑工程学院暖通教研室.1987
    [13]. M.Collares Pereira et.al. The average distribution of solar radiation correlation between diffuse and hemispherical and between daily and hourly insolation values. Solar Energy. 1979.Vol.22,No.2,P155-160
    [14]. P.C.Jains et.al. A new model for obtaining horizontal instantaneous global and diffuse radiation from the daily values. Solar Energy. 1988.Vol.41,No.5,P397-404
    [15]. M.K.El-Adawi et.al. Estimation of the hourly solar irradiance on a horizontal surface. Solar Energy.1986.Vol.36,No.2,P129-134
    [16]. 中国气象局编.气象辐射观测方法.北京.气象出版社.1996年9月
    [17]. 秦前清、杨宗凯编著.实用小波分析.西安.西安电子科技大学出版社.1994年1月
    [18]. 王禹宏著.非平稳随机信号分析与处理.北京.国防工业出版社.1999年1月
    [19]. 马维桢、殷瑞祥编著.子波分析与子波变换.广州.华南理工大学出版社.1996年10月
    [20]. 胡增臻、石伟.子波变换在大气科学中的应用研究.大气科学. 1997.21(1),P
    
    第7章
    [1]. 江亿:空调负荷计算用随机气象模型.制冷学报.1981(3).P45-55
    [2]. 王炳忠,张纬敏.中国大陆散射日射与总日射和地外日射的关系.太阳能学报. 1994.Vol.15,No.3.P 201-205
    [3]. Richard Perez et.al. Climatic evaluation of models that predict hourly direct irradiance from hourly global irradiance:Prospects for performance improvements. Solar Energy. 1990.Vol.44,No.2.P99-108
    [4]. J.Chandrasekeran et.al. Hourly diffuse fraction correlation at a tropical location. Solar Energy. 1994.Vol.53,No.6,P505-510
    [5]. M.A.C.Chendo et.al. Hourly global and diffuse radiation of Lagos,Nigeria—correlation with some atmospheric parameters. Solar Energy. 1994.Vol.52,No.3,P247-251
    [6]. Josep-Abel Gonzalez et.al. Influence of the global radiation variability on the hourly diffuse fraction correlations. Solar Energy. 1999.Vol.65,No.2.P119-132
    [7]. John Garrison et.al. A study of the division of global irradiance into direct beam and diffuse irradiance at seven Candian sites. Solar Energy. 1995.Vol.55,No.6,P493-504
    [8]. 岑幻霞编著.太阳能热利用.北京:清华大学出版社.1997年1月
    [9]. 薛殿华主编.空气调节. 北京:清华大学出版社.1991年6月
    
    
    [10]. 曹叔维编著.房间热过程和空调负荷.上海:上海科学技术出版社.1991年10月
    [11]. 祝昌汉.我国散射辐射的计算方法及其分布.太阳能学报. 1984.5(3).P242-249
    [12]. 祝昌汉.我国直接辐射的计算方法及其分布特征.太阳能学报. 1985.6(1).P1-11
    
    第8章
    [1]. John Boland. Time series analysis of climatic variables. Solar Energy. 1995.Vol.55,No.5,P377-388
    [2]. 江亿.空调负荷计算用随机气象模型.制冷学报. 1981.NO.3,P45-55
    [3]. 张素宁,田胜元.建筑能耗分析用逐日气象数学模型的建立.暖通空调. 2000.Vol.30,No.3,P64-66
    [4]. 张家诚主编.中国气候总论.北京.气象出版社.1991年12月
    [5]. 周淑贞主编.气象学与气候学.北京.高等教育出版社.1997年7月第3版
    [6]. 杨位钦等编著.时间序列分析与动态数据建模.北京.北京工业学院出版社.1986年12月
    [7]. 安鸿志等编著.时间序列的分析与应用.北京.科学出版社.1983年7月
    [8]. 项静恬等编著.动态数据处理—时间序列分析.北京.气象出版社.1986年9月
    [9]. 邓先礼编著.最优化技术.重庆.重庆大学出版社.1998年1月
    [10]. 解可新等编著.最优化方法.天津.天津大学出版社.1997年1月
    [11]. Allan.Hurphy等编,史国宁等译.大气科学中的概率、统计和决策.北京:气象出版社.1991年4月
    [12]. Z.O.Cumali. Spectral analysis of coincident weather data for application in building heating,cooling load and energy consumption calculations. Ashrae Transactions.1970.P240-255
    [13]. Shuichi Hokol et.al. Impact of the stochastic nature of climate on building thermal analysis. Ashrae Transaction:Symposia,1994.P787-797
    [14]. H.Yoshida. Modeling of weather data by time series analysis for air-conditioning load calculations. Ashrae Transaction:Research,1992. P328-345
    [15]. 田胜元.建筑能耗用随机气象模型研究资料.个人资料,1989
    
    第9章
    [1]. 江亿.空调负荷计算用随机气象模型.制冷学报.1981(3).P45-55
    [2]. 周淑珍主编.气象学与气候学.北京.高等教育出版社.1997年7月第3版
    [3]. 张家诚主编.中国气候总论.北京.气象出版社.1991年12月
    [4]. 邓必鑫编著.信号分析基础.北京.北京理工大学出版社.1994年4月
    [5]. 杨位钦等编著.时间序列分析与动态数据建模.北京.北京工业学院出版社.1986年12月
    [6]. 田胜元等编著.实验设计与数据处理.北京.中国建筑出版社.1988年11月
    [7]. 汪荣鑫著.数理统计.西安.西安交通大学出版社.1986年10月
    [8]. 杨凤翔等编著.数值分析.天津.天津大学出版社.1996年6月
    
    第10章
    [1]. 张立明编著.人工神经网络的模型及其应用.上海:复旦大学出版社.1993.7
    [2]. 焦成李著.神经网络系统理论.西安:西安电子科技大学出版社.1990.12
    [3]. 闻新等编著.MATLAB神经网络应用设计.北京:科学出版社2000.9
    
    
    [4]. 张传斌等.非线性时间序列的RBF神经网络预测方法及其应用.热能动力工程. 2000.Vol.16(5).P311-342
    [5]. A.Sfetsos and A.H. Coonick.Uinvariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques. Solar Energy. 2000.Vol.68,No.2,P169-178
    [6]. M.Mohandes et.al.Use of radial basis function for estimating monthly mean daily solar radiation. Solar Energy. 2000.Vol.68,No.2,P161-168

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700