用户名: 密码: 验证码:
脑运动神经系统的建模与辨识研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑机接口是一种实现大脑直接与外界环境进行交流并进行控制的新技术。随着多通道神经元信号采集技术与计算机控制技术的日益成熟,如何从大脑皮层神经元群体活动中提取运动信息的解码算法是整个脑机接口系统实现脑信号与外界环境联系的关键纽带。本文针对脑运动神经系统的建模与辨识问题,深入研究了从大脑运动皮层神经元脉冲序列信号中提取关于生物具体运动行为信息的解码算法,以及从时间编码的角度分析神经元信号的方法。
     本文首先研究了建立大脑运动皮层神经元信号与肢体运动方向关系模型的问题。提出了一种基于二叉树的多类支持向量机(SVM)分类方法,建立用群体神经元的放电频率模式预测手臂运动方向的模型。通过与常用的线性群体向量法(PVA)以及学习矢量量化(LVQ)方法比较,表明支持向量机方法具有较强的学习能力和推广能力,适用于样本数量较少的神经元信号分析。另外,还采用简化了计算复杂性的最小二乘支持向量机方法建模,性能与标准的支持向量机相似,并且运算时间较短,更适用于神经元信号的在线分析,有利于实现性能更高的用于神经康复的脑机接口系统。
     然后,针对较为复杂的运动轨迹的建模问题,提出采用基于最小二乘支持向量机的非线性NARX模型,用群体神经元的放电频率模式预测三维空间中手臂运动轨迹的位置坐标。并且与线性的ARX模型以及基于ANN的NARX模型比较。表明非线性NARX模型比线性ARX模型能够更好地描述脑运动神经系统,而用LS-SVM算法建立的模型比ANN建立模型的预测精度更高,泛化能力更强。另外,还对实验记录的群体中的神经元进行了选择,使用相对较少的神经元信号实现了更精确的运动轨迹预测,并且有利于减少脑机接口系统的运算负荷。
     为了能够直接分析神经元发放脉冲的时间信息,本文系统研究了Spiking神经网络(SNN)的神经元模型、网络结构、计算机仿真方法以及网络学习算法。在类似ANN中BP算法的SpikeProp网络学习算法的基础上,提出了两种改进方法:一种是用学习速率自适应调整和加动量项的方法来提高SNN的收敛速度和改善动态性能;另一种采用更接近生物神经元的SRM模型,更全面地考虑了神经元在发放脉冲后的状态变化,并采用BP算法在线调整神经元的不应期,使多脉冲发放的SNN传递信息的效率更高。
     在研究Spiking神经网络的实现基础上,本文提出采用SNN方法,直接从大脑运动皮层神经元脉冲序列的时间模式中提取有关手运动方向以及手抓握角度的信息。通过单层和二层前向SNN分析运动皮层神经元活动的结果表明,SNN算法用于提取神经元脉冲序列中的时间信息是可行的,并且多层网络具有更高的计算能力。另一方面,与采用ANN分析神经元放电频率的结果比较表明,时间编码方法比频率编码方法更接近于实际生物神经系统处理信息的方式,利用SNN方法可以从被频率编码所忽视的脉冲的精确时间信息中找出包含在神经元脉冲序列中的与生物具体运动行为有关的更多信息。
     最后,对全文进行了总结,并指出了在今后工作中需要进一步深入探讨的问题。
Brain-computer interface (BCI) is a new technology to realize the brain communication and controlling of the external environment. With the development of the multi-channel neural signal recoding and computer control technology, the decoding algorithms which extract movement information from the brain cortical neural ensemble activity is a key component to relate the brain signal with external environment. The aim of this dissertation is to identify and model the brain motor neural system. For this purpose, the decoding algorithms that extract movement information from the motor cortical neural spike trains and the methods to analyze the neural signals from the view of temporal coding are researched.
     Firstly, the methods to model the relation between motor cortical neural signals and arm movement directions are researched. A multi-class support vector machines (SVM) algorithm of a binary tree recognition strategy is used to predict the movement direction with the firing rate patterns of neural ensemble. The performance of the SVM based neural activity recognition is compared with that of the linear population vector algorithm (PVA) and the learning vector quantization (LVQ) approach. The results show that the SVM method has better learning and generalization performance, which demonstrates that the SVM algorithm is a suitable approach for neural signals analyses. In addition, the least squares support vector machines (LS-SVM) method is also used to model the brain motor neural system. The LS-SVM algorithm not only has good performance similar to SVM, but also costs less computational time than SVM. That demonstrates the LS-SVM method is more suitable for online analyses of neural signals, and it holds hope for a possibly more accurate BCI for neural prosthesis.
     Secondly, a nonlinear ARX (NARX) model based on LS-SVM is established to identify the relationship between the firing rate patterns of cortical neural ensemble and 3D hand positions. The results show that nonlinear NARX methods prevail against linear ARX method to model the motor cortical neural system. And the LS-SVM algorithm has higher prediction accuracy and better generalization performance than the ANN approach to build the nonlinear model. The best combinations of neurons are also selected from the entire neural ensemble for modeling. The results show that the model built with less neuron can achieve better performance. That can lead to BCI system demanding lower computational power.
     To analyze the temporal patterns in neural spike trains, the spiking neural networks (SNN) which propagate information by the timing of individual spikes are studied in this dissertation. The spiking neural model, network architecture, simulation issues, and learning algorithm of SNN are systematically introduced. Two methods are presented to improve the SpikeProp algorithm, an error back-propagation (BP) learning rule suited for SNN. One method is to use the adaptive learning rates with momentum to speed up the convergence and dynamic performance of the SNN. Another is to present a more biologically plausible spiking response model (SRM) to describe the spiking neurons by not neglecting the dependence of the postsynaptic potential upon the firing times of the postsynaptic neuron, and to derive an additional BP learning rule for the coefficient of the refractoriness function. These improvements make the SNN in which neurons can spike multiple times can transfer information more efficiently.
     Then the SNN method is proposed to extract movement direction and target orientation from the temporal pattern of the motor cortical neural spike trains directly. A one-layer and a two-layer feedforward SNN are used to analyze the activity of motor cortical neurons. The results show that the SNN algorithm is a feasible to analyze the timing of spike trains, and the multiple-layer network has higher computational power. On the other hand, the comparison results of the temporal pattern recognition by the SNN algorithm and the firing rate analysis by the ANN approach are consistent with the recent development about the neural coding that temporal coding is more biologically plausible than the rate coding. The SNN method is promising to extract more useful movement information from the neural spike trains without temporal information lost.
     Finally, the summary of the dissertation and the future work to be investigated are presented.
引文
[1] Wolpaw J.R., Birbaumer N., Heetderks W.J., et al. Brain-computer interface technology: A review of the first international meeting. IEEE Trans. Rehab. Eng., 2000, 8(2): 164-173
    [2]杨坤德,田梦君,张海南等.脑-计算机接口技术的研究进展.生物医学工程学杂志, 2004, 21(6): 1024-1027
    [3]官金安,林家瑞.脑-机接口技术进展与挑战.中国医疗器械杂志, 2004, 28(3): 157-161
    [4] Vaughan T.M., Heetderks W.J., Trejo L.J., et al. Brain-computer interface technology: a review of the Second International Meeting. IEEE Trans. Neural Syst. Rehab. Eng., 2003, 11(2): 94-109
    [5] Blankertz B., Müller K.R., Curio G., et al. The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials. IEEE Trans. Biomedical Engineering, 2004, 51(6): 1044-1051
    [6] Wolpaw J.R., Birbaumer N., McFarland D.J., et al. Brain-computer interfaces for communication and control. Clinical Neurophysiology, 2002, 113: 767-791
    [7] Ficke R.C. Digest of data on persons with disabilities. Washington, DC: US Department of Education, National Institute on Disability and Rehabilitation Research, 1992.
    [8] Wessberg J., Stambaugh C.R., Kralik J.D., et al. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature, 2000, 408(6810): 361-365
    [9] Taylor D.M., Helms Tillery S.I. and Schwartz A.B. Direct cortical control of 3D neuroprosthetic devices. Science, 2002, 296(5574): 1829-1832
    [10] Wahnoun R., He J. and Helms Tillery S.I. Selection and parameterization of cortical neurons for neuroprosthetic control. Journal of Neural Engineering, 2006, 3: 162-171
    [11] Cheng M., Gao X., Gao S., et al. Design and implementation of a brain-computer interface with high transfer rates. IEEE Trans. Biomedical Engineering, 2002, 49(10): 1181-1186
    [12] Gao X., Xu D., Cheng M., et al. A BCI-based environmental controller for the motion-disabled. IEEE Trans. Rehab. Eng., 2003, 11(2): 137-140
    [13]赵香花,汪晓光.基于脑-机接口的残疾人环境控制装置的设计.中国康复医学杂志, 2004, 19(5): 324-326
    [14]任宇鹏,王广志,程明等.基于脑-机接口的康复辅助机械手控制.中国康复医学杂志, 2004,19(5): 330-333
    [15] Cheng M., Jia W., Gao X., et al. Mu rhythm-based cursor control: an offline analysis. Clinical Neurophysiology, 2004, 115(4): 745-751
    [16]孟飞,黄军友,高小榕.基于脑--机接口技术的上肢康复训练系统.中国康复医学杂志, 2004, 19(5): 327-329
    [17]何庆华,吴宝明,王禾等.脑机接口视觉刺激器的研究.中国临床康复, 2004, 8(11): 2060-2061
    [18]谢水清,杨阳,杨仲乐.脑-机接口中高性能虚拟键盘的实现.中南民族大学学报(自然科学版), 2004, 23(2): 38-40
    [19]杨帮华,颜国正,严荣国.脑-机接口研究进展.中国医疗器械杂志, 2005, 29(5): 353-357
    [20] Birbaumer N., Kubler A., Ghanayim N., et al. The thought translation device (TTD) for completely paralyzedpatients. IEEE Trans. Rehab. Eng., 2000, 8(2): 190-193
    [21] Birbaumer N., Ghanayim N., Hinterberger T., et al. A spelling device for the paralysed. Nature, 1999, 398(6725): 297-298
    [22] Farwell L.A. and Donchin E. Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potential. Electroencephalography and clinical neurophysiology 1988, 70(6): 510-523
    [23] Donchin E., Spencer K.M. and Wijesinghe R. The mental prosthesis: assessing the speed of a P300-basedbrain-computer interface. IEEE Trans. Rehab. Eng., 2000, 8(2): 174-179
    [24] Chapin J.K., Moxon K.A., Markowitz R.S., et al. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nature Neuroscience, 1999, 2(7): 664-670
    [25] Chapin J.K. and Nicolelis M.A.L. Principal component analysis of neuronal ensemble activity reveals multidimensional somatosensory representations. Journal of Neuroscience Methods, 1999, 94(1): 121-140
    [26] Georgopoulos A.P., Kalaska J.F., Caminiti R., et al. On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J. Neuronsci., 1982, 2(11): 1527-1537
    [27] Georgopoulos A.P., Schwartz A.B. and Kettner R.E. Neuronal population coding of movement direction. Science, 1986, 233: 1416-1419
    [28] Serruya M.D., Hatsopoulos N.G., Paninski L., et al. Instant neural control of a movement signal. Nature, 2002, 416: 141-142
    [29] Carmena J.M., Lebedev M.A., Crist R.E., et al. Learning to Control a Brain–Machine Interface for Reaching and Grasping by Primates. Plos Biology, 2003, 1(2): 1-13
    [30] Kennedy P.R., Bakay R.A.E., Moore M.M., et al. Direct control of a computer from the human central nervous system. IEEE Trans. Rehab. Eng., 2000, 8(2): 198-202
    [31] Schwartz A.B., Taylor D.M. and Helms Tillery S.I. Extraction algorithms for cortical control of arm prosthetics. Current Opinion in Neurobiology, 2001, 11(6): 701-707
    [32] Schwartz A.B., Kettner R.E. and Georgopoulos A.P. Primate motor cortex and free arm movement to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement. J. Neuronsci., 1988, 8(8): 2913-2927
    [33] Amirikian B. and Georgopoulos A.P. Directional tuning profiles of motor cortical cells. Neurosci Res, 2000, 36: 73-79
    [34] Georgopoulos A.P., Kettner R.E. and Schwartz A.B. Primate motor cortex and free arm movement to visual targets in three-dimensional space. II. Conding of the direction of movement by a neuronal population. J. Neuronsci., 1988, 8(8): 2928-2937
    [35] Georgopoulos A.P., Caminiti R., Kalaska J.F., et al. Spatial coding of movement: a hypothesis concerning the coding of movement direction by motor cortical populations. Experimental Brain Research, 1983, Suppl 7: 327-336
    [36] Schwartz A.B. Motor cortical activity during drawing movements: population response during sinusoid tracing. J. Neurophysiol., 1993, 70: 28-36
    [37] Schwartz A.B. Direct cortical representation of drawing. Science, 1994, 265: 540-542
    [38] Moran D.W. and Schwartz A.B. Motor cortical activity during drawing movements: population representation during spiral tracing. J. Neurophysiol., 1999, 82(2693-2704)
    [39] Schwartz A.B. and Moran D.W. Motor cortical activity during drawing movements: population representation during lemniscate tracing. J. Neurophysiol., 1999, 82(2705-2718)
    [40] Brown E.N., Kass R.E. and Mitra P.P. Multiple neural spike train data analysis: state-of-the-art and future challenges. Nature Neuroscience, 2004, 7(5): 456-461
    [41] Warland D., Reinagel P. and Meister M. Decoding visual information from a population of retinal ganglion cells. J. Neurophysiol., 1997, 78: 2336-2350
    [42] Paninski L., Fellows M.R., Hatsopoulos N.G., et al. Spatiotemporal tuning of motor cortical neurons for hand position and velocity. J. Neurophysiol., 2004, 91: 515-532
    [43] Serruya M., Hatsopoulos N., Fellows M., et al. Robustness of neuroprosthetic decoding algorithms. Biological Cybernetic, 2003, 88(3): 219-228
    [44] Hochberg L.R., Serruya M.D., Friehs G.M., et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 2006, 442(7099): 164-171
    [45] Kass R.E., Ventura V. and Brown E.N. Statistical issues in the analysis of neuronal data. J. Neurophysiol., 2005, 94: 8-25
    [46] Seung H.S. and Sompolinsky H. Simple models for reading neuronal population codes. Proc. Natl. Acad. Sci. USA, 1993, 90: 10749-10753
    [47] Paradiso M.A. A theory for the use of visual orientation information which exploits the columnar structure of striate cortex Biological Cybernetics, 1988, 58: 35-49
    [48] Duda R.O., Hart P.E. and Stork D.G.模式分类(原书第二版).李宏东等译.北京:机械工业出版社, 2003.
    [49] Brockwell A.E., Rojas A.L. and Kass R.E. Recursive bayesian decoding of motor cortical signals by particle filtering. J. Neurophysiol., 2004, 91: 1899-1907
    [50] Gao Y., Black M.J., Bienenstock E., et al. Probabilistic inference of hand motion from neural activity in motor cortex. in: Advances in Nueural Information Processing Systems. Cambridge, MA: MIT Press, 2002, 14, 213-220
    [51] Wu W., Gao Y., Bienenstock E., et al. Bayesian population decoding of motor cortical activity using a kalman filter. Neural Computation, 2005, 18(1): 80-118
    [52] Brown E.N., Frank L.M., Tang D., et al. A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J. Neuronsci., 1998, 18(18): 7411-7425
    [53] Kalman R.E. A new approach to linear filtering and prediction problems. Trans. ASME, Journal of Basic Engineering, 1960, 82: 35-45
    [54] Lin S. and Si J. Self-organization of firing activities in monkey's motor cortex: trajectory computation from spike signals. Neural Computation, 1997, 9(3): 607-621
    [55] Kohonen T. Self-Organizing Maps (3rd ed.). Berlin: Springer, 2001.
    [56]王永骥,涂健.神经元网络控制.北京:机械工业出版社, 1998.
    [57] Powell M.J.D. Restart procedures for the conjugate gradient method. Mathematical Programming, 1977, 12: 241-254
    [58] Pouget A. Statistically efficient estimation using population coding. Natural Computing, 1998, 10: 373-401
    [59] Adrian E.D. The basis of sensation. New York: Norton, 1928.
    [60] Thorpe S.T. and Imbert M. Biological constraints on connectionist modelling. in: Pfeifer R., Schreter Z., Fogelman-SouliéF., et al. (eds.). Connectionism in perspective. 1989. Amsterdam: Elsevier, 63-92
    [61] Thorpe S., Fize D. and Marlot C. Speed of processing in the human visual system. Nature, 1996, 381(6582): 520-522
    [62] Oram M.W. and Perrett D.I. Time course of neural responses discriminating different views of the face and head. J. Neurophysiol., 1992, 68(1): 70-84
    [63] Krüger J. and Aiple F. Multimicroelectrode investigation of monkey striate cortex: spike train correlations in the infragranular layers. Journal of neurophysiology, 1988, 60(2): 798-828
    [64] Jen P.H., Sun X.D. and Lin P.J. Frequency and space representation in the primary auditory cortex of the frequency modulating bat Eptesicus fuscus. J. Comp. Physiol. [A], 1989, 165(1): 1-14
    [65] Carr C.E. Processing of temporal information in the brain. Annu. Rev. Neurosci., 1993, 16: 223-243
    [66] Gautrais J. and Thorpe S. Rate coding versus temporal order coding: a theoretical approach. BioSystems, 1998, 48: 57-65
    [67] Perkel D.H. and Bullock T.H. Neural coding. Neuroscience Research Program Bulletin, 1968, 63: 221-348
    [68] Thorpe S.J., Delorme A. and VanRullen R. Spike-based strategies for rapid processing. Neural Networks, 2001, 14: 715-725
    [69] Vapnik V.N. Statistical learning theory. New York: Wiley, 1998.
    [70] Bottou L., Cortes C., Denker J.S., et al. Comparison of classifier methods: a case study in handwritten digit recognition. in: Proceedings of the 12th IAPR. 1994. IEEE, 2, 77-82
    [71] Osuna E., Freund R. and Girosi F. Training support vector machines: an application to face detection. in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Puerto Rico. 1997. IEEE Computer Society Press, 130
    [72]卢增祥,李衍达.交互支持向量机学习算法及其应用.清华大学学报(自然科学版), 1999, 39(7): 93-97
    [73] Brown M., Lewis H.G. and Gunn S.R. Linear spectral mixture models and support vector machinesfor remote sensing. IEEE Trans. Geoscience and Remote Sensing, 2000, 38(5): 2346-2360
    [74] Mukherjee S., Osuna E. and Girosi F. Nonlinear prediction of chaotic time series using support vector machines. in: Proceedings of Neural Networks for Signal Processing (NNSP). 1997. IEEE, 511-520
    [75] Vapnik V.N., Golowich S.E. and Smola A. Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing. in: Mozer M.C., Jordan M.I. and Petsche T. (eds.). Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1997, 9, 281-287
    [76] Reina G.A., Moran D.W. and Schwartz A.B. On the relationship between joint angular velocity and motor cortical discharge during reaching. J. Neurophysiol., 2001, 85: 2576-2589
    [77]边肇祺,张学工等.模式识别(第二版).北京:清华大学出版社, 1999.
    [78]张学工.关于统计学习理论与支持向量机.自动化学报, 2000, 26(1): 32-42
    [79] Cherkassky V. and Mulier F. Learning from Data: Concepts, Theory and Methods. NY: John Viley & Sons, 1997.
    [80] Vapnik V.N. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
    [81] Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2: 121-167
    [82] Suykens J.A.K. and Vandewalle J. Least squares support vector machine classifiers. Neural Processing Letters, 1999, 9(3): 293-300
    [83] Hsu C.W. and Lin C.J. A comparison of methods for multiclass support vector machines. IEEE Trans. on Neural Networks, 2002, 13(2): 415-425
    [84] Weston J. and Watkins C. Multi-class support vector machines. in: Verleysen M. (ed.) Proc. ESANN99. Brussels, Belgium. 1999.
    [85] Crammer K. and Singer Y. On the learnability and design of output codes for multiclass problems. Machine Learning, 2002, 47(2-3): 201-233
    [86] Guo G., Li S.Z. and Chan K.L. Support vector machines for face recognition. Image and Vision Computing, 2001, 19(9-10): 631-638
    [87] Hsu C.W., Chang C.C. and Lin C.J. A practical guide to support vector classification. [2007-07-18]. http://www.csie.ntu.edu.tw/~cjlin/libsvm
    [88] Suykens J.A.K. and Vandewalle J. Recurrent least support vector machines. IEEE Transactions onCircuits and Systems-I: Fundamental Theory and Applications, 2000, 47(7): 1109-1114
    [89] Suykens J.A.K. LS-SVMlab Toolbox User's Guide. [2003-02]. http://www.esat.kuleuven.ac.be /sista/lssvmlab/
    [90] Maass W. Networks of spiking neurons: the third generation of neural network models. Neural Networks, 1997, 10(9): 1659-1671
    [91] Maass W. and Bishop C.M. Pulsed Neural Networks. MA: Bradford Books/MIT Press, 2001.
    [92] Maass W. Fast sigmoidal networks via spiking neurons. Neural Computation, 1997, 9(2): 279-304
    [93] Maass W. Noisy spiking neurons with temporal coding have more computational power than sigmoidal neurons. in: Mozer M.C., Jordan M.I. and Petsche T. (eds.). Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1997, 9, 211-217
    [94] Maass W. Lower bounds for the computational power of networks of spiking neurons. Neural Computation, 1996, 8(1): 1-40
    [95] Ruf B. and Schmitt M. Self-organization of spiking neurons using action potential timing. IEEE Trans. on Neural Networks, 1998, 9(3): 575-578
    [96] Maass W. and Natschl?ger T. Emulation of hopfield networks with spiking neurons in temporal coding. in: Bower J.M. (ed.) Computational Neuroscience: Trends in Research. Plenum Press, 1998, 221-226
    [97] Mueller R. and Herz A.V.M. Content-addressable memory with spiking neurons. Physical Review E, 1999, 59(3): 3330-3338
    [98] Buonomano D.V. and Merzenich M. A neural network model of temporal code generation and position-invariant pattern recognition. Neural Computation, 1999, 11: 103-116
    [99] Maass W., Natschl?ger T. and Markram H. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation, 2002, 14(11): 2531-2560
    [100] Verstraeten D., Schrauwen B., Stroobandt D., et al. Isolated word recognition with the Liquid State Machine: a case study Information Processing Letters, 2005, 95(6): 521-528
    [101] Kaminski W.A. and Wojcik G.M. Liquid state machine built of Hodgkin-Huxley neurons. Informatica, 2004, 15(1): 39-44
    [102] Joshi P. and Maass W. Movement generation with circuits of spiking neurons. Neural Computation, 2005, 17(8): 1715-1738
    [103] Burgsteiner H., Kr?ll M., Leopold A., et al. Movement prediction from real-world images using a liquid state machine Applied Intelligence, 2007, 26(2): 99-109
    [104] Kempter R., Gerstner W. and van Hemmen J.L. Hebbian learning and spiking neurons. Physical Review E, 1999, 59(4): 4498-4514
    [105] Natschl?ger T. and Ruf B. Spatial and temporal pattern analysis via spiking neurons. Network: Comp. Neural Systems, 1998, 9(3): 319-332
    [106] Bohte S.M., La PoutréH. and Kok J.N. Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks. IEEE Trans. Neural Networks, 2002, 13(2): 426-435
    [107] Storck J., Jkel F. and Deco G. Temporal clustering with spiking neurons and dynamic synapses: towards technological applications. Neural Networks, 2001, 14(3): 275-285
    [108] Bohte S.M., Kok J.N. and La PoutréH. Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing, 2002, 48(1-4): 17-37
    [109] McKennoch S., Liu D. and Bushnell L.G. Fast modifications of the SpikeProp algorithm. in: International Joint Conference on Neural Networks. 2006. IEEE, 3970-3977
    [110] Silva S.M. and Ruano A.E. Application of the Levenberg-Marquardt method to the training of spiking neural networks. in: International Joint Conference on Neural Networks (IJCNN). Canada. 2006. IEEE, 3978-3982
    [111] Xin J. and Embrechts M. Supervised learning with spiking neural networks. in: Proceedings of International Joint Conference on Neural Networks. 2001. IEEE, 1772-1777
    [112] Schrauwen B. and Van Campenhout J. Extending spikeprop. in: Proceedings of the International Joint Conference on Neural Networks. 2004. IEEE, 471-476
    [113] Booij O. and Nguyen H.T. A gradient descent rule for spiking neurons emitting multiple spikes. Information Processing Letters, 2005, 95: 552-558
    [114] Gerstner W. and Kistler W.M. Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge: Cambridge University Press, 2002.
    [115] Hodgkin A.L. and Huxley A.F. A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes. J. Physiol. (London), 1952, 117: 500-544
    [116] Maass W. Computing with spiking neurons. in: Maass W. and Bishop C.M. (eds.). Pulsed Neural Networks. Cambridge: MIT Press, 1998, 55-85
    [117] Gerstner W. Spiking neurons. in: Maass W. and Bishop C.M. (eds.). Pulsed Neural Networks. Cambridge: MIT Press, 1999, 3-54
    [118] Rieke F., Warland D., van Steveninck R.R., et al. SPIKES: Exploring the Neural Code. Cambridge: MIT Press, 1996.
    [119] Bialek W., Rieke F., de Ruyter van Steveninck R.R., et al. Reading a neural code. Science, 1991, 252(5014): 1854-1857
    [120] Optican L.M. and Richmond B.J. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. 3. Information theoretic analysis. J. Neurophysiol., 1987, 57: 162-178
    [121] Tovee M.J., Rolls E.T., Treves A., et al. Information encoding and the responses of single neurons in the primate visual cortex. J. Neurophysiol., 1993, 70: 640-654
    [122] Kjaer T.W., Hertz J.A. and Richmond B.J. Decoding cortical neuronal signals: network models, information estimation and spatial tuning. J. Comput. Neurosci., 1994, 1: 109-139
    [123] Thorpe S.J., Delorme A., VanRullen R., et al. Reverse engineering of the visual system using networks of spiking neurons. IEEE International Symposium on Circuits and Systems, 2000, 4: 405-408
    [124] Bohte S.M. Spiking neural networks. [Ph.D. thesis]. Center for Mathematics and Computer Science (CWI), Amsterdam, 2003. Available at: http://homepages.cwi.nl/~sbohte/pub_thesis.htm
    [125] Hopfield J.J. Pattern recognition computation using action potential timing for stimulus representation. Nature, 1995, 376: 33-36
    [126] Softky W.R. Simple codes versus efficient codes. Current Opinion in Neurobiology, 1995, 5: 239-247
    [127] Booij O. Temporal pattern classification using spiking neural networks. [Master's thesis]. Intelligent Sensory Information Systems, University of Amsterdam, 2004. Available from http://www.xs4all.nl/~obooij/study
    [128] Brette R. Exact simulation of integrate-and-fire models with synaptic conductances. Neural Computation, 2006, 18(8): 2004-2007
    [129] Carrillo R., Ros E., Ortigosa E., et al. Lookup table powered neural event-driven simulator. in: Proceeding of the 8th International Work-Conference on Artificial Neural Networks (IWANN). 2005. 168-175
    [130] Makino T. A discrete-event neural network simulator for general neural models. Neural Computing & Applications, 2003, 11: 210-223
    [131] D'Haene M., Schrauwen B. and Stroobandt D. Accelerating Event Based Simulation for Multi-synapse Spiking Neural Networks. in: ICANN, Part I, LNCS 2006. Berlin: Springer-Verlag, 4131, 760-769
    [132] Rumelhart D.E., Hinton G.E. and Williams R.J. Learning representations by back-propagating errors. Nature, 1986, 323: 533-536
    [133] Jacobs R.A. Increased rates of convergence through learning rate adaptation. Neural Networks, 1988, 1: 295-307
    [134] Moore S.C. Back-propagation in spiking neural networks. [Master's thesis]. University of Bath, 2002. Available online: http://www.simonchristianmoore.co.uk/back.htm
    [135] Fan J. Motor Cortical Control of Hand Orientation during 3-D Reach-to-grasp. [Ph.D. thesis]. Biodesign Institute, Arizona State University, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700