用户名: 密码: 验证码:
5083铝合金的超塑性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轨道车辆的轻量化要求采用轻合金材料,但轻合金材料在冷态下成形塑性较差难以精密成形零件。目前解决轻合金精密成形最有效的方法之一就是采用超塑成形工艺技术。
     本文采用高温单向拉伸试验方法,考察不同温度及应变速率条件对5083防锈铝合金板料高温流变应力和延伸率的影响。试验结果表明,流变应力均表现为随温度的升高或应变速率的降低而减小,延伸率在高温时表现出随应变速率增大而减小的趋势,温度越高,延伸率对应变速率的降低趋势越显著。
     基于Arrhenius方程拟合流变应力、应变速率和温度等参数的本构方程,将应变因素引入Arrhenius方程,并对Zener-Hollomon参数添加应变速率补偿因子,得到了改进的Arrhenius方程,新方程拟合得到的数据与试验数据在一定的温度范围和流变应力的大部分区域有较好的吻合。
     空洞是引起合金超塑性变形失效的重要原因,影响成形件的机械性能。本文分别测试了在单拉和胀形情况下5083铝合金的空洞体积分数,采用施加背压的方法研究了静水压力对超塑成形空洞的抑制作用,发现静水压力对空洞有显著的抑制作用,能大量减少空洞的总密度。
     利用大型非线形有限元软件MSC.Marc对超塑成形过程进行模拟仿真,并与试验结果进行比对,达到较好的一致性。
Railbound vehicle’s lightweight requests to use the light alloy. However, The light alloy is generally difficulty to precisely form components due to its lower plasticity at room temperature. Superplastic forming is one of the best methods to precisely manufacture light alloy components.
     Through experiment of unidirectional tensile at high temperature, the flow stress and elongation of the 5083 anti-rust aluminum alloy sheet is studied with changing temperature and strain rate. The results show that the flow stress of the alloy reduced with increasing deform temperature and increased with increasing strain rate and the elongation reduced with increasing strain rate. The higher the temperature, the more significant of the decreasing tendency that the elongation corresponding to the reducing of strain rate.
     The Arrhenius equation incorporating the effects of stress, strain rate and temperature of the material is derived. A revised Arrhenius equation is derived by compensation of strain and strain rate. Comparisons between the experimental and predicted results were carried out and confirmed that the developed constitutive equations can accurate response the experimental result in a certain temperature range and the majority of regional flow stress.
     For most materials, cavitation often precedes failure and excessive cavitation can impose significant limitations on the industrial usage of superplastically formed components. The volume fraction of AA5083 is tested separately in unidirectional tensile and bulging. The effect of hydrostatic pressure on cavitation is studied through exerts back pressure. It is found that hydrostatic pressure has significant inhibition on cavitation and can reduce the cavitation density massively.
     To simulate superplastic forming of AA5083, a commercial non-linear FE code MSC.Marc has been used. Compared with experimental result, good uniformity is achieved.
引文
[1]刘岩.车体铝合金化与节约能源的关系[J].城市轨道交通研究,2000(4):64~65
    [2]牛得田.铝合金车体在轨道车辆上的应用及展望[J].机车车辆工艺,2006(3):1~2
    [3]户取征二郎(日).日本铝合金车辆的最新技术与发展趋势[J].国外铁道车辆,2003,39(2):7~11
    [4]刘岩,苗彦英.试论铝合金车辆的发展及其应用前景[J].铁道车辆,1994(7):33~36
    [5]李志轩.铝合金在机车车辆上的应用[J].电力机车技术,1999(3):17~18
    [6]吴诗惇.金属超塑性变形理论[M].国防工业出版社,1997
    [7]宋玉泉.超塑性拉伸变形的力学解析[J].机械工程学报,2003,39(10):64~72
    [8]崔建忠,马龙翔.超塑变形机制[J].金属科学与工艺,1991,10(1):68~75
    [9]许晓静,张荻,施忠良等.挤压铸造铝基复合材料的高应变速率超塑性[J].金属学报,1999,9(2):231
    [10]许晓静.微量液相与铝基复合材料的高应变速率超塑性[J].宇航材料工艺,1999(2):41
    [11] Kyung-Tae Park,Duck-Young Hwang,Young-Kook Lee,Young-Kuk Kim,Dong Hyuk Shin.High strain rate superplasticity of submicrometer grained 5083 Al alloy containing scandium fabricated by severe plastic deformation [J].Materials Science and Engineering:A,2003(341):273~281
    [12]黄明宇,工典钧,陆惠生.供应态LD10铝合金的超塑性试验研究[J].中国轻合金加工技术,1998(26):33~39
    [13]张艳姝,周义,金泉林.工业铝合金5182和6016的超塑性研究[J].材料热处理学报,2004,25(4):32~36
    [14]范钧,林飞.工业态AZ31镁合金超塑压缩试验研究[J].新技术新工艺,2007(1):54~56
    [15]许晓静,王伟.工业供应态LY12铝合金的超塑性[J].宇航材料工艺,2002(3):44~46
    [16]张明渊,郭鸿镇,袁士翀等.供应态LC9铝合金的超塑性试验研究[J].材料热处理,2006,35(22):30~33
    [17]蒋大鸣,敖英杰,郭永良,刘兴秋.5083铝合金的类超塑性行为[J].轻合金加工技术,2004,32(3):36~37
    [18]海锦涛,白秉哲.谈超塑与常规超塑性理论与应用的接轨[C].94’秋季中国材料研讨会会议论文集第Ⅳ卷,1994:6~10
    [19] Osada K.Commercial application of superplastic forming [J].Journal of Materials Processing Technology,1997(68):241~245.
    [20] B.J.Dunwood.The Production of Automotive Body Panels in 5083 SPF Aluminium Alloy [J].Superplasticity in Advanced Materials,ICSAM-2000:59~64
    [21]郝凤元.大型钛合金构件及其制造工艺在飞机上的应用[J].航空制造工程,1998(5):113
    [22] Maeng D Y,Lee J H,Hong S I,et al.Microstructure and mechanical properties of rapidly solidified Al-7wt%Mg-X(X=Cr, Zr, or Mn)alloys [J].Mater Sci Eng:A, 2001(311):128
    [23] R. Kaibyshev,F. Musin,D.R. Lesuer,T.G. Nieh.Superplastic behavior of an Al-Mg alloy at elevated temperatures [J].Materials Science and Engineering:A,2003(342):169~177
    [24]刘玉梅,高玉芹.稀土量不同的Al-Zn-Mg合金超塑性变形中的第二相状态[J].吉林大学自然科学学报, 1996,11(4):68
    [25]赵友昌,郭晓梅.含微量稀土元素的Al-Zn-Mg合金超塑性变形机制[J].材料科学进展,1992,6(2):93
    [26]李献民,崔建忠等.01420合金的超塑性行为[J].材料研究学报,2000,4(3):318抄铝合金超塑变形研究进展
    [27] Caizhi Zhou,Xinqi Yang,Guohong Luan.Fatigue properties of friction stir welds in Al 5083 alloy [J].Scripta Materialia,2005(53):1187~1191
    [28]林兆荣.金属超塑性成形原理及应用[M].北京:航空工业出版社,1990
    [29]甘卫平,王义仁,陈铁平等.6013铝合金热变形行为研究[J].材料导报,2006,20(5):111~113
    [30]戚运连,曾卫东,赵永庆.Ti600合金的高温本构方程[J].热加工工艺,2006,35(17):5~8
    [31]宋玉泉,连书君,张振军.载荷跃变法测量m值[J].机械工程学报,1989,25(3):39~43
    [32]杨振恒,龚义吉.应力松弛试验在超塑性研究中的应用[J].金属科学与工艺,1983,2(2):88~93
    [33] Enikeev F U,Mazurski M I.Determination of the strain rate sensitivity of a superplastic materials during load relaxation test [J].Scripta Metallurgical et Materials,1995,32(1):1~6
    [34]王仲仁,海锦涛,公方忠等.测定m值的变截面试样拉伸试验法[J].锻压技术,1985(2):21~26
    [35] ZhouM,ClodeM P.A constitutivemodel and its identification for the deformation characterized by dynamic revovery [J].Journal of Engineering M aterials and Technology,Trans-action of the ASME,1997(119):138~142
    [36] ZhouM,ClodeM P.Constitutive equations formodelling flow softening due to dynamic recovery and heat generation during plastic deformation [J].Mechanics of Materials,1998, (27): 63~76
    [37]周计明,齐乐华,陈国定.热成形中金属本构关系建模方法综述[J].机械科学与技术,2005,24(2):212~216
    [38] Beynon J H,Sellars C M.Modelling microstructure and its effects during multipass hot rolling [J].ISIJ International,1992,32(3):359~367
    [39] Cho S H,et al.The prediction of deformation resistance of Al6061 during hotdeformation [J].J. Kor. Inst. Met. Mater.,1998,36(4):502~508
    [40] Sellars C M,et al.Hot work ability [J],Int. Metallurg. Rev,1972(17):1~24
    [41]张昊,张辉,陈振华等.AM60镁合金的高温热压缩流变应力行为的研究[J].矿冶工程,2006,126(6):92~94
    [42]郑玉林,陈文敬,任文达等.5052铝合金热压缩变形流变应力[J].铝加工,2007(2):17~21
    [43]甘卫平,王义仁,陈铁平等.6013铝合金热变形行为研究.材料导报,2006,20(5):111~113
    [44]易幼平,杨积慧,蔺永诚.7050铝合金热压缩变形的流变应力本构方程[J].材料工程,2007(4):20~22
    [45] RaoK P,HawboltE B.Development of constitutive relationships using compression testing of a medium carbon steel [J].Transactions of the ASME Journal of Engineering Materials and Technology,1992(114): 116~123
    [46] Pu Z J,et al.Development of constitutive relationships for the hot deformation of boron microalloying TiAl-Cr-Valloys [J].Materials Science and Engineering:A,1995(192-193): 780~787
    [47] Ridley N,Livesey D W,Mukherjee A K.Effect of Cavitation on Post-deformation Tensile Properties of a Superplastic Copper-base Alloy [J].Metall Trans A,1984,15A(7):1443~1450
    [48]宋玉泉,李文.超塑性变形中的空洞[J].吉林工业大学学报,1990,7(1):8~16
    [49] Beere W,Speight M V.Creep Caviation by Vacancy Diffusion in Plastically Deforming Solid [J].Met Sci,1978,12(4):172~176
    [50] Chokshi A H.A Model for Diffusional Cavity Growth in Superplasticity [J].Acta Metall,1987,35(5):1089~1101
    [51] Hancock J W.Creep Cavitation without a Vacancy Flux [J].Met Sci,1976,10(9):319~325
    [52] Stowell M J.Cavity Grown in Superplastic Alloys [J].Met Sci,1980,16(10):465~674
    [53] J. Pilling,N. Ridley.Superplasticity in Crystalline Solids [J].Institute of Metals,London,1989.
    [54]肖纪美.材料的应用与发展[M].北京:宇航出版社,1988,155
    [55] Z.P.Chena,P.F.Thomson.A study of post-form static and fatigue properties of superplastic 7475-SPF and 5083-SPF aluminium alloys [J].Journal of Materials Processing Technology,2004,(148):204~219
    [56]Cocks ACF,Ashby M F.Intergranular Fracture during Power-Law Creep under Multiaxial Stress [J].Met Sci,1980,14(3):395
    [57] McMeeking RM.Finite Element Formulation for Problems of Large Elastic Plastic Deformation [J].J Solids Struct,1975,11(20):601~606
    [58] Lee EH,Kobayashi S.New Solution to Rigid-plastic Deformation Problems Using a Method [J].Trans ASME J Engr Ind,1973(95):865~869

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700