用户名: 密码: 验证码:
健康和溶藻弧菌感染条件下斜带石斑鱼消化道菌群结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以斜带石斑鱼仔稚鱼、不同生长速度的两批幼鱼及溶藻弧菌感染后的斜带石斑鱼为研究对象,利用纯培养方法结合PCR/DGGE方法对石斑鱼消化道菌群结构进行研究,主要结果如下:
     1、斜带石斑鱼仔稚鱼消化道菌群结构的研究以斜带石斑鱼孵化后2 d(未开口)仔鱼、8 d(开口仔鱼)、22 d仔鱼、40 d稚鱼为研究对象,分析由孵化到稚鱼的不同生长阶段消化道菌群结构。结果表明,仔稚鱼消化道可培养细菌总数随着生长日龄的增加而逐渐递增,由4.0×102 CFU/尾增加到1.4×107 CFU/尾;2 d仔鱼分离到乳酸菌,未分离到弧菌;8 d、22 d仔鱼及40 d幼鱼均未分离到乳酸菌,22 d仔鱼、40 d幼鱼分离到弧菌;开口前后可培养细菌种类变化较大,种类由多到少。2 d、8 d、22 d仔鱼和40 d幼鱼可培养细菌种类分别为6种、3种、5种、10种;2 d、8 d及22 d仔鱼与进水口细菌种类有一定的相似,8 d仔鱼及22 d仔鱼与其饵料细菌种类有一定程度的相似。
     DGGE结果显示,2 d、8 d和22 d仔鱼消化道菌群DGGE图谱相似,仔鱼和40 d稚鱼消化道菌群DGGE图谱存在明显差异;仔鱼与养殖水体菌群DGGE图谱具有一定的相似性;22 d仔鱼与后期饵料轮虫菌群图谱相似性较高,8 d仔鱼与早期饵料牡蛎受精卵的相似性较低。
     2、不同生长速度斜带石斑鱼幼鱼消化道菌群结构的研究
     利用纯培养方法结合PCR/DGGE方法,分析不同生长速度70 d幼鱼消化道菌群结构。纯培养试验结果表明,生长速度慢的幼鱼消化道细菌总数(5.4×106 CFU/g)少于生长速度快的幼鱼消化道细菌总数(9.0×106 CFU/g),但生长速度慢的幼鱼消化道弧菌数量(6.0×105 CFU/g)明显多于生长速度快的幼鱼(3.4×105 CFU/g),生长速度慢的幼鱼消化道乳酸菌数量(1.5×105 CFU/g)也多于生长速度快的幼鱼消化道乳酸菌数量(6.0×104 CFU/g)。水样中分离到的细菌总数(5.4×105 CFU/ml)、弧菌数(2.2×103 CFU/ml)均少于幼鱼消化道;水样中未分离到乳酸菌。生长速度慢的幼鱼消化道中四种弧菌占细菌总数的12.3%,生长速度快的幼鱼消化道中仅两种弧菌,占细菌总数的比例降低到3.6%;生长速度慢的幼鱼消化道中假单胞菌所占细菌比例12.0%,生长速度快的幼鱼消化道中假单胞菌占细菌总数降低到5.6%。
     仅在生长速度快的幼鱼消化道分离到短小芽孢杆菌、克劳氏芽孢杆菌和嗜冷杆菌且数量占绝对优势。抑菌试验表明,短小芽孢杆菌、克劳氏芽孢杆菌和嗜冷杆菌对弧菌具有抑制生长作用。提示短小芽孢杆菌、克劳氏芽孢杆菌和嗜冷杆菌可能与石斑鱼的生长和健康有关。系统进化树结果表明,两组幼鱼消化道的17种细菌隶属于γ-变形杆菌纲,β-变形杆菌纲和芽孢杆菌纲。
     DGGE结果显示,生长速度慢的幼鱼消化道菌群多样性明显低于生长速度快的幼鱼消化道。割胶测序结果显示,生长速度快的幼鱼消化道优势菌隶属于不动杆菌属细菌(Acinetobacter baumannii)、结核杆菌(Mycobacterium tuberculosis)、脱硫肠球菌属细菌(Desulfotomaculum reducens)和Petrotoga mobilis;生长速度慢的幼鱼优势菌均隶属于不动杆菌属(Acinetobacter)。
     3、溶藻弧菌感染后斜带石斑鱼消化道菌群结构的研究
     溶藻弧菌感染后斜带石斑鱼消化道菌群分析结果显示,对照组胃(1.2×105 CFU/g )、前肠(5.1×106 CFU/g)和后肠(2.8×105 CFU/g)和实验组的胃(3.0×105 CFU/g)、前肠(3.1×106 CFU/g)、后肠(3.1×106 CFU/g)的细菌总数量相近;对照组石斑鱼胃和后肠细菌种类明显多于实验组石斑鱼胃和后肠,但对照组前肠细菌种类少于实验组前肠细菌种类。
     DGGE结果显示,对照组和实验组细菌多样性具有明显差异。斜带石斑鱼胃菌群结构在灌胃溶藻弧菌后第1 d到第3 d细菌多样性变化不大,但第4 d细菌种类明显减少,第5 d细菌种类则呈回升趋势;前肠细菌多样性分析显示,实验组第1 d和对照组有一定的相似性,实验组第3 d和第4 d相似性较高,细菌多样性明显减少;后肠细菌多样性分析显示,灌胃溶藻弧菌第1 d时,细菌种类较多,第4 d时,细菌多样性降到最低,对照组和实验组第1 d和第5 d相似性较高,实验组第3 d和第4 d相似性较高。割胶测序结果显示,Escherichia coli、Petrotoga mobilis和Vibrio furnissii三种菌在对照组和实验组5 d内的胃、前肠、后肠均检测到,实验组第4 d细菌可检出细菌种类很少,而Shewanella sp.和Vibrio fischeri泳带很强,为第4 d的优势菌。
In the present study, traditional culture-based techniques and denaturing gradient gel electrophoresis (DGGE) tequnique were used to study the gut microbiota of larvae, juvenile and two groups of young grouper Epinephelus cioides with different grow rate. In addition, the gut microbiota of E. cioides infected artificially with Vibrio alginolyticus was investigated. The general results are presented as follows:
     1. The aim of the study was to investigate the gut microbiota of the different stages from the eggs hatch to juvenile grouper. Larvae and juvenile samples were collected at day 2, 8, 22 and day 40 post hatch. The results showed that the total cultivable bacterial number increased from the larvae stage to juvenile stage, from 4.0×102 CFU to 1.4×107 CFU per fish. Lactic acid bacteria were only found in the 2 d larvae grouper and no Vibrio sp. observed. Vibrio was found in the 22 d larvae and 40 d juvenile grouper. Six bacterial species were found in the gut of 2 d larvae, but only three bacterial species were found in the gut of 8 d larvae. The cultivable bacterial species are similar between the larvae and inlet water, while those in 8 d and 22 d larvae are similar with there diets.
     DGGE results showed that the diversity of gut microbiota of 2 d, 8 d and 22 d of larvael grouper was similar. However, the DGGE profiles of the larvae and juvenile grouper showed an apparent difference. The DGGE profile of 22 d larvae grouper was similar to that of rotifer. There was a low similarity of the DGGE profile between 8 d larvae and its diets (fertilized eggs of the Pacific oyster Crassostrea gigas).
     2. The gut microbiota of two groups of juvenile grouper Epinephelus coioides, slow growing and fast growing grouper at 70 days post–hatch, were investigated by using traditional culture-based techniques and PCR/DGGE technique. Traditional culture-based techniques showed that the total bacterial number in the slow growing grouper ( 5.4×106 CFU/g ) was lower than those in the gut of fast growing grouper ( 9.0×106 CFU/g ). However the number of Vibrio and Lactic acid bacteria in the slow growing grouper ( 6.0×105 CFU/g and 1.5×105 CFU/g respectively ) were higher than those in the fast growing fish ( 3.4×105 CFU/g and 6.0×104 CFU/g ). The number of total bacteria ( 5.4×105 CFU/ml ), Vibrio ( 2.2×103 CFU/ml ) in the inlet water were lower than those in the gut of juvenile grouper, and no lactic acid bacteria observed in the inlet water. Four Vibrio species were isolated and comprised 12.3% of the total gut bacteria in slow growing grouper, whereas only two Vibrio species were isolated and comprised 3.6% of the total bacteria in fast growing grouper. Pseudomonas comprised 12.0% in the slow growing grouper, wheras only 5.6% in the fast growing grouper.
     Bacillus pumilus, Bacillus clausii and Psychrobacter sp. were only isolated and dominated in the gut of the fast growing fish. The three species showed antagonistic effect on pathogenic Vibrio, this may cause the lower number and less species of Vibrio in the gut of fast growing grouper and suggesting fast growing fish might harbor a favorable microbiota. The bacteria in the gut of grouper could be classified into three groups belonging toγ-proteobacteria,β-proteobacteria and Bacilli class.
     The results of DGGE analyses showed that the bacterial diversity in the gut of slow growing grouper was obvious lower than that in the fast growing grouper. Sequencing results showed that the fast growing grouper was dominated by Acinetobacter baumannii、Mycobacterium tuberculosis、Desulfotomaculum reducens and Petrotoga mobilis, however the slow growing grouper gut was dominated by Acinetobacter.
     3. The results of DGGE analyses showed the bacterial diversity in the gut microbiota of grouper after administered intragastrically with Vibrio alginolyticus . Sequencing results showed that the stomach、fore gut and hind gut samples were collected at day 1 to day 5 after administered intragastrically with Vibrio alginolyticus. The results showed that the total cultivable bacteria in the stomach, fore- and hind-gut of the experiment group were similar with the control group. The bacterial species in the stomach and hind gut of the experiment group were obvious less than the control group, however the species in the fore hand of experiment group were more than the control group.
     DGGE results showed that the bacterial diversity were obvious differences between the experiment group and control group. The microbiota of stomach was relative stable in the first three days after administered intragastrically with V. alginolyticus, whereas many bacteria disappeared in the fourth day, but appeared again in the fifth day. The fore gut bacterila diversity of the experiment group was no change in the first day compared to control group . The bacterial diversity was similar in the third and fourth day , with the lowest species. The hind gut bacterial diversity of the experiment group was much more in the first day , howere it reduced to the lowest in the fourth day. Sequencing results showed that Escherichia coli、Petrotoga mobilis and Vibrio furnissii were isolated from the stomch, fore and hind gut of both control group and experiment group . There were fewer bacterial species in the gut of experiment group in the fourth day, however, Shewanella sp. and Vibrio fischeri dominated.
引文
[1]李明德.鱼类分类学[M].北京:学苑出版社, 2000: 173-175.
    [2]刘冬娥.斜带石斑鱼早期发育阶段的生物学研究[D].厦门:集美大学, 2007.
    [3]王云新,黄国光,刘付永忠,等.斜带石斑鱼人工育苗试验[J].渔业现代化, 2003, (6): 14-15.
    [4]黄培卫,黄国光,王云新.斜带石斑鱼网箱养殖技术[J].渔业现代化, 2003, 4: 17-18.
    [5]陈孝煊,吴志新,周文豪.鱼类消化道菌群的作用与影响因素研究进展[J].华中农业大学学报, 2005, 24 (5): 523-528.
    [6] Bairagi A, Ghosh K, Sen S, et al. Enzyme producing bacterial flora isolated from fish digestive tracts[J]. Aquaculture International, 2002, 10(2): 109-121.
    [7] Kamei Y, Sakata T, Kakimoto D. Microflora in the alimentary tract of tilapia: characterization and distribution of anaerobic bacteria[J]. Journal of General and Applied Microbiology, 1985, 31(2): 115-124.
    [8] Sugita H, Kawasaki J, Deguchi Y. Production of amylase by the intestinal microflora in cultured freshwater fish[J]. Letters in applied microbiology, 1997, 24(2): 105-108.
    [9]冯雪,吴志新,祝东梅,等.草鱼和银鲫肠道产消化酶细菌的研究[J].淡水渔业, 2008, 38 (3): 51-57.
    [10] Sugita H, Miyajima C, Deguchi Y. The vitamin B12-producing ability of the intestinal microflora of freshwater fish[J]. Aquaculture, 1991, 92: 267-276.
    [11]桂远明,何幽峰,吴垠,等.生态制品(Jy10, Jy31复合制剂)饲料添加剂对提高鲤抗病力的研究[J].中国微生态学杂志, 1994, 6(6): 27-33.
    [12] Sera H, Ishida Y. Bacterial flora in the digestive tract of marine fish. III. Classification of isolated bacteria[J]. Bulletin of the Japanese Society of Scientific Fisheries, 1972, 38: 853-858.
    [13] Sera H, Ishida Y, Kadota H. Bacterial flora in the digestive tracts of marine fish-IV. Effect of H+ concentration and gastric juices on the indigenous bacteria[J]. Bulletin of the Japanese Society of Scientific Fisheries, 1972, 38(8): 859-863.
    [14] Sugita H, Okano R, Suzuki Y, et al. Antibacterial abilities of intestinal bacteria from larval and juvenile Japanese flounder against fish pathogens[J]. Fisheries Science, 2002, 68(5): 1004-1011.
    [15]荆谷,孔健,李德冠,等.乳酸乳球菌L9所产类细菌素LactococcinGJ-9的初步研究[J].食品与发酵工业, 2003, 29(9): 17-21.
    [16]李莉.草鱼肠道菌群的变化和免疫机能的关系[D].武汉:华中农业大学, 2003.
    [17] Ring? E, Gatesoupe F. Lactic acid bacteria in fish: a review[J]. Aquaculture, 1998, 160(3-4): 177-203.
    [18] Sugita H, Enomoto A, Deguchi Y. Intestinal microflora in the fry of Tilapia mossambica[J]. Bulletin of the Japanese Society of Scientific Fisheries, 1982, 48(6): 875-881.
    [19] Sugita H, Oshima K, Tamura M, et al. Bacterial flora in the gastrointestine of freshwater fishes in the river[J]. Bulletin of the Japanese Society of Scientific Fisheries, 1983, 49: 1387-1395.
    [20] Sakata T, Sugita H, Mitsuoka T, et al. Isolation and distribution of obligate anaerobic Bacteria from the intestines of freshwater fish[J]. Bulletin of the Japanese Society of Scientific Fisheries, 1980, 46(10): 1249-1255.
    [21] Sakata T, Koreeda Y. A numerical taxonomic study of the dominant bacteria isolated from tilapia intestines[J]. Bulletin of the Japanese Society of Scientific Fisheries, 1986, 52(9): 1625-1634.
    [22] Sakata T, Okabayashi J, Kakimoto D. Variations in the intestinal microflora of Tilapia reared in fresh and sea water[J]. Bulletin of the Japanese Society of Scientific Fisheries, 1980, 46: 313-317.
    [23] Muroga K, Higashi M, Keitoku H. The isolation of intestinal microflora of farmed red seabream (Pagrus major) and black seabream (Acanthopagrus schlegeli) at larval and juvenile stages[J]. Aquaculture, 1987, 65(1): 79-88.
    [24] Tanasomwang V, Muroga K. Intestinal microflora of rockfish Sebastes schlegeli, tiger puffer Takifugu rubripes and red grouper Epinephelus akaara at their larval and juvenile stages[J]. Nippon Suisan Gakkaishi, 1989, 55(8): 1371-1377.
    [25]葛莉莉.鱼类肠道菌群的研究概况[J].水利渔业, 2006, 26(4): 17-20.
    [26] LeaMaster B R, Walsh W A, Brock J A, et al. Cold stress-induced changes in the aerobic heterotrophic gastrointestinal tract bacterial flora of red hybrid tilapia[J]. Journal of Fish Biology, 2005, 50(4): 770-780.
    [27] Al-Harbi A H, Uddin N. Seasonal variation in the intestinal bacterial flora of hybrid tilapia (Oreochromis niloticus×Oreochromis aureus) cultured in earthen ponds in Saudi Arabia[J]. Aquaculture, 2004, 229(1-4): 37-44.
    [28] Margolis L. The effect of fasting on the bacterial flora of the intestine of fish[J]. Journal of the Fisheries Research Board of Canada, 1953, 10(2): 62-63.
    [29] Sugita H, Tokuyama K, Deguchi Y. The intestinal microflora of carp Cyprinus carpio, grass carp Ctenopharyngodon idellai tilapia Sarotherodon niloticus[J]. Bulletin of the Japanese Society of Fisheries Oceanography, 1985, 51: 1325-1329.
    [30]周文豪,陈孝煊.摄食不同饵料对草鱼肠道菌群影响的研究[J].华中农业大学学报, 1998, 17(3): 252-256.
    [31] Ring? E, L?demel J B, Myklebust R, et al. The effects of soybean, linseed and marine oils on aerobic gut microbiota of Arctic charr Salvelinus alpinus L. before and after challenge with Aeromonas salmonicida ssp. salmonicida[J]. Aquaculture Research, 2002, 33(8): 591-606.
    [32] Tanaka R, Sugimura I, Sawabe T, et al. Gut microflora of abalone Haliotis discus hannai in culture changes coincident with a change in diet[J]. Fisheries Science, 2003, 69(5): 951-958.
    [33] Olafsen J. Interactions between fish larvae and bacteria in marine aquaculture[J]. Aquaculture(Amsterda m),2001,200(1-2):223-247.
    [34]周文豪,陈孝煊,陈昌福.投喂氯霉素和土霉索后草鱼肠道菌群的变化[J].华中农业大学学报, 1997, 25: 95-104.
    [35]陈孝煊,吴志新.呋喃唑酮对草鱼肠道菌群的影响[J].水利渔业, 1999, 19(3): 34-36.
    [36]杨雨辉,佟恒敏,卢彤岩,等.乳酸环丙沙星对鲤鱼肠道菌群的影响[J].中国兽医杂志, 2003, 39(10): 38-40.
    [37] Hansen G, Olafsen J. Bacterial interactions in early life stages of marine cold water fish[J]. Microbial Ecology, 1999, 38(1): 1-26.
    [38] Eddy S, Jones S. Microbiology of summer flounder Paralichthys dentatus fingerling production at a marine fish hatchery[J]. Aquaculture, 2002, 211(1-4): 9-28.
    [39] Verner-Jeffreys D, Shields R, Bricknell I, et al. Changes in the gut-associated microflora during the development of Atlantic halibut (Hippoglossus hippoglossus L.) larvae in three British hatcheries[J]. Aquaculture, 2003, 219(1-4): 21-42.
    [40] Grisez L, Reyniers J, Verdonck L, et al. Dominant intestinal microflora of sea bream and sea bass larvae, from two hatcheries, during larval development[J]. Aquaculture, 1997, 155(1-4): 387-399.
    [41]桂远明,康白.复方回春生对鲤暴发性肝炎治疗效果的初步研究报告[J].中国微生态学杂志, 1992, 4(2): 47-50.
    [42]蒋长苗,鲍传和.草鱼肠道正常菌群与肠炎病原菌关系的初步研究[J].吉林农业大学学报, 1992, 14(1): 55-58.
    [43]周勤飞,王永才.动物胃肠微生态及其调控[J].家畜生态, 2004, 25(4): 214-217.
    [44]凌泽春,杨红玲,孙云章,等.斜带石斑鱼幼鱼消化道与养殖水体中可培养菌群的研究[J].大连水产学院学报, 2009, 24(6): 497-503.
    [45]周志刚,石鹏君,姚斌,等.海水鱼消化道菌群结构研究进展[J].海洋水产研究, 2007, 28(5): 123-131.
    [46]冯仰廉.反刍动物营养学[M].北京:科学出版社, 2004: 114-130.
    [47]冯霞,殷幼平,王中康.现代分子生物学技术在动物肠道微生物多样性研究中的应用[J].应用与环境生物学报, 2005, 11(3): 381-387.
    [48] Muyzer G, De Waal E, Uitterlinden A. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Applied and Environmental Microbiology, 1993, 59(3): 695.
    [49]宫曼丽,任南琪,邢德峰. DGGE/TGGE技术及其在微生物分子生态学中的应用[J].微生物学报, 2004, 44(6): 845-848.
    [50]马悦欣.变性梯度凝胶电泳(DGGE)在微生物生态学中的应用[J].生态学报, 2003, 23 (8): 1561-1569.
    [51]刘年锋. 16S rDNA技术及在水产养殖细菌分析中的应用前景[J].现代渔业信息, 2004, 19(12): 6-8.
    [52] Huber I, Spanggaard B, Appel K, et al. Phylogenetic analysis and in situ identification of the intestinal microbial community of rainbow trout (Oncorhynchus mykiss, Walbaum)[J]. Journal of Applied Microbiology, 2003, 96(1): 117-132.
    [53]杨桂梅,唐文乔,李会荣,等.利用PCR-DGGE法分析暗纹东方鲀的弧菌菌落组成[J].上海水产大学学报, 2006, 15(3): 257-263.
    [54]李可俊,管卫兵,徐晋麟,等. PCR-DGGE对长江河口八种野生鱼类肠道菌群多样性的比较研究[J].中国微生态学杂志, 2007, 19(3): 268-269.
    [55]周志刚,石鹏君,姚斌,等.圆白鲳消化道菌群PCR—DGGE基因指纹图谱构建[J].上海水产大学学报, 2008, 17(2): 140-144.
    [56]黄光祥.养殖鱼肠道菌群分子生态的研究[D].武汉:华中农业大学, 2008.
    [57]陈强,鄢庆枇,马甡.溶藻弧菌致病性研究进展[J].海洋科学, 2006, 30(8): 83-89.
    [58] Stefan H, Helmut W, Karin N. Isolation of Vibrio alginolyticus from seawater aquaria[J]. International Journal of Hygiene and Environmental Health, 2000, 203: 169-175.
    [59] Kaneko T, Colwell R. Ecology of Vibrio parahaemolyticus and related organisms in the Atlantic ocean off South Carolina and Georgia[J]. Journal of Applied Microbiology, 1973, 28: 1009-1017.
    [60]林业杰,陈亢川.溶藻弧菌噬菌体的分离[J].微生物学报, 1993, 33(4): 285-289.
    [61] Ripabelli G, Sammarco M, Grasso G, et al. Occurrence of Vibrio and other pathogenic bacteria in Mytilus galloprovincialis (mussels) harvested from Adriatic Sea, Italy[J]. International journal of food microbiology, 1999, 49(1-2): 43-48.
    [62]万文菊,王纪亭,石存斌,等.溶藻弧菌感染对剑尾鱼HSP70基因表达的影响[J].大连水产学院学报, 2007, 22(5): 330-334.
    [63]李军,胡应劭.香港地区养殖平鲷的病原菌(溶藻胶弧菌)研究[J].水产学报, 1998, 22 (3): 275-278.
    [64] Balebona M, Zorrilla I, Mori igo M, et al. Survey of bacterial pathologies affecting farmed gilt-head sea bream (Sparus aurata L.) in southwestern Spain from 1990 to 1996[J]. Aquaculture, 1998, 166(1-2): 19-35.
    [65]黄志坚,何建国.鲑点石斑鱼细菌病原的分离鉴定和致病性[J].中山大学学报:然科学版, 2002, 41(5): 64-67.
    [66]陈偿,张吕平,任春华,等.人工养殖点带石斑鱼弧菌病病原菌的分离及鉴定[J].海洋科学, 2003, 27(6): 68-72.
    [67] Lee K. Pathogenesis studies on Vibrio alginolyticus in the grouper, Epinephelus malabaricus, Bloch et Schneider[J]. Microbial pathogenesis, 1995, 19(1): 39-48.
    [68]戴卓捷,杨光明.细菌粘附素的分子结构和装配机制[J].微生物学免疫学进展, 2001, 29(3): 55-59.
    [69] Balebona M, Andreu M, Bordas M, et al. Pathogenicity of Vibrio alginolyticus for cultured gilt-head sea bream (Sparus aurata L.)[J]. Applied and Environmental Microbiology, 1998, 64 (11): 4269-4275.
    [70] Balebona M C, Mori?igo M, Borrego J. Hydrophobicity and adhesion to fish cells and mucus of Vibrio strains isolated from infected fish[J]. International Microbiology, 2001, 4: 21-26.
    [71]徐建国.分子医学细菌学[M].北京:科学出版社, 2000.
    [72] Lee K, Chen F, Yu S, et al. Effects of extracellular products of Vibrio alginolyticus on penaeid prawnplasma components[J]. Letters in applied microbiology, 2003, 25(2): 98-100.
    [73] Long S, Mothibeli M, Robb F, et al. Regulation of extracellular alkaline protease activity by histidine in a collagenolytic Vibrio alginolyticus strain[J]. Microbiology, 1981, 127(1): 193-199.
    [74] Baffone W, Citterio B, Vittoria E, et al. Determination of several potential virulence factors in Vibrio spp. isolated from sea water[J]. Food microbiology, 2001, 18(5): 479-488.
    [75] Yu C, Yu P, Chan P, et al. Two novel species of tetrodotoxin-producing bacteria isolated from toxic marine puffer fishes[J]. Toxicon, 2004, 44 (6): 641-647.
    [76]陈晓燕,胡超群.溶藻弧菌脂多糖在两种鱼类体内的组织分布[J].热带海洋学报, 2002, 21(4): 30-35.
    [77] Hisatsune K, Kiuye A, Kondo S. A comparative study of the sugar composition of O-antigenic ipopolysaccharides isolated from Vibrio alginolyticus and Vibrio parahaemolyticus[J]. Microbiology and immunology, 1981, 25(2): 127-136.
    [78]王斌,方敏,姚泽洪,等.一起由溶藻弧菌引起食物中毒的调查报告[J].中国卫生检验杂志, 2001, 11(1): 111.
    [79]封会茹,游京蓉,刘玉堂,等.溶藻弧菌引起暴发型食物中毒的病原学研究[J].中国食品卫生杂志, 2003, 15(4): 331-334.
    [80]谢勤美,吴爱贞.溶藻性弧菌引起一次食物中毒的检测[J].中国卫生检验杂志, 2006, 16 (001): 96-96.
    [81]胡学峰,石存斌,潘厚军,等.海水养殖斜带石斑鱼溃疡病病原菌(溶藻弧菌)的初步研究[J].中国海洋大学学报, 2005, 35(2): 232-236.
    [82]朱传华,何建国,黄志坚.网箱养殖石斑鱼暴发性溃疡病病原菌分离,鉴定及致病性研究[J].中山大学学报:自然科学版, 2000, (z1): 278-282.
    [83]周永灿,张本,陈雪芬,等.养殖对虾细菌性红体病的初步研究[J].海洋科学, 2003, 27(5): 61-65.
    [84]周晶,蔡俊鹏,杨洪志.南方杂色鲍苗大规模死亡病原菌的分离鉴定及其回归感染试验[J].海洋湖沼通报, 2006, (3): 54-59.
    [85]鄢庆枇,张俊杰,邹文政,等.人工感染溶藻弧菌对大黄鱼免疫功能的影响[J].水产学报, 2007, 31(2): 250-256.
    [86]陈萍,李吉涛,李健,等.溶藻弧菌对三疣梭子蟹抗氧化酶系统的影响[J].海洋科学, 2009, (5): 59-63.
    [87]陈萍,王清印,李健,等.溶藻弧菌对三疣梭子蟹溶菌酶和磷酸酶活性的影响[J].渔业科学进展, 2009, 30(2): 78-82.
    [88]孙云章,杨红玲,凌泽春,等.斜带石斑鱼稚鱼和早期幼鱼消化道菌群研究[C]. 2008年中国水产学会学术年会论文摘要集, 2008: 94.
    [89] Silva F, Brito M, Farias L, et al. Composition and antagonistic activity of the indigenous intestinal microbiota of Prochilodus argenteus Agassiz[J]. Journal of Fish Biology, 2005, 67(6): 1686-1698.
    [90] Verschuere L, Rombaut G, Sorgeloos P, et al. Probiotic bacteria as biological control agents in aquaculture[J]. Microbiology and Molecular Biology Reviews, 2000, 64(4): 655-671.
    [91]谢仰杰,翁朝红,苏永全,等.斜带石斑鱼仔稚鱼生长和摄食的研究[J].厦门大学学报:自然科学版, 2007, 46(1): 123-130.
    [92]杨红玲,孙云章,叶继丹,等.鱼源乳酸菌的抑菌特性研究[J].上海水产大学学报, 2008, 17(3): 344-349.
    [93] Olsson J, Westerdahl A, Conway P, et al. Intestinal colonization potential of turbot (Scophthalmus maximus) and dab (Limanda limanda) associated bacteria with inhibitory effects against Vibrio anguillarum[J]. Applied and Environmental Microbiology, 1992, 58(2): 551-556.
    [94]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社, 2001.
    [95]凌代文,东秀珠.乳酸细菌分类鉴定及实验方法[M].北京:中国轻工业出版社, 1999.
    [96] McIntosh D, Ji B, Forward B, et al. Culture-independent characterization of the bacterial populations associated with cod (Gadus morhua L.) and live feed at an experimental hatchery facility using denaturing gradient gel electrophoresis[J]. Aquaculture, 2008, 275(1-4): 42-50.
    [97] Sandaa R, Brunvold L, Magnesen T, et al. Monitoring the opportunistic bacteria Pseudoalteromonas sp. LT-13 in a great scallop, Pecten maximus hatchery[J]. Aquaculture, 2008, 276 (1-4): 14-21.
    [98]刘玉春,周志刚,石鹏君,等.网箱养殖青石斑鱼Epinephelus awoara鳃及体表粘附菌群的PCR-DGGE比较分析[J].中国农业科技导报, 2008, 10(1): 81-86.
    [99]周志刚,石鹏君,姚斌,等.基于PCR-DGGE指纹图谱川纹笛鲷及圆白鲳消化道壁优势菌群结构比较分析[J].水生生物学报, 2007, 31(5): 682-688.
    [100]苏勇. 16S rRNA基因分子技术研究仔猪胃肠道菌群区系变化[D].南京:南京农业大学, 2007.
    [101]许振国. PCR-DGGE对六种淡水鱼类肠道菌群结构的比较研究[D].曲阜:曲阜师范大学, 2009: 1-60.
    [102]王志勇,邱淑贞.利用AFLP指纹技术研究中国沿海真鲷群体的遗传变异和趋异[J].水产学报, 2001, 25(4): 289-293.
    [103]孙云章,杨红玲.浅谈鱼类消化道微生物的分布及调控[J].水产科学, 2008, 27(5): 257-261.
    [104] Str?m E, Olafsen J. The indigenous microflora of wild-captured juvenile cod in net-pen rearing[J]. Elsevier Science Publisher, 1990, 181–185.
    [105] Hansen G, Str?m E, Olafsen J. Effect of different holding regimens on the intestinal microflora of herring (Clupea harengus) larvae[J]. Applied and Environmental Microbiology, 1992, 58 (2): 461-470.
    [106] Bergh O, Naas K, Harboe T. Shift in the intestinal microflora of Atlantic halibut (Hippoglossus hippoglossus) larvae during first feeding[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1994, 51 (8): 1899-1903.
    [107]朱伟云,姚文,毛胜勇.变性梯度凝胶电泳法研究断奶仔猪粪样细菌区系变化[J].微生物学报, 2003, 43(4): 503-508.
    [108]卢永,陈秉娟,申世峰,等. PCR-DGGE在水处理微生物群落多样性分析中的应用[J].化学与生物工程, 2009, 26(5): 55-59.
    [109]罗海峰,齐鸿雁,薛凯,等.在PCR-DGGE研究土壤微生物多样性中应用GC发卡结构的效应[J].生态学报, 2003, 23(10): 2170-2175.
    [110] Campbell A, Buswell J. The intestinal microflora of farmed Dover sole (Solea solea) at different stages of fish development[J]. Journal of Applied Microbiology, 2008, 55(2): 215-223.
    [111] Cahill M. Bacterial flora of fishes: a review[J]. Microbial Ecology, 1990, 19(1): 21-41.
    [112] Gómez G, Balcázar J. A review on the interactions between gut microbiota and innate immunity of fish[J]. FEMS Immunology & Medical Microbiology, 2007, 52(2): 145-154.
    [113] Conway P, Maki J, Mitchell R, et al. Starvation of marine flounder, squid and laboratory mice and its effect on the intestinal microbiota[J]. FEMS Microbiology Letters, 1986, 38(3): 187-195.
    [114] Sumpter J. Control of growth of rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture, 1992, 100(1-3): 299-320.
    [115] Baltz D, Fleeger J, Rakocinski C, et al. Food, density, and microhabitat: factors affecting growth and recruitment potential of juvenile saltmarsh fishes[J]. Environmental Biology of Fishes, 1998, 53(1): 89-103.
    [116] Boeuf G, Boujard D, Person-Le Ruyet J. Control of the somatic growth in turbot[J]. Journal of Fish Biology, 2005, 55(sA): 128-147.
    [117] Vine N, Leukes W, Kaiser H. Probiotics in marine larviculture[J]. FEMS microbiology reviews, 2006, 30(3): 404-427.
    [118] Comstock L. Microbiology: The inside story[J]. Nature, 2007, 448(7153): 542-544.
    [119] Mazmanian S, Round J, Kasper D. A microbial symbiosis factor prevents intestinal inflammatory disease[J]. Nature, 2008, 453 (7195): 620-625.
    [120] Ring? E, Sperstad S, Myklebust R, et al. Characterisation of the microbiota associated with intestine of Atlantic cod (Gadus morhua L.): The effect of fish meal, standard soybean meal and a bioprocessed soybean meal[J]. Aquaculture, 2006, 261(3): 829-841.
    [121] Munro P, Barbour A, Blrkbeck T. Comparison of the gut bacterial flora of start-feeding larval turbot reared under different conditions[J]. Journal of Applied Microbiology, 2008, 77(5): 560-566.
    [122] Gatesoupe F, Infante J, Cahu C, et al. Early weaning of seabass larvae, Dicentrarchus labrax: the effect on microbiota, with particular attention to iron supply and exoenzymes[J]. Aquaculture, 1997, 158(1-2): 117-127.
    [123] Sugita H, Ito Y. Identification of intestinal bacteria from Japanese flounder (Paralichthys olivaceus) and their ability to digest chitin[J]. Letters in applied microbiology, 2006, 43(3): 336-342.
    [124] Kennedy B, Tucker Jr J, Neidig C, et al. Bacterial management strategies for stock enhancement of warmwater marine fish: a case study with common snook (Centropomus undecimalis)[J]. Bulletin of Marine Science, 1998, 62(2): 573-588.
    [125] Sugita H, Hirose Y, Matsuo N, et al. Production of the antibacterial substance by Bacillus sp. strain NM 12, an intestinal bacterium of Japanese coastal fish[J]. Aquaculture, 1998, 165(3-4): 269-280.
    [126] Ring? E, Sperstad S, Myklebust R, et al. The effect of dietary inulin on aerobic bacteria associated with hindgut of Arctic charr (Salvelinus alpinus L.)[J]. Aquaculture Research, 2006, 37(9): 891-897.
    [127] Diggles B, Carson J, Hine P, et al. Vibrio species associated with mortalities in hatchery-reared turbot (Colistium nudipinnis) and brill (C. guntheri) in New Zealand[J]. Aquaculture, 2000, 183(1-2): 1-12.
    [128]汪立平,马相杰,赵勇.罗非鱼幼鱼肠道微生物基因组DNA的提取[J].湖南农业科学, 2009, (10): 147-150.
    [129]江云飞,蔡柏岩. PCR-DGGE技术在细菌多样性研究中的条件优化[J].生物技术, 2009, 19(5): 84-87.
    [130] Zhou Z, Liu Y, Shi P, et al. Molecular characterization of the autochthonous microbiota in the gastrointestinal tract of adult yellow grouper (Epinephelus awoara) cultured in cages[J]. Aquaculture, 2009, 286(3-4): 184-189.
    [131]李荣岭,张兆远,王丹晨,等.不同生长速度牙鲆的肌肉组织基因差异表达研究[J].山东农业大学学报:自然科学版, 2007, 38(1): 7-10.
    [132]顾天钊,陆承平.鲍氏不动杆菌—鳜鱼暴发性死亡的新病原[J].微生物学通报, 1997, 24(2): 104-106.
    [133]江新姣.鲍氏不动杆菌医院感染及其耐药性变化趋势[J].中华医院感染学杂志, 2008, 18(2): 274-275.
    [134]卢建雄,李翊锐,邵叶.老年患者鲍氏不动杆菌感染的分布及耐药性[J].中华医院感染学杂志, 2006, 16(9): 1067-1068.
    [135]邓健康,霍亚平,郭晓兰.医院感染鲍曼不动杆菌分布特点及耐药性监测[J].中国误诊学杂志, 2006, 6(5): 818-819.
    [136]王昌明,王晨,俞莲花,等.鲍氏不动杆菌致呼吸机相关性肺炎的临床分析[J].中华医院感染学杂志, 2008, 18(5): 729-730.
    [137] Hovda M, Lunestad B, Fontanillas R, et al. Molecular characterisation of the intestinal microbiota of farmed Atlantic salmon (Salmo salar L.)[J]. Aquaculture, 2007, 272(1-4): 581-588.
    [138]刘秀珍,李家炳.海水网箱养殖石班鱼病原菌研究[J].热带海洋, 1994, 13(1): 81-86.
    [139]鄢庆枇,陈强,马甡,等.病原性溶藻弧菌对大黄鱼鳃黏液黏附作用研究[J].海洋学报, 2007, 29(6): 80-86.
    [140] Marco-Noales E, Milan M, Fouz B, et al. Transmission to eels, portals of entry, and putative reservoirs of Vibrio vulnificus serovar E (biotype 2)[J]. Applied and Environmental Microbiology, 2001, 67 (10): 4717.
    [141]周永欣,章宗涉.水生生物毒性试验方法[M].北京:农业出版社, 1989.
    [142]潘雷.几种微藻和益生菌在大菱鲆苗种培育过程中的应用研究[D].北京:中国农业科学院, 2009.
    [143]宋理平,冒树泉,王爱英,等.芽孢杆菌对宝石鲈生长和肠道菌群的影响[J].饲料工业, 2008, 29 (8): 23-24.
    [144]谢彩虹,袁静,王瑞君,等.嗜酸乳杆菌对抗生素诱导小鼠肠道菌群失调的作用[J].肠外与肠内营养, 2007, 14(3): 132-136.
    [145]杨晓燕,李辉,苏鸿雁.小鼠肠道菌群失调动物模型的制备[J].楚雄师范学院学报, 2008, (12): 53-55.
    [146]冯晓燕,郑家声,王梅林.许氏平鲉消化道的组织化学研究[J].青岛海洋大学学报:自然科学版, 2003, 33(3): 399-404.
    [147]鄢庆楷,王军.网箱养殖大黄鱼弧菌病研究[J].集美大学学报:自然科学版, 2001, 6(3): 191-196.
    [148]林克冰,周宸,刘家富,等.海水网箱养殖大黄鱼弧菌病的病原菌[J].台湾海峡, 1999, 18(3): 342-346.
    [149]杨金龙.小鹅瘟强毒在人工感染雏鹅体内侵染规律及对消化道菌群结构影响的分子解析[D].雅安:四川农业大学, 2009.
    [150]刘佳,许修宏,李洪涛.利用PCR-DGGE技术对自然堆肥微生物群落多样性的分析[J].东北农业大学学报, 2009, 40(9): 35-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700