用户名: 密码: 验证码:
龙须菜琼胶合成相关基因的克隆及其表达调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
龙须菜(Gracilaria/Gracilariopsis lemaneiformis)是一种大型海洋红藻。隶属于红藻门(Rhodophyta)、红藻纲(Rhodophyceae)、杉藻目(Gigartinales)、江蓠科(Gracilariaceae)。龙须菜最重要的经济意义在于其产生琼胶。琼胶是藻类的一种特殊碳储存物质。作为主要的经济型产琼胶海藻,开展龙须菜琼胶合成相关基因的研究,具有重要的理论意义和经济价值。
     UDP-葡萄糖焦磷酸化酶(UGPase)基因glugp是红藻琼胶代谢过程中的一个重要酶。我们采用RT-PCR方法获得glugp cDNA的部分序列,RACE方法获得其cDNA的3'端和5'端序列,本文从基因组DNA和cDNA的水平分析了该基因的特征。glugp cDNA序列全长为2200 bp,其中包含一个1485 bp-可翻译成494个氨基酸残基的完整开放阅读框(ORF)。该基因的氨基酸序列与其它物种的UGPase氨基酸序列相似性较高。rpsBLAST分析表明在105至400个氨基酸之间存在酶活性位点和底物结合位点,其中包含5个保守的赖氨酸残基。获得的5'UTR部分包含330个碱基,5'侧翼序列的翻译初始位点序列为GCTATG,与多数红藻的RCYATG的翻译起始特征一致。3'UTR部分包含385个碱基,在终止密码子UAG之后261个碱基处存在一个3'末端多聚A前的加尾信号:ATTATT。对glugp基因序列分析发现,该基因不含有内含子,它的DNA与cDNA序列一致。通过Southern杂交结果显示该基因是单拷贝的。
     本实验研究了不同琼胶含量的藻株中glugp基因的表达情况。将同株的龙须菜从基部分为2份分别培养在正常和低盐诱导条件下,2周后分别提取样品琼胶和RNA。将RNA反转录为cDNA,然后利用荧光实时定量PCR的方法检测基因的表达水平,采用2-ΔΔCT法分析基因的相对表达量。结果表明这两组样品的琼胶含量差异不显著,且glugp基因的表达量间也不存在显著差异。同一海区中,龙须菜不同藻株的琼胶含量存在差异。选取了2组琼胶含量差异显著的野生藻株,分别提取每组中藻株样品的RNA并反转录为cDNA,利用荧光实时定量PCR的方法对glugp基因的表达情况进行分析。结果表明,glugp基因的表达与琼胶含量存在显著相关性,该基因在高琼胶组藻株中的表达量显著高于低琼胶组藻株。说明glugp是琼胶合成途径中的一种重要酶。glugp基因的表达量对琼胶含量高低具有指示作用,有作为龙须菜琼胶含量的指标而应用于产业化的潜能。
     对龙须菜不同培养条件和环境因子影响下的琼胶含量及生化性状进行了研究,从而筛选出诱导琼胶高产的培养条件,为筛选琼胶合成相关基因奠定基础。对野生型龙须菜的雌配子体和四分孢子体的琼胶含量进行测定。结果表明,雌配子体的琼胶含量高于四分孢子体的琼胶含量。曾有研究报道过,江蓠属和石花菜属的产琼胶红藻在低盐度、氮限制和磷限制的培养条件下,琼胶含量增加。实验设置了低盐、氮限制、磷限制和正常这四种培养条件,提取各培养条件下藻体的琼胶并对各培养条件下藻体的藻红素含量和叶绿素a含量进行测定和分析,从而确定野生型龙须菜在这些不同培养条件下的琼胶含量变化和生化性状。实验结果表明,培养一周后,各条件下藻体琼胶含量差异不大,磷限制条件下藻体琼胶含量较低。培养3周后,低盐诱导对龙须菜琼胶含量的影响显著,低盐培养的藻体琼胶含量高于正常培养条件,且低盐培养时藻体藻红素含量正常。氮限制培养条件下藻体琼胶平均含量较高,但与正常对照之间的差异不显著,藻红蛋白和叶绿素a的含量均较低。磷限制条件对藻体琼胶含量的影响并不明显,且藻红蛋白和叶绿素a的含量与对照组相似。这些结果表明,低盐培养条件可诱导龙须菜琼胶含量增加,低盐诱导条件下差异表达的基因可能包含有琼胶合成过程的重要基因。这为构建抑制消减文库,筛选与琼胶合成相关的基因奠定了基础。
Gracilaria lemaneiformis is a red macroalga which belongs to Rhodophyta, Rhodophyceae, Gigartinales, Gracilariaceae. The most economical significance of G. lemaneiformis is the agar. The metabolism of agar is a major feature of red-algal physiology. As a main agarophyte, the research on the agar correlation genes of G. lemaneiformis is very important to the theoretic study and economic values.
     UDP-glucose pyrophosphorylase (UGPase) is a key enzyme in-agar metobiolism in red algae.Reverse transcription and PCR amplification were employed to obtain the part sequence of UGPase gene(glugp) of G.leimaneiformis. PCR amplification of the 3'and 5'end were performed using RACE. Putative glugp gene was characterized at the genomic DNA and cDNA levels. The gene has 2200 bp of cDNA, coding for 494 amino acids of ORF, involving 1485 bp. The deduced amino acid sequence showed significant similarity to the UGPase sequences of other species. RpsBLAST analysis indicated that UGPase has the conserved active sites between 105 and 400 amino acid, and it has five identified conserved lysine residues, that are at, or close to, the subtrate binding site.The gene have a 5'flanking region of 330 bp and a 3'flanking region of 385 bp. The 5'flanking sequence (GCTATG) conforms to the canonical sequence, RCYATG, at translation initiation sites in red algal genes so far characterized. The gene has its own special polyA signal, ATTATT, found 261 bp downstream of the stop codon site.The glugp devoid of introns and Southern blotting indicated that it has only one copy in G. lemaneiformis genome.
     The relationship between gene expression level of glugp and the agar content in G.leimaneiformis were investigated. The same algae strains which divided into two parts from the holdfast were cultured in normal and low salinity conditions respectively. RNA of each sample was extracted and revere-transcribed into cDNA. Real time quantitative PCR technique was used to detect the gene expression of each sample.2'ΔΔCT data denoted for the comparative expression. The results showed that there were no statistically significant differences in the agar content of the two parts of algal samples, and glugp gene expressions of the two parts have no significant differences two. There are distinctnesses in agar content of wild type algal strains in G. lemaneiformis at the same sea area. The different algal strains with the biggest discrepancy on agar content were divided into two groups. RNA of each sample was extracted and revere-transcribed into cDNA. Real time quantitative PCR technique was used to detect the glugp expression of algal strains with different agar contents. 2-ΔΔCT data denoted for the comparative expression. The result revealed a highly correlation between glugp expression and agar contents. The expression level of glugp in high agar content strains is significantly higher than those in low, which may be applicable in indication of agar content and further algal cultivation.
     The effect of some environmental factors and culture conditions on agar content and biochemical properties of G. leimaneiformis were studied in the laboratory. The selection of the high agar yielding culture condition is the foundation to screen differentially expressed genes involved in agar synthesis. The agar content of female gametophyte and tetrasporophyte of G. lemaneiformis were measured. The result shows that the agar content of algae is higer in tetrasporophyte than in female gametophyte. Agar content in Gracilaria and Gelidium has been shown to increase in nitrogen-limited cultures, phosphate-limited cultures and low salinity cultures. To study the differences in agar content, the same strain of G. leimaneiformis was treated in four conditions, including nitrogen-limited, phosphate-limited, low salinity and normal cultures. The normal culture condition is rich in nutrients. The contents of chlorophyll a and phycoerythrin in algae with different culture conditions were also detected. There were no dissimilarity in agar content after one week of experiments from nitrogen-limited, low salinity and normal culture conditions, but lower in phosphate-limited culture conditions. Increased agar productivity was observed in low salinity treatment after three weeks experiments. It was found that the most algae from the nitrogen limited condition contained higher levels of agar, but it not significantly different from the normal culture conditions. The contents of chlorophyll a and phycoerythrin were low nitrogen limited condition. Agar yielded was less dependent on the phosphate concentration after three weeks, no statistical differences in the content of chlorophyll a and phycoerythrin were observed between phosphate-limited condition and the normal.The result indicated that low salinity lead to an increase in agar content. The differentially expressed genes which induced by low salinity may be the key genes involved in the agar synthesis. The low salinity condition should be investigated as a favorable condition to construct suppressive subtractive hybridization library and obtain the related genes in agar synthesis.
引文
Arimisen R. World-wide use and importance of graciaria. J Appl Phycol.1995,7:231-243.
    Asare S O. Seasonal changes in sulfate and 3,6 anhy-drogalactose content of phycocolloids from two red algae. Bot.Mar.1980,23:595-598.
    Ashworth, J. M., and Sussman, M. The appearance and disappearance of uridine diphosphate glucose pyrophosphorylase activity during differntiation of the cellular slime mold Dictyostelium discoideum. J. Biol. Chem.1967,242(8):1696-1700
    Atkinson MJ, Smith SV C:N:P ratios of benthic marine algae. Limnology and Oceanography. 1983,28:568-574.
    Bahn S C, Baem S, Park Y B, et al. Molecular cloning and characterization of a novel low temperature induced gene blti 2, from barley (Hordeum vulgare L.). Biochem Biophys,2001, 1522(2):134-137.
    Barbier Guillaume, Oesterhelt Christine, Larson M D et al.Comparative Genomics of Two Closely Related Unicellular Thermo-Acidophilic Red Algae, Galdieria sulphuraria and Cyanidioschyzon merolae, Reveals theMolecular Basis of the Metabolic Flexibility of Galdieria sulphuraria and Significant Differences in Carbohydrate Metabolism of Both Algae.Plant Physiology,2005,137:460-474.
    Bird C J, Helleur R J, Hayes E R, et al. Analytical pyrolysis as a taxonomic tool in Gracilaria (Rhodophyta:Gigartinales). Helgolinder Meeresunters,1987,151/152:207-211.
    Bird C J, McLachlan J. Taxonomy of Gracilaria evaluation of some aspects of reproductive structure. Hydrobiologia Meeresunters,1984,116/117:41-62
    Bird K T, Hanisak M D, Ryther J. Chemical quality and production of agars extracted from Gracilaria tikvahiae grown in different nitrogen enrichment conditions. Bot. mar. 1981,24:441-444.
    Bird K T. Agar production and quality from Gracilaria sp. strain G-16:effects of environmental factors. Bot. Mar.,1988,33:31-39
    Bjornsater B R, Wheeler A. Effect of nitrogen and phosphorous supply on growth and tissue composition of Ulva fenestrate and Enteromorpha intestinalis (Ulvales, Chorophyta). J Phycol,1990,26:603-611.
    Borovkov A Y, McClean P E, Secor G A. Organization and transcription of the gene encoding potato UDP-glucose pyrophosphorylase. Gene,1997,186:293-297.
    Carlos Frederico D, Gurgel et.al. Systematics of Gracilariopsis (Gracilariales, Rhodophyta) based on rbcL Sequence analyses and morphological evidence. J. Phycol.2003,39:1-19.
    Chah OK, Kim GH. Differential screening and suppression subtractive hybridization identifiesgenes differentially expressed in male and female plants of Aglaothamnion oosumiense (Rhodophyta). Journal of Phycology,2003,39:8.
    Chen J.C., Lee W.C. Growth of Taiwan abalone Haliotis diversicolor supertexta fed on Gracilaria tenuistipitata and artificial diet in a multiple-tier basket system. J. Shellifish Res.,1999,18: 627-635.
    Chong U H, Chan H I, Kyoung S J, et al. Identification of rice genes induced in a rice blast resistant mutant. Mol Cells,2004,17 (3):462-468.
    Chopin T, Hanisak MD, Koehn FE, Mollion J, Moreau S. Studies of carrageenans and effects of seawater phosphorus concentration on carrageenan content and growth of Agardhiella subulata (C. Agardh) Kraft and Wynne (Rhodophyceae, Solieriaceae). J. appl. Phycol. 1990,2:3-16.
    Chopin T, Gallant T, Davison I (1995) Phosphorus and nitrogen nutrition in Chondrus crispus (Rhodophyta):effects on total phosphorus and nitrogen content, carrageenan production, and photosynthetic pigments and metabolism. J. Phycol.31: 283-293
    Christeller J T and laing W A. The effects of environment on the agar yield and gel characteristics of Gracilaria sordida Nelson (Rhodophyta). Botanica Marine,1989,32:446-455.
    Craigie, J. S. Storage products. In Algal physiology and biochemistry. Botanical monographs, 1974. vol.10 (ed. W. D. P. Stewart),206-235. Oxford, UK:Blackwell Scientifc Publications Ltd.
    Craigie J S, Wen Z C. Inter specific intraspecific and nutritionally determind varitions in the composition of agars from Gracilaria spp. Bot.Mar.1984,27:55-61.
    Daugherty B K and Bird K T. Salinity and temperature effects on agar production from Gracilaria verrucosa Strain G-16. Aquaculture,1988,75:105-113
    Dawes C J, Koch E W. Physicological responses of the red algae Gracilaria verrucosa and Gracilaria tikvahiae before and after nutrient enrichment. Bull Mar Sci,1990,46(2): 335-344.
    DeBoer JA. Effects of nitrogen enrichment on growth rate and phycocolloid content in Gracilaria foliifera and Neoagardhiella baileyi (Florideophyceae). Proc. int. Seaweed Symp.1979,9:263-271.
    Dimond, R. L., Farnsworth, P. A., and Loomis, W. F. Isolation and characterization of mutations affecting UDPG pyrophosphorylase activity in Dictyostelium discoideum. Dev. Biol.1976, 50:169-181.
    Duke C S, Litaker W, Ramus J. Effect of temperature, N supply, and tissue N on ammonium uptake rates of the Ulva curuata and Codium decorticatum. Journal of Phycology.1989, 25:113-120.
    Eimert K, Villand P, Kilian A, Kleczkowski L A. Cloning and characterization of several cDNAs for UDP-glucose pyrophosphorylase from barley (Hordeum vulgate) tissues. Gene.1996, 170:227-232
    Ekman P, Yu S, Pedersen M. Effects of altered salinity, darkness and algal nutrient status on floridoside and starch content, α-galactosidase activity and agar yield of cultivated Gracilaria sordida. Br. phycol. J.1991,26:123-131.
    Ekman, P., A. Lignell & M. Pedersen. Localization of ribulose-1,5-biphosphate carboxylase/oxygenase in Gracilaria secundata (Rhodophyta) and its role as a nitrogen storage pool.Bot. mar.,1989,32:527-534.
    Goulard Fabienne, Diouris Marcel, Quere Gwenaelle, et al. Salinity effects on NDP-sugars, floridoside, starch, and carrageenan yield, andUDP-glucose-pyrophosphorylase and-epimerase activities of cultivated Solieria chordalis. Plant Physiol,2001,158:1387-1394.
    Fei XG., Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia 2004.512:145-151.
    Gargiulo GM, Morabito M., Genovese G, et.al.Molecular systematics and phylogenetics of Gracilariacean species from the Mediterranean Sea. Journal of Applied Phycology.2006,18: 497-504.
    Guff L J, Colemen A W. Red algal plasmids. Curr Genet,1990,18:557-565.
    Gross W G, Schnarrenberger C. Purification and characterization of a galactose-1-phophate: UDP-glucose uridylyltransferase from the red alga Galdieria sulphuraria. Eur. J.Bio chem, 2001,234:258-263.
    Hau L N, Lin S M. Gracilariopsis nhatrangensis (Gracilariaceae, Rhodophyta), a new marine red alga from Nhatrang, southern Vietnam.Botanical Studies.2006,47:329-337.
    Hunt A.G. Messenger RNA 3'end formation in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1994,45:47-60.
    Hurtado-Ponce A Q & Pondevida H B. The interactive effect of environmental factors on the growth, agar yields and quality of Gracilariopsis bailinae (Zhang et xie) cultured in tanks. Bot. Mar.1997,40:217-223.
    Israel A, Martinez-Goss M, Friedlander M. Effect of salinity and pH on growth and agar yield of Gracilaria tenuistipitata var. liui in laboratory and outdoor cultivation. Journal of Applied Phycology,1999,11:543-549.
    Karsten Ulf, Barrow K D, King R J.Floridoside, L-lsofloridoside, and D-lsofloridoside in the Red Alga Porphyra columbina.Plant Physiol,1993,103:485-491.
    Karsten Ulf, West J A, Zuccarello G C et al.A new unusual low molecular weight carbohydrate in the red algal genus Hypoglossum (Delesseriaceae, Ceramiales) and its possible function as an osmolyte.Planta,2005,222:319-326.
    Karsten Ulf, Gors Solvig, Eggert Anja et al.Trehalose,digeneaside,and floridoside in the Florideophyceae(Rhodophyta)-a reevaluation of its chemotaxonomic value. J Phycologia, 2007,46(2):143-150.
    Katsube T, Kazuta Y, Tanizawa K and Fukui, T. Expression in E.coli of UDP-glucose pyrophosphorylase cDNA from potato tuber and functional assessment of the five lysyl residues located at the substrate-binding site. Biochemistry,1991,30:8546-8551.
    Kazuta Y, Omura, Y, Tagaya M, Nakano K and Fukui T. Identification of lysyl residues located at the substrate-binding site in UDP-glucose pyrophosphorylase from potato tuber:affinity labeling with uridine di-and triphosphopyridoxals. Biochemistry,1991,30:8541-8545.
    Klahre U, Hemmings-Miszczak M. and Filipowicz W. Extreme heterogeneity of polyadenylation sites in mRNAs encoding chloroplast RNA-binding proteins in Nicotiana plumbaginifolia. Plant Mol.Biol.1995,28:569-574.
    Lapointe B E. The effect of light and nitrogen on growth, pigment content and biochemical composition of Gracilaria folifera v. angustissima (Gigartinales, Rhodophyta). J Phycol 1981,17:90-95.
    Lapointe B E, Ryther J H. Some aspects of the growth and yield of Gracilaria tikvahiae in culture. Aquaculture,1985,15:185-193
    Lapointe B E, Dawes C J, Tenore K R. Interactions between light and temperature on the physiological ecology of Gracilaria tikvahiae (Gigartinales:Rhodophyta).Ⅰ Growth,photosysthesis,and respiration. Mar.Biol.1984,80(2):161-170.
    Leonardo N A, Robledo D. Effects of nitrogen source, N:P ratio and N 2 pulse concentration and frequency on the growth of Gracilaria cornea (Gracilariales, Rhodophyta) in culture. Hydrobiologia,1999,398-399:315-320.
    Lewis R J, Hanisak M D. Effects of phosphate and nitrate supply on productivity, agar content and physical properties of agar of Gracilaria strain G-16S. J Appl Phycol,1996,8:41-49.
    Liaud M F, Valentin C, Brandt U, Bouget F Y, Kloareg B, Cerff R.. The GAPDH gene system of the red alga Chondrus crispus:promotor structures, intron/exon organization, genomic complexity and differential expression of genes. P1. Mol. Biol,1993,23:981-994.
    Li M, Sui Z H, Kang K H, Zhang X C, Zhu M, Yan B L. Cloning and analysis of the galactose-1-phophate uridylyltransferase(galt gene of Gracilaria lemaneiformis (Rhodophyta) and correlation between gene expression and agar synthesis. J.Appl phycol. 2009. DOI:10.1007/s 10811-009-9435-8
    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods,2001,25(4):402-408.
    Lluisma A O., Ragan M.A. Characterization of a galactose-1-phosphate uridylyltransferase gene from the marine red alga Gracilaria gracilis. Curr. Genet,1998a,34:112-119.
    Lluisma A O, Ragan M A. Cloning and characterization of a nuclear gene encoding a starch-branching enzyme from the marine red alga Gracilaria gracilis.Curr Genet,1998b,34: 105-111.
    Lluisma A O, Ragan M A. Characterization of a UDP-glucose pyrophosphorylase gene from the marine red alga Gracilaria gracilis J. Phycol,1999,10:581-588.
    Macler, B A. Regulation of carbon flow by nitrogen and light in the red alga, Gelidium coulteri. Plant Physiol,1986,82:136-141.
    Macler B A, West J A. Life history and physiology of the red alga Gelidium coulteri, in unialgal culture. Aquaculture,1987,61:281-293.
    Manley S L, Burns D J. Formation of nucleoside diphosphate monosaccharides (NDP-sugars) by the agarophyte Pterocladia capillacea (Rhodophyceae) J. Phycol,1991,27:702-709.
    Manners, D. J. & Wright, A. The interaction of concanavalin-A with glycogens. J. Chem. Soc. 1962, a-1,4-Glucosans. Part 14.4592-4595.
    Marinho-Soriano E, Bourret E, De Casabianca ML, Maury L. Agar from the reproductive and vegetative stages of Gracilaria bursa-pastoris. Bioresour Technol,1999.67:1-5. doi:10.1016/S0960-8524(99)00092-9
    Marinho-Soriano E.Agar polysaccharides from Gracilaria species (Rhodophyta,Gracilariaceae). Journal of Biotechnology,2001,89:81-84.
    Marques AR, Ferreira PB, Sa-Corre I, Fialho A.M. Characterization of the ugpG gene encoding a UDP-glucose pyrophosphorylase from the gellan gum producer Sphingomonas paucimobilis ATCC 31461. Mol Gen Genomics,2003,268:816-824
    Meng J X, Srivastava LM. Variations in floridoside content and floridoside phosphate synthase activity in Porphyra perforata (Rhodophyta). Journal of Phycology,1993,29(1):82-84.
    Mogen, B.D., MacDonald, M.H., Leggewie, G. and Hunt, A.G.:Several distinct types of sequence elements are required for efficient mRNA 3'end formation in a pea rbcS gene. Mol. Cell. Biol.1992,12:5406-5414.
    Moran R. Formulae for determination of chlorphyllous Piglnents exttacted with N,N-dimethylformamide. Plant Physiology,1982,69:1376—1381.
    Nagashima H, Nakamura S, Nisizawa K, Hori T. Enzymic synthesis of floridean starch in a red alga, Serraticardia maxima. Pl.Cell Physiol,1971,12:243-253.
    Neish AC, Shacklock PF. Greenhouse experiments on the propagation of strain T4 of Irish moss. National Research Council of Canada, Atlantic Regional Laboratory Technical Repolt, 1971, Series No.14,25 pp.
    Nguyen B, Bowers RM, Wahlund TM, Read BA. Suppressive subtractive hybridization of and differences in gene expression content of calcifying and noncalcifying cultures of Emilianiahuxleyi Strain 1516. Appli Environ Microbiol,2005,71:2564-2575.
    Pang, G. X., Wang, G. C., and Hu, S. N. Acquirement and analysis of expressed sequence tags of filamentous sporophyte of Porphyra haitanensis. Oceanol. Limnol. Sin.,2005. 36(5):452-457.
    Patron N J, Keeling P J. Common evolutionary origin of starch biosynthetic enzymes in green and red algae. J Phycol.2005,41:1131-1141
    Peat, S., T urvey, J. R. & Evans, J. M.1959 The structure of foridean starch.Ⅱ. Enzymic hydrolysis and other studies. J.Chem. Soc.3341-3344
    Provasoli L. Media and prospect for the cultication of marine algae.1968,63-75.In proceedings of the U.S.-Japan Conference held at Hakone, September 12-15,1966, Watannbe and Hattori,eds. Japan Society of Plant Physiologists.
    Ren XY, Zhang XC, Sui ZH. Identification of phase relative genes in tetrasporophytes and female gametophytes of Gracilaria/Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta). Electronic Journal of Biotechnology,2006,9:127-132.
    Ren XY, Zhang XC. Identification of A Putative Tetrasporophyte-Specific Genes in gracilaria/Gracilariopsislemaneiformis(Gracilriales,Rhodophyta). Journal of Ocean University of China,2008,7:299-303.
    Ryther JG, Dunstan WM. Nitrogen, phosphorus and eutrophication in the coastal marine environment. Science,1971,171:1008-1013.
    Sambrook J, Fritisch E F, Maniatis T. Molecular cloning:a laboratory manual,2nd. edn. New York:Cold Spring Harbor Laboratory Press,1989.
    Simon-Colin Christelle, Marie-Anne Bessieres, Deslandes Eric. An alternative HPLC method for the quantification of floridoside in salt-stressed cultures of the red alga Grateloupia doryphora. Journal of Applied Phycology,2002,14:123-127.
    Simon-Colin Christelle, Kervarec Nelly, Pichon Roger et al. NMR13C-isotopic enrichment experiments to study carbon-partitioning into organic solutes in the red alga Grateloupia doryphora.Plant Physiology and Biochemistry,2004,42 (1):21-26.
    Simon D C, Mark J O, William C D. Gmeilaria edulis (Rhodophyta) as a biological indicator of Pulsed nutrients in oligotrophic waters. J Phycol,2000,36:680-685
    Su J C, Hassid W Z. Carbohydrates and nucleotides in the red alga Porphyra perforataⅡ. Separation and identification of nucleotides. Biochemistry,1962,1:474-480.
    Smith SV. Phosphorus versus nitrogen limitation in the marine environment. Limnol. Oceanogr. 1984,29:1149-1160.
    Sokal RR, Rohlf FJ. Biometry. The principles and practice of statistics in biological research. Third edition. Freeman WH. New York..1998,887 pp.
    Sousa-Pinto I, Lewis R, Polne-Fuller M. The effect of phosphate concentration on growth and agar content of Gelidium robustum (Gelideaceae, Rhodophyta) in culture. Hydrobiologia, 1996,326-327:437-443.
    Craigie J S. Cell walls Biology of the Red Algae. Cambridge University Press, Cambridge.1990, 221-257.
    Wang, M. Q., Mao, Y. X., and Li, J.. Molecular cloning and sequence analysis of the petJ gene encoding cytochrome c6 from Prophyra tenera Kjellm. Period. Ocean Univ. China,2007,37 (4s):159-166.
    Wang MQ, Mao YX. Cloning and analysis of calmodulin gene from Porphyra yezoensis Ueda ((Bangiales, Rhodophyta). J Ocean University China,2009,8(3):247-253
    Wattier R A, Paulo A P, Maggs C A. DNA Isolation Protocol for Red Seaweed (Rhodophyta). Plant Molecular Biology Reporter,2000,18:275-281.
    Wusirika R, Deng Z P, et al. A novel small heat shock protein gene vis I contributes to pectin depolymerization and juice viscosity in tomoto fruit. Plant Plysiol.2003,131:725-735
    Xia B M, Tseng C K, Wang Y Q. Studies on Chinese species of Gelidiella and Pterocladiella (Gelidiales,Rhodophyta).Hydrobiologia.2004,512(1-3):201-207
    Xu, M. J., Mao, Y. X., Zhang, X. C., Zhou, X. J., Sui, Z. H., Zhou, H. L., et al.. Bioinformatic analysis of expressed sequnce tags from sporophyte of Porphyra yezoensis (Bagiaceae, Rhodophyta). Prog. Nat. Sci.,2006,16 (1):39-49.
    Yang YF,Fei XG, Song JM. et al. Growth of Gracilaria lemaneiformis under different cultivation conditions and its effects on nutrient removal in Chinese coastal waters. Aquaculture.2006, 254:248-255.
    Yu Shukun. Enzymes of Floridean starch and Floridoside degradation in red algae. Sweden Uppsala University, PhD thesis.1992.
    Yuan H, Chen X, Zhu L, et al. Identification of genes responsive to brown planthopper N ilaparvata lugens Stal (Homop tera:Delphacidae) feeding in rice. Planta,2005,221 (1):105-112.
    Viola Roberto, Nyvall Pi, Pedersen Marianne. The unique features of starch metabolism in red algae. The royal society,2001,268:1417-1422.
    Zhang X C and Fei X G. Qualified breeding species by National Marine Origin Breed and Fine Breed Committee-an introduction to 981 Gracilariopsis lemaneiformis and its cultivation. Sci Fish Farming,2008,6:21-22.
    Zhang X C and van der Meer J P. A study on heterosis in dipoloid gametophytes of marine red algae Gracilaria tikvahiae. Botanica Matine.1987,30:309-314.
    Zhang X C and van der Meer J P. A genetic study on Gracilaria sjoestedtii.Can J Bot. 1987,66:2022-2026.
    Zhang X C and van der Meer JP. Polyploid gametophytes of Gracilaria tikvahiae (Gigaritinales, Rhodophyta). Phycologia.1988,27:312-318.
    Zhang X N, Qu Z C, Wan Y Z, et al. Application of suppression subtractive hybridization (SSH) to cloning differentially expressed cDNA in Dunaliella salina (Chlorophyta) under hyperosmotic shock. Plant Molecular Biology Reporter,2002,20:49-57.
    Zhou Y H, Ragan M A. Characterization of the nuclear gene encoding mitochondrial aconitase in the marine red alga Gracilaria verrucosa. Plant Molecular Biology,1995,28:635-646.
    Zhou Y H, Ragan M A. cDNA cloning and characterization of the nuclear gene encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase from the marine red alga Gracilaria verrucosa. Current Genetic,1993,23:483-489.
    Zhou Y H, Ragan M A. Cloning and characterization of the nuclear gene and cDNAs for triosephosphate isomerase of the marine red alga Gracilaria verrucosa. Current Genetic, 1995,28:317-323.
    Zhou Y H, Ragan M A. Nuclear-encoded protein-encoding genes of the agarophyte Gracilaria verrucosa (Gracilariales, Rhodophyta). Hydrobiologia,1996,326/327:429—436.
    Zhu Y.Y., Machleder E. M., Chenchik A., Li R, Siebert, P. M. Reverse transcriptase template switching:A SMARTTM approach for full-length cDNA library construction. BioTechniques, 2001,30:892-897.
    陈美珍,余杰,钟秋玲等.龙须菜藻胆蛋白免疫功能和抗氧化作用的研究.食品科学,2005,26(9):456-459.
    陈美珍,张永雨,余杰等.龙须菜藻胆蛋白的分离及其清除自由基作用的初步研究.食品科学,2004,25(3):159-162
    邓志峰,纪明侯.龙须菜和扁江蓠多糖的组成及其抗肿瘤效果.海洋与湖沼,1995,26(6):575-580.
    范晓,韩丽君,周天成等.中国沿海经济海藻化学成分的测定.海洋与湖沼,1995,26(2):199-207.
    贺丽虹等.盐度对细基江蓠繁枝变型的生长、琼胶产量和组成的影响.海洋通报,2002,21(3):39-43.
    李敏,隋正红,张学成.红藻碳代谢的研究进展.海洋科学,2009,33(6):94-98.
    牛荣丽,范晓,韩丽君等.海藻抗A-549和HL-60肿瘤细胞及抗菌活性研究.中国海洋药物,2003,4:1-3.
    史西志,毕燕会,周志刚.海带雄性配子体差异表达基因片段的克隆及筛选.水产学报,2005,29(5):666-669.
    孙雪、隋正红、于勇等.几种环境因子对龙须菜α-半乳糖苷酶活性的影响.青岛海洋大学学报,2000,30(3):510-514.
    汤华,郑用琏,贺立源,等.玉米铝毒基因的分离.植物生理与分子生物学报,2005,31(5):507-514.
    王素娟,裴鲁青,段德麟.中国常见红藻超微结构.宁波:宁波出版社.2004.
    薛志欣,杨桂朋,王广策.龙须菜琼胶的提取方法研究.海洋科学,2006,30(8):71-77.
    余杰,王欣
    陈美珍等.潮汕沿海龙须菜的营养成分和多糖组成分析.食品科学,2006,27(1):93-97.
    张昆,张全斌,李智恩等.龙须菜四分孢子体和雌配子体多糖的比较研究.中国海洋大学学报,2006,36(增刊):121-125
    张学成,秦松,马家海,许璞.海藻遗传学.北京:中国农业出版社.2005.184-185.
    张永雨,陈美珍,余杰等.龙须菜藻胆蛋白抗突变与抗肿瘤作用的研究.中国海洋药物,2005,24(3):36-38
    赵先庭,刘云凌,张继辉等.龙须菜处理海水养殖废水的初步研究.海洋水产研究,2007,28(2):23-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700