用户名: 密码: 验证码:
好氧厌氧氨氧化耦合颗粒污泥完全自营养脱氮机理与模拟优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
好氧氨氧化与厌氧氨氧化耦合颗粒污泥完全自营养脱氮与传统的硝化反硝化过程相比可以减少60%以上的O_2消耗并且不消耗COD,能大幅减少废水生物脱氮过程的能量消耗和CO_2排放量。论文通过EGSB连续运行试验、SBR反应器间歇实验和分子生物学测试,以及完全自营养脱氮动力学模型研究与模拟优化等方法,研究好氧厌氧氨氧化耦合颗粒污泥完全自营养脱氮机理,优化颗粒污泥生物反应器的运行条件,研究添加微量NO_2条件下限制DO曝气方法强化生物反应器完全自营养脱氮特性等,论文得到如下主要研究结果:
     ①在EGSB反应器中接种厌氧颗粒污泥,采用间歇进水、间歇出水方式运行210天,成功启动了厌氧氨氧化反应器。在总氮容积负荷为0.11 kg/(m3·d)下,氨氮去除效率达75%,亚硝酸盐氮去除效率达85%,污泥颜色由原来的黑色渐渐变为棕色,形成新的厌氧氨氧化污泥颗粒粒径较小。氨氮、亚硝酸盐氮去除量和硝酸盐氮生成量的比例为1:1.1:0.18。在对厌氧氨氧化过程电子流分析基础上,建立了厌氧氨氧化细胞产率系数与NH_4~+、NO_2-去除量和NO3-生成量之间的计量学关系,估算得厌氧氨氧化菌产率系数为0.080mol CH2O0.5N0.15/mol NH4+。
     ②通过SBR反应器间歇实验,研究了基质浓度、pH值和温度对厌氧氨氧化活性的影响。结果表明可用Andrews方程描述氨氮和亚硝酸盐氮浓度对厌氧氨氧化动力学特性的影响,动力学分析表明理论最大氨氧化速率369.94 mg/(gMLSS·d)、氨氮半饱和系数值30.39mg/L、亚硝酸盐氮半饱和系数值25.54mg/L、氨氨抑制常数为148.44mg/L、亚硝酸盐对厌氧氨氧化的抑制常数为90.64 mg/L。当氨浓度为67.12 mg/L、亚硝酸盐氮浓度为48.11mg/L,表观最大厌氧氨氧化速率达93.53mg/(gMLSS·d)。pH值是影响厌氧氨氧化活性的重要因素,pH过高或过低都不利于细菌生长和反应进行,本研究中厌氧氨氧化菌的最适pH为8.04。20℃~ 30℃条件下,厌氧氨氧化反应速率与温度的关系可用修正的Arrhenius方程描述。
     ③使用电解质呼吸仪测定间歇实验中好氧氨氧化过程的累积耗氧量和耗氧速率,通过Mann-Kendell趋势检验方法确定好氧氨氧化菌进入内源呼吸的时刻以及内源呼吸过程中耗氧速率,计算氨氮氧化的耗氧量。基于好氧氨氧化过程中合成代谢和能量代谢耦合,测得好氧氨氧化污泥产率系数为0.199mgCOD/ mg NH4+-N。
     ④在EGSB反应器中同时接种好氧氨氧化污泥和厌氧氨氧化污泥进行完全自营养脱氮颗粒污泥的培养,pH控制在7.6~8.0,DO控制在0.6~0.8 mg/L,上升流速为4.2m/h。反应器经过120多天的运行,NH4+-N去除效率达75%,总氮去除效率为52%,总氮去除速率达0.101 kg/(m3·d),颗粒污泥粒径主要分布在0.5~1.0mm。
     ⑤在SBR间歇实验中,DO一定的条件下完全自营养脱氮速率在一定范围内随NH_4~+-N浓度而提高,NH_4~+-N浓度为150mg/L时未发现对完全自营养脱氮活性的显著抑制。DO对完全自营养脱氮过程的影响主要体现在两个方面:过高的DO会抑制厌氧氨氧化活性,提高亚硝酸盐氧化速率,导致NO_2-和NO_3~-在反应器内积累,降低总氮去除效率;DO过低时,好氧氨氧化过程中NO_2-生成速率较低,限制了厌氧氨氧化速率的提高,总氮去除速率较低,但反应器内NO_2-和NO_3~-积累较少,总氮去除效率较高。
     ⑥提取污泥中细菌总DNA并纯化,以好氧氨氧化菌AmoA基因为进化指标设计特异性引物AMo-F/AMo-R,对好氧氨氧化菌AmoA基因部分序列进行PCR扩增,扩增片段克隆到pMD19-T载体并测序,测得序列的系统发育分析表明污泥中的好氧氨氧化菌主要是亚硝化单胞菌属,与Nitrosomonas europaea具有95%~98%的同源性。根据厌氧氨氧化菌的16SrDNA序列中的特异序列片断设计特异引物Anammox1/ Anammox2,对厌氧氨氧化菌16SrDNA进行PCR扩增。扩增产物连接到pMD19-T载体,将载体转化到感受态细胞大肠杆菌JM109中,并对其16SrDNA基因进行测序。测序结果进行系统发育树分析,表明富集得到的厌氧氨氧化菌与Candidatus Anammoxoglobus propionicus进化关系比较接近。
     ⑦基于边界层假设模拟颗粒污泥与主体液相间传质过程,并将其与颗粒污泥内传质过程以及好氧氨氧化菌、厌氧氨氧化菌、亚硝酸盐氧化菌生长过程、内源呼吸过程相耦合,建立颗粒污泥完全自营养脱氮动力学模型。通过SBR反应器内间歇实验对模型进行验证,模型模拟结果与实测结果有较好的一致性。对间歇反应过程中完全自营养脱氮过程模拟结果分析表明,在一定NH4+-N浓度下,通过合理控制DO,可使总氮去除效率和去除速率同时达到较好水平。
     ⑧基于颗粒污泥完全自营养脱氮动力学模型对EGSB反应器操作条件进行优化。结果表明较高的上升流速有利于提高EGSB的脱氮性能,当上升流速由1.1 m/h提高到4.9 m/h时,总氮去除速率提高约10.2%;合适的DO是提高总氮去除性能的关键,通过优化控制EGSB反应器内DO,总氮去除平均除率由52%提高到61%,平均去除速率由0.103 kg/(m~3·d)提高到0.114 kg/(m~3·d),与模型预测结果的误差均小于10%。
     ⑨采用SBR反应器间歇试验方法,研究微量NO_2氛围下颗粒污泥完全自营养脱氮动力学特性。无O_2时好氧氨氧化菌的NO_2型氨氧化可用Andrews方程描述,最大氨氮降解速率为10.46 mg/(g·h),NO_2半饱和系数和抑制数分别为2.09 mmol/m~3和10.62 mmol/m~3。存在O2时,NO/NO_2形成的NOx循环能强化好氧氨氧化过程,常规好氧氨氧化过程和NO_2强化好氧氨氧化过程同时发生,动力学特性分析表明,最大强化系数40.85,NO_2半饱和常数和抑制常数分别为1.32mmol/m~3和7.11 mmol/m~3。NO_2对厌氧氨氧化过程的强化采用基础速率系数修正的Andrews方程描述,最大强化系数43.5、NO_2半饱和常数和抑制常数分别为16.9 mmol/m~3、0.348 mmol/m~3,基础速率系数0.024。好氧氨氧化和厌氧氨氧化耦合有利于减小NOx对于NO_2型氨氧化过程的抑制。
     ⑩在对NO_2强化好氧、厌氧氨氧化动力学特性研究的基础上,建立NO_2强化完全自营养脱氮动力学模型,并对EGSB反应器内NO_2强化完全自营养脱氮过程进行模拟,根据模拟结果优化EGSB反应器操作运行模式,控制DO和NO_2分别为0.5~0.8mg/L和2.7~3.3 mmol/m3,总氮去除效率由26.86%~ 31.65%提高到58.83%~63.08%,总氮平均去除速率由0.113 kg/(m~3·d)提高到0.234kg/(m~3·d)。
Based on co-existing of aerobic and anaerobic ammonium oxidizing bacteria in granular sludge, completely autotrophic nitrogen removal process was achieved. Compared to traditional nitration-denitrification process, completely autotrophic nitrogen removal process technology could decrease O_2 consuming as much as 60% and hardly consumed COD, which could decrease the energy consuming and the release of CO2 in nitrogen removal process. Through EGSB (Expanded Granular Sludge Bed) reactor starting up, batch experiment in SBR, molecular biology ,and dynamic modeling optimization. The mechanism of coupling aerobic and anaerobic ammonium oxidizing process was investigated, and then operation mode was optimized. By adding trace NO_2, the enhancement of NO_2 on completely autotrophic nitrogen removal was studied and stimulated. The results were given as follows:
     ①The ANAMMOX bioreactor was successfully started-up with inoculating anaerobic granular sludge in an EGSB, by intermittent inflow and outflow operating mode for around 210 days. At the total nitrogen loading of 0.11 kg/(m~3·d), removal efficiency of NH_4~+-N and NO_2--N were 75% and 85% respectively. The sludge color changed from black to brown gradually, yet the ANAMMOX sludge granulation was not satisfied. The ratio of NH_4~+-N, NO-2-N removed and NO_3~--N produced was 1:1.1:0.18. Based on analyses of electron stream in ANAMMOX, the stoichiometrics formulae among cell yield, NH_4~+-N, NO-2-N removed and NO_3~--N produced were developed, the yield coefficients of ANAMMOX sludge was 0.080mol CH2O0.5N0.15/mol NH4+.
     ②The effecting of ammonium, nitrite, pH and temperatures on ANAMMOX were investigated by batch experiment in SBR. The results revealed that influence of ammonium and nitrite on anaerobic ammonium oxidation could be described by Andrews equation. Kinetic characteristics analyzing of anaerobic ammonium oxidation revealed that theoretical maximal rate of anaerobic ammonium oxidation was 369.94 mg(/gMLSS·d), half saturation constant for ammonium and nitrite were 30.39mg/L and 25.54mg/L respectively, and inhibition coefficient for ammonium and nitrite were 148.44mg/L and 90.64mg/L respectively. When the ammonium and nitrite concentration were 67.12 mg/L and 48.11 mg/L, the observed maximal rate of anaerobic ammonium oxidation was 93.53mg/(gMLSS·d). pH value, which is too high or too low, would inhibit bacteria activity, and the optimal pH value was 8.04 in ANAMMOX. The Influence of temperature to anaerobic ammonium oxidation could be described by revised Arrhenius equation between 20 and 30℃.
     ③Accumulated oxygen consuming and oxygen uptake rate (OUR) in aerobic ammonium oxidation process were measured by electrolytic respirometer in sequence experiment. With method of Mann-Kendell trend test, the time aerobic ammonium oxidizer got in endogenous respiration and the OUR in endogenous respiration were determined, and then the oxygen consuming in ammonium oxidizing was estimated. Based on the coupling of anabolism and energy metabolism in aerobic ammonium oxidation process, relationship between aerobic ammonium oxidizer growth and oxygen consuming in ammonium oxidizing process was established. Yield coefficients of aerobic ammonium oxidizer was determined, which was 0.199mgCOD/ mg NH4+-N.
     ④In a Expanded Granular Sludge Bed (EGSB)reactor, completely autotrophic nitrogen removal granular sludge was cultured inoculating simultaneously aerobic and anaerobic ammonium oxidation bacteria. The pH was controlled between 7.6 and 8.0, DO between 0.6 mg/L and 0.8 mg/L and the up-velocity 4.2m/h. At end, NH4+-N and TN average removal efficiency was 75% and 52% respectively, TN removal rate reached 0.101 kg/(m~3·d).
     ⑤Completely autotrophic nitrogen removal rate increased with the NH4+-N concentration in a certain range. In experiment, the NH4+-N concentration as high as 150mg/L would not inhibit nitrogen removal significantly. With much higher DO, TN removal efficiency decreased, which was caused by inhibition of anaerobic ammonium oxidation and increasing of nitrite oxidation rate. With much lower DO, TN removal rate was limited for lacking of NO_2-, and TN removal efficiency was higher because of less accumulation of NO_2- and NO3-.
     ⑥A pair of specific primers AMo-F/AMo-R based on AmoA (ammonia monooxygenase)gene of ammonium oxidation bacteria was designed to amplify and identify the ammonium oxidation bacteria from the completely autotrophic nitrogen removal granular sludge. After total community genomic DNA was harvested from the sludge, the gene AmoA was amplified by Polymerase Chain Reaction(PCR) method. Then the AmoA gene region was cloned into pMD19-T simple vector and sequenced.The results showed that the amplified DNA fragments were in high homology with AmoA of Nitrosomonas europaea. It indicated that the predominant population of ammonia oxidation bacteria in the sludge was Nitrosomonas.sp. ANAMMOX bacterium was identified by molecular biology. The partial 16SrDNA sequence of ANAMMOX bacterium was amplified by PCR with a pair of specific primers Anammox1/ Anammox2. The PCR product was cloned into the vector pMD19-T and was transfected into competent cells E.coil JM109, then 16SrDNA sequence was determined. Phylogenetic analysis indicated that the cultivated ANAMMOX bacterium closed to Candidatus Anammoxoglobus propionicus.
     ⑦Based on hypothesis of boundary layer, the transfer processes between granular sludge and bulk liquid was modified, which was coupled with substance transfer processes in granular sludge and aerobic ammonium oxidation, anaerobic ammonium oxidation, nitrite oxidation process, and completely autotrophic nitrogen removal model was found. The stimulation was in a good agreement with measuring results in batch experiment. In a certain NH4+-N concentration, TN removal rate and TN removal efficiency can simultaneously reach higher levels by controlling appropriate DO.
     ⑧The completely autotrophic nitrogen removal process was stimulated and optimized in EGSB reactor. The concentration of NH4+-N, NO_2--N, NO3--N along reactor in different up velocity revealed that appropriate up velocity had good effect on TN removal by mixture of sludge and water. When up velocity arose from 1.1 m/h to4.9 m/h, TN removal efficiency arose 10.2%. According to the stimulating of total nitrogen removal on different DO, the DO in EGSB was optimized ,TN removal rate and TN removal efficiency raised from 52%to 61% and 0.103 kg/(m~3·d) to 0.114 kg/(m~3·d).the error less than 10% comparing to simulation.
     ⑨The effect of trace NO_2 and kinetic characteristics for coupling of aerobic and anaerobic ammonium oxidation in granular sludge was investigated by batch experiment in SBR. Without O2, the NO_2 -dependent ammonia oxidation could be described by the Andrews model. The maximum ammonia oxidation rate was 10.46 mg/(g·h), the half saturate coefficient and inhibition coefficient of NO_2 were 2.09 mmol/m3 and 10.62mmol/m3 respectively. Under trace NO_2 atmosphere conditions, aerobic ammonium oxidation was enhanced by increasing the activity of O2 in NOx circulation. The maximum enhancing coefficient was 40.85, the half saturate coefficient and inhibition coefficient of NO_2 were 1.32 mmol/m3 and 7.11 mmol/m3 respectively. Anaerobic ammonium oxidation process could be enhanced by NO_2, which described by revised Andrews model. The maximum enhancing coefficient was 43.5, the half saturate coefficient and inhibition coefficient of NO_2 were 16.9 mmol/m3 and 0.348 mmol/m3 , the basic rate coefficient was 0.024. The toxic of NO_2 for aerobic ammonium oxidizer was decreased in coupling system of aerobic and anaerobic ammonium oxidation.
     ⑩.Based on kinetic analysis, completely autotrophic nitrogen removal model enhanced NO_2 by was found, and then completely autotrophic nitrogen removal process with NO_2 in EGSB was stimulated. According to stimulation, the operation was optimized, DO and NO_2 were controlled to 0.5~0.8mg/L and 2.7~3.3 mmol/m3 respectively, nitrogen removal efficiency increased from 26.86%~31.65% to 58.83%~63.08%, and removal rate increased from 0.113 kg/(m~3·d) to 0.234kg/(m~3·d).
引文
[1]张忠祥,钱易.城市可持续发展与水污染防治对策[M].北京:中国建筑工业出版社, 1994.
    [2]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社, 1998.
    [3]张代钧,许丹宇,任宏洋等.长江三峡水库水污染控制若干问题[J].长江流域资源与环境, 2005, 14(5): 605–610.
    [4]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社, 2002.
    [5]王海燕,刘海涛,田华菡等.全自养生物脱氮新工艺研究进展[J].环境污染治理技术与设备, 2006, 7(4): 1–5.
    [6]沈耀良,王宝贞.废水生物处理新技术—理论与应用[M].北京:中国环境科学出版社, 2000.
    [7] Bock E., Wagner M. Oxidation of Inorganic Nitrogen Compounds as an Energy Source[A]. The Prokaryotes: Ecophysiology and Biochemistry [C]. New York: Springer-Verlag, 2006, 457–495.
    [8]陈坚.环境生物技术[M].北京:中国轻工业出版社, 2000.
    [9] Hofman T., Lees H. The biochemistry of the nitrifying organisms the respiration and intermediary of Nitrosomonas[J]. J. Biol. chem., 1953, 54: 579–583.
    [10] Hollocher T. C., Tate M. E., Nicholas D.J.D. Oxidation of ammonia by Nitrosomonas europaea[J]. J. Biol. chem, 1981, 256(21): 10834–10836.
    [11] Shears J. H, Wood P. M. Spectroscopic evidences for a photosensitive oxygenated state of ammonai monooxygenase[J]. J. Biol. chem , 1985, 226: 499–507.
    [12] Hyman M. R, Arp D. J. 14C2H2- and 14CO2-labeling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase[J]. J. Biol. chem. ,1992, 267(3): 1524–1535.
    [13] Hooper A. B. Preliminary characterization with hydroxylamine as electron donor[J]. Biochim. Biophys. Acta., 1968, 162: 49–65.
    [14] Suzuki I., Kwork S. C., Dular U. Competitive inhibition of ammonia oxidation in Nitrosomonas europaea by methane, carbon monoxide or methanol[J]. FEBS Lett., 1976, 72(1): 117–120.
    [15] Anderson K.K., Hopper A. B. O2 and H2O are each the source of one O in NO2- produced from NH3 by Nitrosomonas: 15N-NMR evidence[J]. FEBS Lett., 1983, 164: 236–240.
    [16] Hooper A. B., Vannelli T., Bergmann D.J., et al. Enzymology of oxidation of ammonia tonitrite by bacteria[J]. Antonie van Leeuwenhoek, 1997, 71: 59–67.
    [17] Bock E. Growth of Nitrobacter in the presence of organic matter.Ⅱ.Chemoorganotrophic growth of Nitrobacter agilis[J]. Arch. Microbiol., 1976, 108: 305–312.
    [18] Aleem M, Hoch G. E. Water as the source of oxidizing and reducing power in bacterial chemosynthesis[J]. Pro Natl Acad Sci , USA, 1965, 54: 869–873.
    [19] Wiesmann U. Biological removal from wastewater[J]. Advances in biochemical engineering, 1994, 51: 113–154.
    [20] Carvallo L., Carrera J., Chamy R. Nitrifying activity monitoring and kinetic parameters determination in a biofilm airlift reactor by respirometry[J]. Biotechnol. Lett., 2002, 24: 2063–2066.
    [21] Ruiz G., Jeison D., Chamy R. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration[J]. Water Research, 2003, 37(6): 1371-1377.
    [22]姚重华.废水处理计量学导论[M].北京:化学工业出版社, 2002.
    [23] Anthonisen A. C., Loehr R. C., Parkasam T., et al. Inhibition of nitrification by ammonia and nitrous acid[J]. J Wat. Pollut. Control. Fed., 1976, 48(5): 835–852.
    [24] Wett B., Rauch W. The role of inorganic carbon limitation in biological nitrogen removal of extremely ammonia concentrated wastewater[J]. Water Research, 2003, 37(5): 1100–1110.
    [25]赵宗升,冯娟.高铵氮废水生物硝化过程抑制现象初探[J].环境科学学报,27(8):1238-1244.
    [26] Hunik J., Bos C., van den Hoogen M., et al. Co-Immobilized Nitrosomonas europaea and Nitrobacter agilis cells: validation of a dynamic model for simultaneous substrate conversion and growth in k-carrageenan gel beads[J]. Biotechnology and Bioengineering, 1994, 43: 1153–1163.
    [27] Jubany I., Baeza J.A., Carrera J., et al. Respirometric calibration and validation of a biological nitrite oxidation model including biomass growth and substrate inhibition [J]. Water Research, 2005, 39(18): 4574–4584.
    [28] Green M., Reskol Y., Shaviv A., et al. The effect of CO2 concentration on a nitrifying chalk reactor[J]. Water Research, 2002, 36(9): 2147–2151.
    [29] Denecke M., Liebig T. Effect of carbon dioxide on nitrification rates[J]. Bioprocess Biosyst. Eng., 2003, 25: 249–253.
    [30]邓嫔,李小明,杨麒等. pH控制生物膜移动床反应器完全亚硝化的研究[J].环境科学, 2007, 28(8): 1720–1725.
    [31] Villavede S., Fda-Polanco F., Garcio P.A. Influence of pH on nitrifying bacteria activity in submerged biofilters[J]. Water Research, 1997, 31(5): 1180–1186.
    [32] Schuch R., Gensike R., Merkel K, et al. Nitrogen and DOC removal from wastewater streams of metal-working industry[J]. Water Research, 2000, 34(1): 295–303.
    [33] Balmelle B., Nguyen K.M., Capderille B, et al. Study of factors controlling nitrite build-up in biological processes for water nitrification[J]. Water Science and Technology, 1992, 26(5-6): 1017–1025.
    [34] Hanaki K., Chalermraj W., Shinihiro O. Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor[J]. Water Research, 1990, 24(3): 297–302.
    [35] Ilenia I., Valentina I., Stefano M.L., et al. A modified activated sludge model No.3 (ASM3) with two-step nitrification-denitrification[J]. Environmental modeling and software, 2007, 22: 847–861.
    [36] Ho-Joon Y., Dong-jin K. Nitrite accumulation characteristics of high strength ammonia wastewater in an autotrophic nitrifying biofilm reacter[J]. J. Chem. Technol. Biotechnol, 2003, 18: 377–383.
    [37] Picioreanu C., van Loosdrecht M.C.M., Heijnen J.J. Modelling the effect of oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor[J]. Water Science and Technology , 1997, 36 (1): 147–156.
    [38] Guisasola A., Jubany I., Baeza J.A, et al. Respirometric estimation of the oxygen affinity constants for biological ammonium and nitrite oxidation[J]. J. Chem. Technol. Biotechnol., 2005, 80: 388–396.
    [39] Julian C., Irene J., Lorena C., et al. Kinetic models for nitrification inhibition by ammonium and nitrite in a suspended and an immobilized biomass systems[J]. Process Biochemistry, 2004, 39:1159–1165.
    [40] Gheewala S. H., Rupa R. K., Annachhatre A. P. Nitrification modeling in biofilms under inhibitory conditions[J]. Water Research, 2004, 38(14-15): 3179–3188.
    [41]雒怀庆,胡勇有.影响亚硝化过程和硝化过程因素的动力学模型分析[J].环境科学学报,26(4):561–566.
    [42] Artiga P, Gonzalez F., Corral A. M., et al. Multiple analysis reprogrammable titration analyzer for the kinetic characterization of nitrifying and autotrophic denitrifying biomass[J]. Biochemical Engineering Journal, 2005, 26: 176–183.
    [43] Mulder A., Van de Graaf A. A., Robertson L.A, et al. Anaerobic oxidation of ammonium discovered in a denitrification fluidized bed reactor[J]. FEMS Microbiol Ecology, 1995, 16: 177–183.
    [44] Van de Graaf A.A., De Bruijn P., Robertson L.A, et al. Metabolic pathway of anaerobicammonium oxidation on the basis of N-15 studies in a fluidized bed reactor[J]. Microbiology, 1997, 143(7): 2415–2421.
    [45] Jetten M. S. M, Logemann S., Muyzer G., et al. Novel principles in the microbial conversion of nitrogen compounds[J]. Antonie Leeuwenhoek, 1997, 71: 75–93.
    [46] Jetten M. S. M., Strous M., Van de Pas-Schoonen K.T., et al. The anaerobic oxidation of ammonium[J]. FEMS Microbiol, 1999, 22: 421–437.
    [47] Strous M., Heijnen J.J., Kuenen J.G., et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Appl. Microbiol. Biotechnol., 1998, 50(5): 589–596.
    [48]徐昕荣,贾晓珊,陈杰娥.一种未见报道过的厌氧氨氧化微生物的鉴定及其活性分析[J].环境科学学报, 2006, 26(6): 912–918.
    [49] Schmid M., Schmitz-Esser S., Jetten M. S. M., et al .16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection[J]. Environmental Microbiology, 2001, 3(7): 450–459.
    [50] Van Niftrik L. A, Fuerst J. A., Sinninghe Damste J. S., et al. The anammoxosome: an intracytoplasmix compartment in anammox bacteria[J]. FEMS Microbiology Letters, 2004, 233: 7-13.
    [51] Kuenen J.G., Jetten M.S.M. Extraordinary anaerobic ammonium Oxidizing bacteria[J]. ASM News, 2001, 67(9): 456–463.
    [52] Kartal B., Rattray J., van Niftrika L.A., et al. Candidatus‘‘Anammoxoglobus propionicus’’a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria[J]. Systematic and Applied Microbiology, 2007, 30(1): 39–49.
    [53] Schmid M., Walsh K., Webb R., et al. Candidatus Scalindua brodae., spec. nov., Candidatus Scalinduawagneri., spec. nov., two news pecies of anaerobic ammonium oxidizing bacteria[J]. Systematic and Applied Microbiology, 2003, 26(4): 529–538.
    [54] Jetten M. S. M, Wagner M., Fuerst J. et al. Microbiology and application of the anaerobic ammonium oxidation process[J]. Currnt Opinion in Biotechnology, 2001, 12(3): 83–288.
    [55] Strous. M., Van Gerven, E., Kuenen.J.G. et al. Effects of aerobic and microaerobic conditions an anaerobicammonium-oxidizing (Anammox) sludge[J]. Applied and Environmental Microbiology, 1997, 63(6): 2446–2448.
    [56] Strous M., Kuenen J.G., Jetten M.S.M. Key physiology of anaerobic ammonium oxidation[J]. Applied and Environmental Microbiology, 1999, 65(7): 3248–3250.
    [57]张树德,李捷,杨宏等.缺氧生物膜滤池的自养脱氮性能研究[J].中国给水排水, 2005, 21(10): 58–60 .
    [58]阮文权,邹华,陈坚.厌氧氨氧化混培菌的获得及其运行条件[J].重庆环境科学, 2002, 24(6): 30–33.
    [59]杨洋,左剑恶,沈平等.温度、pH值和有机物对厌氧氨氧化污泥活性的影响[J].环境科学, 2006, 27(4): 691–695.
    [60]郑平,冯孝善, Jetten M.S.M.等.厌氧氨氧化菌基质转化特性的研究[J].浙江农业大学学报,1997,23(4):409–413.
    [61]卢培利,张代钧,许丹宇.废水生物脱氮中N2O和NOx的来源及产生机理[J].重庆大学学, 2004, 27(9): 102–108.
    [62]郑平,胡宝兰.厌氧氨氧化菌混培物生长及代谢动力学研究[J].生物工程学报, 2001, 2(17): 193–198.
    [63] Sliekers A. O., Derwort N., Gomez J.L.C., et al. Completely autrophic nitrogen removal over nitrite in one single reactor[J]. Water Research, 2002, 36 (10): 2475–2482.
    [64] Sliekers A.O., Third K.A., Abma W., et al. CANON and Anammox in a gas lift reactor[J]. FEMS Microbiology Letters, 2003, 218(2): 339–344.
    [65] Dijkman H., Strous M. Process for ammonia removal from wastewater[J]. Patent 1999. PCT/NL99/00446.
    [66]廖德祥,李小明,曾光明.单级SBR生物膜中全程自养脱氮研究[J].中国环境科学,2005, 25(2): 222–225.
    [67]方芳,郭劲松,秦宇等.单级自养脱氮生物膜工艺的启动研究[J].中国给水排水, 2006, 22(1): 58–61.
    [68] Third K. A., Sliekers A. O, Jetten M.S.M. The CANON system (Completely autotrophic nitrogen removal over nitrite) under Ammonium Limitation: Interaction and Competition between Three Groups of Bacteria[J]. Systematic and Applied Microbiology, 2001, 24(4): 588–596.
    [69] Pynaert K., Barth F., Beheydt D., et al. Start-up of autotrophic nitrogen removal reactors via sequential biocatalyst addition [J]. Environ. Sci. Technol, 2004, 38(4): 1228–1235.
    [70]杨虹,李道棠,朱章玉.全程自养脱氮新技术处理污泥脱水液的研究[J].环境科学,2001, 22(5): 105–107.
    [71]孟了,陈永,陈石. CANON工艺处理垃圾渗滤液中的高浓度氨氮[J].给水排水, 2004, 30(8): 24–29.
    [72] Siegrist H., Reithaar S., Koch G., et al. Nitrification Loss in Nitrifying Rotating contactor Treating Ammonium-Rich Wastewater Without Organic Carbon[J]. Water Science and Technology , 1998, 38(8-9): 241–248.
    [73] Hippen A., Rosenwinkel K.H., Baumgarten G., et al. Aerobic deammonification:a newexperience in the treatment of wastewaters[J]. Water Science and Technology , 1996, 35(10): 111–120.
    [74] Schmid M., Twachtmann U., Klein M., et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation[J]. Appl. Microbiol., 2003, 23: 93–106.
    [75] Kurai L.P., Verstraete W. Ammonium removal by the oxygen-limited autotrophic nitrificaiton-denitrification system[J].Applied and Environmental microbiology, 1998, 64(11): 4500–4506.
    [76]董远湘,李小明,尹疆等.溶解氧对OLAND生物膜反应器硝化性能的影响及其微生物种群动态研究[J].环境污染与防治, 2005, 27(8): 561–564.
    [77] Van Dongen U., Jetten M.S.M., Van Loosdrecht M.C.M. The SHARON-Anammox process for treatment of ammonium rich wastewater[J]. Waster science and technology , 2001, 44(1): 153–160.
    [78]卢俊平,杜兵,孙艳玲等.亚硝化-厌氧氨氧化组合工艺脱氮研究[J].中国给水排水, 2004, 22(15): 40–43.
    [79]廖德祥,吴永明,李小明等.亚硝化-厌氧氨氧化联合工艺处理高含氮废水的研究[J].环境科学, 2006, 27(9): 1176–1780.
    [80] Wrage N., Velthof G.L., van Beusichem M.L., et al. Role of nitrifier denitrification in the production of nitrous oxide[J]. Soil Biology and biochemistry, 2001, 33(12-13): 1723–1732.
    [81] Garrido J.M., Campos J.L., Mendez R., et al. Nitrous oxide production by nitrifying biofilms in a biofilm airlift suspension reactor[J]. Water Science and Technology, 1997, 36(1): 157–163.
    [82] Van Bentum W.A.J., Garrido J., Mathijsse C., et al. Nitrogen removal in intermittent aerated biofilm airlift suspension reactor[J]. Journal of Environmental Engineering, 1998,12(4): 239–248.
    [83] Qing-Qiao Jiang, Bakken R. Nitrous oxide production and methane oxidation by different ammonia-oxidizing bacteria[J]. Applied and Environmental Microbiology, 1999, 65(6): 2679–2684.
    [84] Beline F., Martinez J., Guiraud C. Application of the 15N technique to determine the contributions of nitrification and denitrification to the flux of nitrous oxide from aerated pig slurry[J]. Water Research, 2001, 35(11): 2774–2778.
    [85] Bock E., Schmidt I, Stuven R.,et al. Nitrogen loss caused by denitrifying Nitrosomonas eutropha cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor[J]. Arch. Microbiology, 1995, 163: 16–20.
    [86] Bremner J.M., Blackmer A.M. Nitrous oxide: emission from soils during nitrification of fertilizer nitrogen[J]. Science, 1978, 199: 295–296.
    [87] Goreau T.J., Kaplan W.A., Wofsy S.C,et al. Production of NO2-and N2O by nitrifying bacteria at reduced concentration of oxygen[J]. Applied and Environmental Microbiology, 1980, 40(3): 526–532.
    [88] Poth M., Focht D. D.15N kinetic analysis of N2O production by Nitrosomonas europaea :an examination of nitrifier denitrification[J]. Applied and Environmental Microbiology, 1985, 49: 1134–1141.
    [89] Olavliekers A., Derwort N., Campos J.L, et al. Completely autotrophic removal over nitrite in one single reactor[J]. Water Research, 2002, 36(24): 75–2482.
    [90] Colliver B, Stephenson T. Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers[J]. Biotechnology Advances, 2000, 18(3): 219–232.
    [91] Schmidt I., Bock E., Jetten M.S.M. Ammonia oxidation by Nitriosomonas eutropha with NO2 as oxidant is not inhibited by acetylene[J]. Microbiology, 2001, 147: 2247–2253.
    [92] Ren T., Roy R., Knowles R. Production and consumption of nitric oxide by three methanotrophic bacteria [J]. Appl. Environ. Microbiol., 2000, 66(9): 3891-3897.
    [93] Kester R. A., de Boer W., Laanbroek H.J. Production of NO and N2O by pure culture of nitrifying and denitrifying bacteria during changes on aeration[J]. Appl. Environ. Microbiol.,1997,10:3872~3877
    [94] Schalk J., Oustad H., Kuenen J.G., et al. The anaerobic oxidation of hydrazine: a novel reaction in microbial nitrogen metabolism [J]. FEMS Microbiology Letters, 1998, 158: 61–67.
    [95] Schmidt I., Bock E. Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha[J]. Arch. Microbiol., 1997, 167(2): 106–111.
    [96] Schmidt I., Zart D., Bock E. Gaseous NO2 as a regulator for ammonia oxidation of Nitrosomonas eutropha[J]. Antonie van Leeuwenhoek, 2001, 79(3-4): 311–318.
    [97] Schmidt I., Zart D., Bock E. Effects of gaseous NO2 on cells of Nitrosomonas eutropha previously incapable of using ammonia as energy source[J]. Antonie van Leeuwenhoek, 2001,79(1): 39–47.
    [98] Zart D., Bock E. High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermentor with complete biomass rentention in the presence of gases NO2 or NO[J]. Arch. Microbiol., 1998, 169: 282–286.
    [99] Schmidt I., Hermelink C., Van de Pas-Schoonen K.T., et al. .Anaerobic ammonia oxidation in the presence of nitrogen oxides(NOx) by two different lithographs[J]. Applied andEnvironmental Microbiology, 2002, 68(11): 5351–5357.
    [100] Schmidt I., Sliekers O., Schmid M., et al. New concepts of microbial treatment processes for the nitrogen removal in wastewater[J]. FEMS Microbiology Reviews, 2003, 27(4): 481–492.
    [101]郝晓地.可持续污水-废物处理技术[M].北京:中国建筑工业出版社, 2006.
    [102] Daniel R., Noguera S. O., Picioreanu C. Biofilm modeling, present status and future directions[J]. Water Science and Technology ,1999, 39(7): 273-278.
    [103] Rittmann B. E., McCarty P. L. Substrate flux into biofilms of any thickness[J].Journal of Environmental Engineering, 1981, 107(4): 831-850.
    [104]张代钧,曹琳,严晨敏等.生物膜多基质模型及其对BAF处理合成废水的模拟[J].中国环境科学, 2005, 25(2): 231–235.
    [105] Rittmann B.E., McCarty P.L. Model of steady-state-biofilm kinetics[J]. Biotechnology and Bioengineering ,1980, 22(11): 2343–2357.
    [106] De Beer D., Stoodley P., Lewandowski Z. Liquid flow and mass transport in heterogeneous biofilms[J]. Water Research, 1996, 30(11): 2761–2765.
    [107] Morgenroth E., Wilderer P.A. Influence of detachment mechanisms on competition in biofilms[J]. Water Research, 2000, 34(2): 417–426.
    [108] Wanner O., Reichert P. Mathematical modeling of mixed-culture biofilms[J]. Biotechnology and Bioengineering, 1996, 49(2): 172–184.
    [109] Gujer W., Henze M., Mino T. , et al . Activated Sludge Model No.3[J]. Water Science and Technology , 1999 , 39(1) : 183–193
    [110] Koch G., Egli K., Van der Meer J.R.., et al. Mathematical modelling of autotrophic denitrification in a nitrifyingbiofilm of a rotating biological contactor[J]. Water Science and Technology ,2000, 41(4-5): 191–198.
    [111] De Beer D., Stoodley P., Roe F, et al. Effects of biofilm structures on oxygen distribution and mass transport [J]. Biotechnology and Bioengineering, 1994, 43(11): 1131–1138.
    [112] Costerton J. W., Lewandowski D. E, Caldwell D. R., et al. Microbial biofilms[J]. Annual Review of Microbiology, 1995, 49: 711–745.
    [113] Zhang T.C., Bishop P.L. Density, porosity and pore structure of biofilms[J]. Water Research, 1994, 28(11): 2267–2277.
    [114] Zhang T.C., Bishop P.L. Evaluation of tortuosity factors and effective diffusivities in biofilms[J]. Water Research, 1994, 28(11): 2279–2287.
    [115] Hermanowicz S.W., Schindler W., Wilderer U. Fractal structure of biofilms: new tools for investigation of morphology[J]. Water Science and Technology , 1995, 32(8): 99–105.
    [116] De Beer D., Stoodley P. Relation between the structure of an aerobic biofilm and transportphenomena[J]. Water Science and Technology, 1995, 32(8): 11–18.
    [117] Rittmann B.E., Pettis M., Reeves H.W., et al. How biofilm clusters affect substrate flux and ecological selection[J]. Water Science and Technology, 1999, 39(7): 99–105.
    [118] Wimpenny J.W.T, Colasanti R. A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models[J]. FEMS Microb Ecology, 1997, 22(1): 1–16.
    [119] Picioreanu C., Van Loosdrecht M.C.M, Heijnen J.J. Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach [J]. Biotechnology and Bioengineering, 1998, 58(1): 101–116.
    [120] Picioreanu C., Van Loosdrecht M.C.M, Heijnen J.J. Discrete-differential modelling of biofilm structure[J]. Water Science and Technology , 1999, 39(7): 115–122.
    [121] Picioreanu C., Van Loosdrecht M.C.M, Heijnen J.J. A new combined differential- discrete cellular-automaton approach for biofilm modeling: Application for growth in gel beads [J]. Biotechnology and Bioengineering, 1998, 57(6): 718–731.
    [122] Noguera D.R., Morgenroth E. Introduction to the IWA Task Group on Biofilm Modeling [J]. Water Science and Technology. 2004, 49 (11-12): 131–136.
    [123] Morgenroth E., Eberl H.J., Van Loosdrecht M.C.M, et al. Comparing biofilm models for a single species biofilm system[J]. Water Science and Technology, 2000, 49 (11-12): 145–154.
    [124] Eberl H.J., Van Loosdrecht M.C.M, Morgenroth E, etal. Modelling a spatially heterogeneous biofilm and the bulk fluid: selected results from Benchmark Problem 2 (BM2) [J]. Water Science and Technology. 2000, 49 (11-12): 155–162.
    [125] Rittmann B.E., Schwarz A.O., Eberl H.J., et al. Results from the multi-species Benchmark Problem (BM3) using one-dimensional models [J]. Water Science and Technology, 2000, 49 (11-12): 163–168.
    [126] Noguera D.R., Picioreanu C. Results from the multi-species Benchmark Problem 3 (BM3) using two-dimensional models [J]. Water Science and Technology, 2000, 49 (11-12) : 169–176.
    [127]杨平,潘永亮,何力.废水生物处理中生物膜的形成及动力学模型研究进展[J].环境科学研究,1999,13(5):50–53.
    [128]顾夏声.废水生物处理数学模式(第二版)[M].北京:清华大学出版社, 1993.
    [129] Reichert P. AQUASIM 2.0-Computer Program for the Identification and Simulation of Aquatic Systems [M] . Debenture ,Switzerland , EAWAG, 1998.
    [130]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].北京:中国建筑工业出版社,2000
    [131] Okabe S., Hirata K., Watanabe Y. Dynamic changes in spatial microbial distribution in mixed-population biofilms: experimental results and model simulation[J]. Water Science andTechnology , 1995, 32(8): 67–74.
    [132] Hao X. D., Heijinen J.J, Van Loosdrecht M.C.M, et al. Model-based evaluation of temperature and inflow variations on a partial nitrification-ANAMMOX biofilm process [J]. Water Research, 2002, (36): 4839–4849.
    [133]郝晓地,曹秀芹,曹亚莉等.厌氧氨氧化细菌在生物膜系统中起主要脱氮作用的模拟预测[J].环境科学学报, 2004, 24 (6): 1007–1013.
    [134] Hao X. D. , Heijnen J.J, Van Loosdrecht M.C.M. Model based evaluation of kinetic, biofilm and process parameters in a one reactor ammonium removal (CANON) process[J]. Biotechnology and Bioengineering, 2002, 77(3): 266–277.
    [135]李亮,魏桂芳,童耕雷等.用PCR指纹图技术分析焦化废水接触氧化池中悬浮污泥和生物膜的微生物种群组成[J].中国微生态学杂志, 2004, 16(1):8-9,12.
    [136] Amann R.I., Ludwig W., Schleifer K.H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiolgical Reviews, 1995, 59(1): 143–169.
    [137] Neef A., Amann R., Schlesner H., et al. Monitoring a widespread bacterial group:in situ detection of planctomycetes with 16S rRNA-targeted probes [J]. Microbiology, 1998, 144: 3257–3266.
    [138] Lee N., Nielsen P.H., Andreasen K.H., et al. Combination of fluorescent in situ hybridization and microautoradiography-a new tool for structure-function analyses in microbial ecology[J]. Applied and Environmental Microbiology, 1999, 65(3): 1289–1297.
    [139] Woese C.R., Fox G.E, Zablen L, et al. Conservation of primary structure in 16S ribosomal RNA[J]. Nature, 1975, 254: 83–86.
    [140]雷群英,蒋滢. PCR技术的种类及其应用[J].氨基酸和生物资源, 1998, 20(4) : 44–47.
    [141] Rossello-Mora R. A, Wagner M., Amann R., et al. Theabundance of Zoogloea ramigera in sewage treatment plants[J]. Applied and Environmental Microbiology, 1995, 61(2): 702–707.
    [142] Wagner M., Erhart R., Manz W., et al. Development of an-rRNA- targeted oligonucleotide probe specific for the genusAcinetobacterand its application for in situ monitoring in activated sludge[J]. Applied and Environmental Microbiology, 1994, 60(3): 792–800.
    [143] Kawbharasaki M., Kanagawa T., Tanaka H., et al. Development and application of 16S rRNA-targeted oligonucleotide probe for detection of the phosphate-accumulating bacteriummicrolunatus phosphovorusin an enhanced biological phosphorus removal process[J]. Water Science and Technology, 1998, 37(6): 481–484.
    [144] Schramm A., Beer D de,Wagner M., et al. Identificationand activities in situ of Nitrosospira and Nitrospira spp as dominant populations in a nitrifying fluidized bed reactor[J]. Appliedand Environmental Microbiology, 1998, 64 (9): 3480–3485.
    [145] Wagner M., Rath G., Amann R., et al. In situ identification of ammonia-oxidizing bacteria[J]. Systematic and applied microbiology, 1995, 18(2): 251–264.
    [146]左剑恶,杨洋,沈平等.荧光原位杂交(FISH)技术在厌氧颗粒污泥研究中的应用[J].中国沼气, 2004, 22(1): 3–6.
    [147]阮晓红,张瑛, Schmid M.C.等.淡水水体底泥中厌氧氨氧化菌的原位鉴别[J].环境科学, 2006, 27(7): 1420–1423.
    [148] Hermie J., Harmsen M., Harry M. P., et al. Detection and Localization of Syntrophic Propionate Oxidizing Bacteria in Granular Sludge by In Situ Hybridization Using 16S rRNA Based Oligonuleotide Probes[J]. Applied and Environmental Microbiology, 1996 , 62 : 1656–1663.
    [149]祖波,张代钧,白玉华等. EGSB反应器中耦合厌氧氨氧化与甲烷化反硝化的研究[J].环境科学研究, 2007, 21(2): 51–57.
    [150]任宏洋,张代钧,丛丽影等.厌氧氨氧化反应器启动及污泥产率系数研究[J].重庆大学学报, 2008, 31(1): 88–93.
    [151]张少辉,郑平.厌氧氨氧化反应器启动方法的研究[J].中国环境科学, 2004, 24(4): 496–500.
    [152]周少奇.氨氮厌氧氧化的微生物反应机理[J].华南理工大学学报(自然科学版), 2000, 28(11): 16–19.
    [153]胡勇有,梁辉强,雒怀庆.厌氧序批式反应器培养厌氧氨氧化污泥[J].华南理工大学学报(自然科学版), 2002, 33(10): 93–96.
    [154] Dapena-Mora A., Campos J. L., Mosquera-Corral A., et al. Stability of the ANAMMOX process in a gas-lift reactor and a SBR[J]. Journal of Biotechnology, 2004, 110(2): 159–170.
    [155] Imajo U, Tokutomi T., Furukawa K. Granulation of Anammox microorganisms in up-flow reactors[J]. Water Science and Technology, 2004, 49(5-6): 155–163.
    [156] Zheng P., Lin F. M., Hu B. L. Start-up of anaerobic ammonia oxidation bioreactor with nitrifying activated sludge[J]. Journal of Environmental Sciences, 2004, 16(1): 13–16.
    [157]杨洋,左剑恶,沈平等.接种不同普通污泥的厌氧氨氧化反应器的启动运行研究[J].环境科学, 2004, 25(增刊): 39–42.
    [158]陈永,李捷,张树德等.温度对ANAMMOX滤池的影响[J].重庆大学学报(自然科学版), 2007, 30(7): 92–95.
    [159] Toh S. K., Webb R. I., Ashbolt N.J. Enrichment of autotrophic anaerobic ammonium-oxidizing consortia from various wastewaters[J]. Microbiol. Ecology, 2002, 43(1):154–167.
    [160]朱静平,胡勇有.不同污泥源厌氧氨氧化污泥的比较[J].环境工程学报, 2007, 1(6):130-133.
    [161]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社, 2004.
    [162]陈永,张树德,张杰等.亚硝酸盐氮浓度对厌氧氨氧化反应的影响[J].中国给水排水, 2006, 22(17): 74–76.
    [163]林琳,堵国成,陈坚等.电子受体及中间产物对厌氧氨氧化的影响[J].应用与环境生物学报, 2003, 9(2): 200–202.
    [164]杜兵,刘寅,孙艳玲.氨氮与亚硝酸盐比对推流式ANAMMOX反应器影响研究[J].给水排水, 2006, 32(5): 27–31.
    [165] Rittmann B. E., Mccarty R. L(著),文湘华,王建龙(译).环境生物技术:原理与应用[M].北京:清华大学出版社, 2004.
    [166] Abeling U, Seyfried, CF. Anaerobic-aerobic treatment of high-strength ammonium wastewater nitrogen removal via nitrite[J]. Water Science and Technology, 1992, 26(5-6): 1007-1014.
    [167]卢培利,张代钧,曹海彬等.废水生物处理中的呼吸测量技术进展[J].重庆大学学报,2005, 28(10): 128–132.
    [168]周雪飞,顾国维,张冰.活性污泥数学模型中异养菌产率系数测定方法的研究[J].环境污染与防治, 2006, 28(7): 493–495.
    [169]于静洁,顾国维,张志峰.印染综合废水异养菌产率系数的测定[J].工业水处理, 2005, 25(10):47-49.
    [170]宋文清杨海真.活性污泥数学模型中异养菌产率系数的测定[J].环境污染与防治, 2004, 26(4):253-255.
    [171] Chandran K., Smets B.F. Estimating Biomass Yield Coefficients for Autotrophic Ammonia and Nitrite Oxidation from Batch Respirograms[J]. Water Research, 2001, 35 (13): 3153–3156.
    [172] Chandran K., Smets B.F. Optimizing experimental design to estimate ammonia and nitrite oxidation biokinetic parameters from batch respirograms[J]. Water Research, 2005, 39(20): 4969–4978.
    [173] Ye R.W., Thomas S.M.. Microbial nitrogen cycles: physiology,genomics and applications[J].Curr. Opin Microbiol ,2001,4:307–312.
    [174]董微,李大平.化能自养细菌Calvin循环相关基因的组织和调节研究进展[J].应用与环境生物学报, 2006, 12(4): 583–594.
    [175]祖波,张代钧,卢培利等.普通活性污泥富集好氧氨氧化菌试验[J].重庆大学学报, 2005, 28(2):100-103.
    [176]国际水协废水生物处理设计与运行数学模型课题组(著),张亚雷,李永梅(译).活性污泥数学模型[M].上海,同济大学出版社, 2000.
    [177]秦年秀,姜彤,许崇育.长江流域径流趋势变化及突变分析[J].长江流域资源与环境. 2005, 14(5): 589–594.
    [178]许继军,杨大文,雷志栋等.长江流域降水量和径流量长期变化趋势检验[J].人民长江, 2006, 37(9): 63–67.
    [179] Painter H. A. A review of literature on inorganic nitrogen metabolism in microorganisms[J]. Water Research, 1970, 4:393-405..
    [180]廖德祥,李小明,曾光明等.全程自养脱氮新工艺[J].中国给水排水,2004,20(4):31-33.
    [181] Fdz-Polanco F., Mendez E.,Uruena M.A., et al. Spatial distribution of heterotrophs and nitrifiers in a submerged biofilter for nitrification[J]. Water Research, 2005, 34(16): 4081–4089.
    [182]吴永明,李小明,曾光明等.亚硝化-厌氧氨氧化及其在固定化微生物中的实现[J].工业水处理, 2004, 24(12): 14–17.
    [183] Kato M., Field J.A ., Lettinga G. The anaerobic treatment of low strength wastewater in UASB and EGSB reactor[J]. Water Science and Technology, 1997, 36(6-7): 375–382.
    [184]任洪强,丁丽丽,陈坚等. EGSB反应器中颗粒污泥床工作状况及污泥性质研究[J].环境科学研究, 2001, 14(3) : 33–38.
    [185]左剑恶,王妍春,陈浩等. EGSB反应器的启动运行研究[J].给水排水, 2001, 27 (3) : 25–31.
    [186] Ei-Mamouni R., Leduc R., Guiot S. R. Influence of synthetic and natural polymers on the anaerobic granultion process[J]. Water Science and Technology, 1998, 38(8): 341–347.
    [187] Show K.Y., Wang Y., Foong S.F., et al. Accelerated start-up and enhanced granulation in UASB reactors[J]. Water Research, 2004, 38(9): 2293–2304.
    [188]王妍春,左剑恶,肖晶华.EGSB反应器内厌氧颗粒污泥性质的研究[J].中国沼气, 2002, 20(4): 3–7.
    [189] Helmer-Madhok, Schmid M., Filipov E., et al. 2002. Deammonification in biofilm systems: population structure and function [J]. Water Science and Technology, 46(1-2): 223–231.
    [190]杨虹,李道棠,朱章玉.全程自养脱氮特性因子的研究[J].环境科学研究, 2001, 14(6): 11–15
    [191]王春荣,王宝贞,王琳.曝气生物滤池内的自养反硝化作用[J].中国环境科学, 2004, 24(6): 746–749.
    [192]陈秀荣,冀滨弘,张杰.扩展流好氧滤池的复合脱氮特性[J].中国给水排水, 2005, 21(3): 17–21.
    [193]贾呈玉,李道棠,杨虹.全程自养脱氮工艺的研究[J].上海环境科学, 2003, 22(1): 32–34.
    [194]沈平,左剑恶,杨洋.接种不同污泥的厌氧氨氧化反应器的启动与运行[J].中国沼气2004, 22(3): 3–7.
    [195] Rotthauwe J.H., Deboer W., Liesack W. Comparative analysis of gen sequences encoding ammonia monooxygenase of Nitrosospirasp AHB1 and Nitrosolobus multiformisC-71[J]. FEMS Microbiology Letters, 1995, 133(1-2): 131–135.
    [196] Sayavedra-Soto L.A., Hommes N.G., Alzerreca J.J., et al. Transcription of thermal, amoAandamo Bgenes in Nitrosomonas europaeaan Nitrosospira.sp[J]. FEMS Microbiology Letters, 1998, 167: 81–88.
    [197] Purhold U.,Pommerening-Roser A.,Jureschke S. Phylogeny of all recognized species of ammonia oxidizers based on Comparative 16SrRNA and amoA sequence analysis :implications for molecular diversity surveys[J]. Applied and Environmental Microbiology, 2000, 66: 5368–5382.
    [198]李君文,周娟,王新为等.亚硝酸细菌amoA基因的克隆、测序与表达[J].应用与环境生物学报, 2004, 10(3): 345–348.
    [199] Rotthauwe J.H, Witzed K.P, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker : molecular fine–scale analysis of natural ammonia-oxidizing populations[J]. Applied and Environmental Microbiology, 1997, 63(12): 4704–4712.
    [200]林万明. PCR技术操作和应用指南[M].北京:人民军医出版社, 1993, 5–14.
    [201]任宏洋,张代钧,丛丽影等.一种未见报道的厌氧氨氧化菌分子生物学鉴定[J].环境工程学报, 2008, 2(3)314-318.
    [202]雒怀庆,胡勇有.厌氧氨氧化污泥中效应菌的分子生物学研究[J].微生物学报, 2005, 45(3): 335–338.
    [203]杨洋,左剑恶,全哲学等. UASB反应器中厌氧氨氧化污泥的种群分析[J].中国环境科学, 2006, 26(1) : 52–56.
    [204] Van der Star W.R., Abma W.R., Blommers D., et al .Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam[J]. Water Research, 2007 , 41(18): 4149–4163.
    [205] Innerebner G., Insam H., Whittle I. H., et al. Identification of anammox bacteria in a full-scale deammonification plant making use of anaerobic ammonia oxidation[J]. Systematic and Applied Microbiology, 2007, 30(5): 408–412.
    [206]福格勒(著),李术元,朱建华(译).化学反应工程[M].北京:化学工业出版社, 2005.
    [207] Chamchoi N., Nitisoravut S., Schmidt J.E. Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification[J]. Bioresource Technology, 2008, 99: 3331–3336.
    [208] Ni B.J., Yu H.Q., Sun Y.J. Modeling simultaneous autotrophic and heterotrophic growth in aerobic granules[J]. Water Research, 2008, 42(6-7): 1583-1594.
    [209] Susanne Lackner, Akihiko Terada, Barth F. Smets.Heterotrophic activity compromises autotrophic nitrogen removal in membrane-aerated biofilms: Results of a modeling study[J].Water Research, 2008, 42 (4-5):1102-1112.
    [210]朱静平,胡勇有,闫佳.有机碳源条件下厌氧氨氧化ASBR反应器中的主要反应[J].环境科学, 2006, 27(7): 1353-1357.
    [211]张代钧,任宏洋,祖波等. NO2对颗粒污泥甲烷化动力学特性影响的研究[J].环境工程学报, 2007, 1(12): 33-38.
    [212]张代钧,祖波,任宏洋等.氨氧化菌混培物在O2/微量NO2下氨氧化动力学[J].环境科学, 2008, 29(1): 127–133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700