用户名: 密码: 验证码:
POSS改性环氧树脂及其热性能与流变行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多面体低聚硅倍半氧烷(Polyhedral oligomeric silsesquioxane,POSS)是一种新颖的、具有三维笼状立体结构的有机—无机纳米杂化材料,不仅兼具有机材料优良的加工性、韧性与低成本,同时保留了无机材料耐热、耐氧化与优异的力学性能。通过POSS顶角的有机基团将POSS分子引入环氧树脂交联网络之中,可以有效提高环氧树脂的使用温度、抗氧化性能等。
     本文采用七苯基三硅烷醇POSS(TSP-POSS)对AFG-90树脂/甲基四氢苯酐(简记为AFG-90/MeTHPA)体系和AFG-90树脂/4,4′-二氨基二苯砜(简记为AFG-90/DDS)体系进行改性研究。探讨了POSS改性环氧树脂的机理及改性工艺。研究表明TSP-POSS改性AFG-90环氧树脂的较佳工艺方案为:TSP-POSS与AFG-90经超声分散后在110℃预反应15小时后加入固化剂进行固化,AFG-90/MeTHPA体系促进剂三乙胺(TEA)的较佳用量为0.3wt%,而促进剂TEA不适用于AFG-90/DDS体系。
     固化动力学研究表明,AFG-90/MeTHPA/TSP-POSS/TEA体系及AFG-90/DDS/TSP-POSS体系固化过程均可用拓展Prout-Tompkins方程描述,即反应为具有自催化特征的n(m)级复杂反应。同时FT-IR分析表明AFG-90环氧树脂经酸酐固化剂MeTHPA或芳胺固化剂DDS固化后环氧环基本发生开环反应,并分别形成酯结构与叔胺结构,而TSP-POSS在固化过程中其骨架结构并没有被破坏。通过扫描电镜观察发现,除TSP-POSS含量为10wt%的AFG-90/DDS/TSP-POSS体系存在未反应TSP-POSS的富集区,TSP-POSS在其它改性体系中均能较均匀地分散,没有观测到未发生化学反应TSP-POSS的富集区。
     通过静态及动态力学研究方法、热失重方法,对两类改性体系的热、力学性能进行了研究,发现TSP-POSS的引入使环氧体系的拉伸强度、弯曲强度及断裂延伸率略有降低,而拉伸模量与弯曲模量有所提高;但大幅度提高了改性体系玻璃化转变温度T_g、热变形温度、热稳定性能及储能模量E,同时降低了体系的热膨胀系数与损耗因子tanδ峰强度。其中,AFG-90/MeTHPA/TSP-POSS/TEA体系及AFG-90/DDS/TSP-POSS体系的玻璃化转变温度T_g提高幅度分别达到23.80℃和22.78℃。
     此外,化学流变学研究表明:AFG-90环氧树脂经TSP-POSS改性后室温粘度显著增加,而TSP-POSS的引入只对AFG-90/MeTHPA体系的初始粘度有影响,对低温反应初始阶段的粘度变化影响并不明显。在反应的初始阶段,粘度不高于2000mPa·s时,AFG-90/MeTHPA/TSP-POSS体系的化学粘度变化符合双Arrhenius经验公式。根据此公式预报的AFG-90/MeTHPA/TSP-POSS体系RTM注射温度为20℃~30℃。
The emerging of polyhedral oligomeric silsesquioxane (POSS) organic-inorganic hybrid nanocomposites that combine the processibility and flexibility of typical organic thermoplastics with high service temperature and oxidation resistance of inorganic ceramics, has received great attentions recently. Generally, POSS cages which have the precise three-dimension size, can be incorporated into epoxy molecular network via copolymerization or grafting polymerization to improve the thermal properties and oxidation resistance of epoxy systems.
     In this paper, the triglycidyl p-aminophenol epoxy resin (AFG-90) was first modified by trisilanolphenyl polyhedral oligomeric silsesquioxanes (TSP-POSS) and then cured by two kinds of curing agents, 3-(or 4)- methyl-tetrahydrophthalic anhydride (MeTHPA) and 4,4'-diamino-diphenyl-sulfone (DDS), respectively. According to the thermal propertites of epoxy systems modified with TSP-POSS via differents technics, the proper modification technics is that TSP-POSS can be properly dispersed in AFG-90 resin by ultrasonic, the pre-reactive time of AFG-90 resin and TSP-POSS is 15 hours, and the loadings of catalyst triethylamine (TEA) of AFG-90/MeTHPA system is 0.3 wt%, while TEA is not compatible with the AFG-90/DDS system.
     The investigation of curing kinetics of modified epoxy systems indicates that the studied curing process can be described by the two-parameter expended Prout-Tompkins kinetic model with autocatalysis. The molecular structures of AFG-90/MeTHPA system and AFG-90/DDS system were characterized by Fourier transform infrared spectroscop. The results show that epoxy groups disappeared after cured by MeTHPA or DDS, ester and tertiary amine structures were formed, accordingly, while the structures of TSP-POSS cages were not destroyed. Phase separation was not observed in the epoxy systems modified by TSP-POSS by scanning electronic microscopy, except for the AFG-90/DDS system with TSP-POSS content of 10wt %.
     The thermal and mechanical properties of the epoxy systems modified by TSP-POSS were also measured. It shows that the glass transition temperature, thermal deformation temperature, the thermal dimensional stability, and bending storage module E of Epoxy/TSP-POSS increased with increasing content of TSP-POSS, while the thermal expansion coefficient and tanδpeak intensity decreased. The maximal enhancement of glass transition temperature of AFG-90/ MeTHPA system and AFG-90/DDS system were 23.80℃and 22.78℃, respectively. However, the flexural strength, tensile strength and breaking extension of Epoxy/TSP-POSS decreased with increasing content of TSP-POSS, while the flexural module and tensile module increased.
     Furthermore, the chemo-rheology investigation indicates that the viscosity of AFG-90 resin was greatly increased after modified with TSP-POSS, and the present of TSP-POSS in AFG-90/ MeTHPA had little influence on the initial viscosity, but no evidence was found that it had influence on the viscosity at the initial reaction stage. A rheological model based on dual-Arrhenius equation was established and used to simulate chemo-rheological behavior of the AFG-90/MeTHPA/TSP-POSS system. The viscosity estimated by the model was in good agreement with that of the experiment results at the initialization reaction stage. The rheological model shows that the optimum processing temperature of the resin system for RTM process is between 20℃and 30℃.
引文
[1]Krumweide GC.Affordable polymer composite structures for various spacecraft structural components[R].Composite Optics,1995,AIAA-95-3832
    [2]Allen MS,Adolph ES.Structral plastics in aircraft[R].Plastics Technical Evaluation Center,1995,19951102 005
    [3]Mouritz AP,Gellert E,Burchill P,et al.Review of advanced composite structures for naval ships and submarines[J].Composite Structures,2001,53:21-24
    [4]周其风,范星河,谢晓峰编.耐高温聚合物及其复合材料-合成、应用与进展[M].北京:化学工业出版社,2004
    [5]陈祥宝编著.先进复合材料低成本技术[M].北京:化学工业出版社,2004
    [6]孙曼灵编.环氧树脂应用原理与技术[M].北京:机械工业出版社,2002
    [7]郝元恺,肖加余编.高性能复合材料学[M].北京:化学工业出版社,2004
    [8]余英丰,刘小云,李善君.航空航天用耐高温胶粘剂研究[J].粘接,2005,26(5):4-7
    [9]梁伟荣,王惠民.热致液晶聚合物增韧环氧树脂的研究[J].玻璃钢/复合材料,1997,4:3-4
    [10]Jun Yeo Lee,Jyong Sik Jang.IR study of hydrogen bonding in novel liquid crystalline poxy/DGEBA blends[J].Polymer Bull,1997,38(4):439
    [11]Li HY,Zhang ZS,Ma XF,et al.Synthesis and characterization of epoxy resin modified with nano-SiO2 and γ-glycidoxypropyltrimethoxy silane[J].Surface & Coatings Technology,2007,201:5269-5272
    [12]Yoshimoto Abe,Takahiro Gunji.Oligo- and polysiloxanes[J].Prog.Polym.Sci.,2004,29:149-182
    [13]Scott DW.Thermal rearrangement of branched-chain methylpolysiloxanes[J].Am Chem Soc,1946,68:356-358
    [14]Muller R,Dathe C,Heinrich L.Silicones.XLⅦ.A siloxane from siliconchloroform[J].Physiolo,1959,9:71-74
    [15]Brown JF,Vogt LH.The polycondensation of cyclohexylsilanetriol[J].Am Chem Soc,1965,87:4313-4317
    [16]Feher FJ,Newman DA,Walzer JF.Silsesquioxanes as models for silica surfaces[J].Am Chem Soc,1989,111:1741-1748
    [17]Feher FJ,Newman DA.Enhanced silylation reactivity of a model for silica surfaces[J].Am Chem Soc,1989,112:1931-1936
    [18]Lichtenhan JD,Feher FJ,Gilman JW.Silsesquioxane-siloxane copolymers from polyhedral silsesquioxanes[J].Macromolecules,1993,26:2141-2142
    [19]Lichtenhan JD,Otonari Y,Carr MJ.Linear hybrid polymer building blocks:methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers [J].Macromolecules,1995,28:8435-8437
    [20]http://www.hybridplastics.com
    [21]Li HY,Yu DS,Zhang JY.A novel and facile method for direct synthesis of cross-linked polysiloxanes by anionic ring-opening copolymerization with Ph12-POSS/D4/Ph8D4[J].Polymer,2005,46:5317-5323
    [22]Feher FJ,Soulivong D.Controlled cleavage of fully condensed silsesquioxane frameworks:a revolutionary new method for manufacturing precursors materials[J].Am.Chem.Polym.Prep,1998,39(1):491-492
    [23]Fina A,Abbenhuis HCL,Tabuani D,et al.Metal functionalized POSS as fire retardants in polypropylene[J].Polymer Degradation and Stability,2006,91:2275-2281
    [24]Mikhail GV,Vladimir IL.Polyhedral oligosilsesquioxanes and their homo derivatives[J].Topics Curr.Chem,1982,102:199-236
    [25]Phillips SH,Haddad TS,Tomczak SJ.Developments in nanoscience:polyhedral oligomeric silsesquioxane(POSS)-polymers[J].Current Opinion in Solid State and Materials Science,2004,8:21-29
    [26]Lee YJ,Huang JM,Kuo SW,et al.Low-dielectric,nanoporous polyimide films prepared from PEO-POSS nanoparticles[J].Polymer,2005,46:10056-10065
    [27]Yang Y,Taylor P,Bassindale A,Chen H,Mackinnon I.A novel method for synthesis of silsesquioxane cages[C].The Abstract of ⅩⅢ International Symposium on Organosilicon Chemistry,Guanajato,Mexico,2002:17
    [28] Lichtenhan, Paladale, Gilman JW, et al. Process for polyhedral oligomeric silsesquioxanes an synthesis of plymers containing polyhedral oligomeric silsesquioxane group segments [P].US,5484 867,1996-1-16
    [29] Jeffrey Pyun, Wu J, Mather PT,et al. ABA triblock copolymers containing polyhedral oligomeric silsesquioxane pendant groups: synthesis and unique properties [J]. Polymer,2003,44:2739-2750
    [30] Xu HY, Kuo SW, Chang FC. Significant glass transition temperature increase based on polyhedral oligomeric silsequioxane (POSS) copolymer through hydrogen bonding [J].Polymer Bulletin,2002,4S:469-474
    [31] Fu BX, Gelfer MY, Hsiao BS, et al. Physical gelation in ethylene-propylene copolymer melts induced by polyhedral oligomeric silsesquioxane (POSS) molecules [J]. Polymer,2003,44:1499-1506
    [32] Jeon HG, Mather PT, Haddad TS. Shape memory and nanostructure in poly(norbornyl- POSS) copolymers [J]. Polymer International,2000,49:453-451
    [33] Zheng L, Farris RJ, Coughlin EB. Novel Polyolefin Nanocomposites: Synthesis and Characterizations of Metallocene-Catalyzed Polyolefin Polyhedral Oligomeric Silsesquioxane Copolymers [J]. Macromolecules,2001,34:8034-8039
    [34] Huang JC, Lim PC, Shen L, et al. Cubic silsesquioxane- polyimide nanocomposites with improved thermomechanical and dielectric properties [J]. Acta Materialia,2005,53:2395-2404
    [35] Huang JC, He CB,Xiao Y, et al. Polyimide/POSS nanocomposites: interfacial interaction, thermal properties and mechanical properties [J]. Polymer,2003,44:4491-4499
    [36] Zhang YD, Lee Sa, Yoonessi Mitra, et al. Phenolic resin- trisilanolphenyl polyhedral oligomeric silsesquioxane (POSS) hybrid nanocomposites: Structure and properties [J].Polymer,2006,47:2984-2996
    [37] Liu YH, Zheng SX, Nie KM. Epoxy nanocomposites with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane [J]. Polymer, 2005,46:12016-12025
    [38]Cho HS,Liang KW,Chatterjee S,et al.Synthesis,Morphology,and Viscoelastic Properties of Polyhedral Oligomeric Silsesquioxane Nanocomposites with Epoxy and Cyanate Ester Matrices[J].Journal of Inorganic and Organometallic Polymers and Materials,2006
    [39]Dodiuka H,Kenig S,Blinsky I,et al,Buchman A.Nanotailoring of epoxy adhesives by polyhedral oligomeric silsesquioxanes(POSS)[J].International dournal of Adhesion &Adhesives,2005,25:211-218
    [40]程志君.POSS改性环氧树脂的研究[D].长沙:国防科技大学硕士学位论文,2002
    [41]刘海林.带环氧基倍半硅氧烷的合成及其对环氧树脂的改性研究[D].西安:西北工业大学硕士学位论文,2005
    [42]张立培.官能化笼型倍光硅氧烷(POSS)的合成与表征及其环氧树脂复合材料性能研究[D].北京:北京化工大学硕士学位论文,2004
    [43]Ni Y,Zheng SX,Nie KG.Morphology and thermal properties of inorganic-organic hybrids involving epoxy resin and polyhedral oligomeric Silsesquioxanes[J].Polymer,2004,45:5557-5568
    [44]Zhao YQ,Schiraldi DA.Thermal and mechanical properties of polyhedral oligomeric silsesquioxane(POSS)/polycarbonate composites[J].Polymer,2005,46:11640-11647
    [45]Kopesky ET,McKinley GH,Cohen R E.Miscibility and viscoelastic properties of acrylic polyhedral oligomeric silsesquioxane-poly(methyl methacrylate) blends[J].Polymer,2005,46:4743-4752
    [46]Kopesky ET,McKinley GH,Cohen R E.Toughened poly(methyl methaerylate)nanocomposites by incorporating polyhedral oligomeric silsesquioxanes[J].Polymer,2006,47:299-309
    [47]Geng HP.Structure/property relationships of polymers containing hybrid nano-filler—polyhedral oligomeric silsesquioxanes(POSS)[D].Dissertation for the Doctoral Degree,Michigan:Michigan State University,2002
    [48]Fina A,Abbenhuis HCL,Tabuani D,et al.Metal functionalized POSS as fire retardants in polypropylene[J].Polymer Degradation and Stability,2006,91:2275-2281
    [49]Chigwada G;Jash P,Jiang DD,et al.Fire retardancy of vinyl ester nanocomposites:Synergy with phosphorus-based fire retardants[J].Polymer Degradation and Stability,2005,89:85-100
    [50]Zou QC,Yan QJ,Song GW,et al.Detection of DNA using cationic polyhedral oligomeric silsesquioxane nanoparticles as the probe by resonance light scattering technique[J].Biosensors and Bioelectronics,2006
    [51]Hao Fong,Sabine HD,Glenn MF.Evaluation of dental restorative composites containing polyhedral Oligomeric silsesquioxane methacrylate[J].Dental Materials,2005,21:520-529
    [52]http://www.sigrna-aldrich.com
    [53]王德中主编.环氧树脂的生产与应用[M].北京:化学工业出版社,2001
    [54]Lee SS,Kim SC.Morphology and properties of polydimethylsioxane-modified epoxy resin[J].Journal of Applied Polymer Science,1997,64:941-955
    [55]刘振海.热分析导论[M].北京:化学工业出版社,1991
    [56]陆振荣.热分析动力学的新进展[J].无机化学学报,1998,2(14),119-126
    [57]Jiri Malek.Kinetic analysis of crystallization processes in amorphous materials[J].Thermochimica Acta,2000,355:239-253
    [58]Jiri Malek.The kinetic analysis of non-isothermal data[J].Thermochimica Acta,1992,200(8):257-269
    [59]Park B D,Bernard Riedl,Ernest W H,et al.Differential scanning calorimetry of phenol-formaldehyde resins cure-accelerated by carbonates[J].Polymer,1999,40:1689-1699
    [60]Salvador Montserrat,Jiri Malek.A kinetic analysis of the curing reaction of an epoxy resin [J].Thermochimica Acta,1993,228(15):47-60
    [61]张堃,林少琨,林木良.热分析动力学多元非线性拟合法简介及其应用[J].现代科学与仪器,2002,5:15-18
    [62]Senum GI,Yang RT.Rational approximations of the integral of the Arrhenius function[J].Journal of Thermal Analysis,1977,11(3):445-447
    [63]迪安J.A.主编,魏俊发等译.兰氏化学手册[M].北京:科学出版社,2003
    [64]迪安J.A.主编,常文保等译校.分析化学手册[M].北京:科学出版社,2003
    [65]吴人洁主编.复合材料[M].天津:天津大学出版社,2000
    [66]拉德CD,朗AC,肯德尔KN,等著,王继辉,李新华译.复合材料液体模塑成型技术[M].北京:化学工业出版社,2004
    [67]Moacanin J,et al.Chemo-rheology of Thermosetting Polymers Acs Symposium Series 227[C].in Ed.May CA.American Chemical Society,Washington DC,1983
    [68]Ferry J D.Viscoelastic properties of polymer[M].3rd ed Now York:Wiley,1980
    [69]Mijoric J,Lee C H.A composite of chemo-rheological models for thermoset cure[J].J App l Polym Sci,1989,38:2155
    [70]Perry M J,et al.Resin transfer molding of epoxy/graphite composite[A].proc 24th SAMPE Tech conf[C],1992
    [71]陈淳,苏玉堂.热固性树脂的化学流变[J].玻璃钢/复合材料,2005,4:31-35
    [72]Kiunaa N,Lawrence CJ,Fontana QPV,et al.A model for resin viscosity during cure in the resin transfer moulding process[J].Composites:Part A,2002,33:1497-1503
    [73]李小刚,李宏远,胡宏军,等.RTM用双马来酰亚胺树脂流变特性研究[J].材料工程,2003,6:11-14
    [74]段跃新,张宗科,梁志勇,等.BMI树脂化学流变模型及RTM工艺窗口预报研究[J].复合材料学报,2001,18(3):30-33
    [75]郭战胜,杜善义,张博明,等.先进复合材料用环氧树脂的固化反应和化学流变[J].复合材料学报,2004,21(4):146-151
    [76]董萌,王汝敏,姚梅,等.RFI成型工艺中渗透率的研究及树脂流变模型的建立[J].粘接,2006,27(6):10-13
    [77]Roller M B.Characterization of the time-temperature-viscosity behavior of curing B-staged epoxy resin[J].Polymer Engineering and Science,1975,15:406-416
    [78]Roller M B.Rheology of curing thermosets:An overview[J].Polymer Engineering and Science,1986,26(6):432-440
    [79]朱永法主编.纳米材料的表征与测试技术[M].北京:化学工业出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700