用户名: 密码: 验证码:
流化床中油页岩破碎及磨损特性的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油页岩作为一种潜在的能源,其储量非常丰富。油页岩的能源开发利用已有近二百年的历史,由于油页岩含有很高的有机质成分,通常将其炼制成页岩油加以利用。在炼制过程中会产生大量细小油页岩颗粒,同时炼油后剩下大量半焦,如果不加以合理利用,将对环境造成污染。
     在自行设计搭建的小型流化床实验台对油页岩及其半焦的热破碎特性进行初步的研究,以霍林河褐煤进行对比实验,考查了颗粒的粒径、床温、燃烧时间、流化风速对油页岩及半焦破碎的影响。试验发现油页岩及其半焦的破碎程度随着粒径的增大,床温的升高,停留时间延长而加大,相同条件下半焦的破碎要比油页岩的破碎剧烈;油页岩不同干馏温度的破碎程度不同,随着干馏温度的增大破碎变得严重。霍林河褐煤的破碎程度最大。对影响油页岩及半焦破碎的影响因素作灰色关联分析,得到400℃,500℃的半焦和原油页岩影响程度排序相同:床温最大,粒径次之,燃烧时间最小;而600℃半焦略有不同:流化风速对破碎影响程度大于粒径。
     研究了页岩灰质量变化率、粒径变化率随时间、流化风速、温度的变化规律,采用二阶磨损模型求出了磨损速率常数,利用Arrhenius方程得到指前因子k0,磨损活化能E。并建立了质量与时间、流化风速、温度的关联式,预测值与实验值拟合效果好。
Oil shale is a kind of potential energy and its reserves is tremendous. The development and utilization of oil shale have a history of nearly 200 years. Because oil shale contains high organic contents, it usually can be used by refining shale oil. If unreasonable processing semi-coke and small particle oil shale of refines oil, the huge pollution to the environment will be caused.
     Thermal fragmentation characteristic of oil shale and semi-coke is preliminarily determined in a bench-scale CFB combustor. The test is compared by Huolinhe lignite. The influence of a variety of factors such as the particle diameter,the temperature,the combustion time and the fluidizing velocity on fragmentation index of oil shale and semi-coke are studied. The fragmentation index increases with increasing particle size, bed temperature,residence time and fluidizing velocity. The fragmentation indexes of semi-cokes are higher than oil shale’s under the same condition. Different restoring temperatures of oil shale have various degree of fragmentation that is increasing with higher restoring temperature. By contract,the fragmentation index of Houlinhe lignite is the highest in all samples. The extent of influence of operational parameters on fragmentation was studied by gray relational analysis method. It is indicated that oil shale、400℃and 500℃semi-coke had the same sequence of influence as follows: bed temperature had the greatest influence,the particle diameter took second place,the combustion time was least. But the 600℃semi-coke had slightly difference: The degree of influence of fluidizing velocity was higher than the particle diameter’s.
     The influence of various factors was investigated, such as the bed temperature, fluidizing velocity and fluidizing time on weight remaining and changing radio of particle diameter. The experimental attrition rate constants obtained from the second-order attrition model are used to fit a modified Arrhenius equation, with an activation energy for the shale ash of 1.072KJ/mol and the frequency of 5.5074×10-7m/s2·g. Correlation of bed material weighting including time, bed temperature and fluidizing velocity was obtained. The predicted points are in good agreement with the experimental data.
引文
[1]戴彦德.我国可持续发展中的能源问题.电力需求侧管理,2002,4(5):3~6
    [2]唐炼.世界能源供需现状与发展趋势.能源安全,2005,13(1):30~32
    [3]姚伟龙,邢涛.中国能源状况与发展对策分析.能源研究与信息,2006,22(4):187~188
    [4]郝士杰,任鹏辉.中国能源紧张的现状分析及对策.中国电力教育,2007,S2,109~110
    [5]高飞,秦炜.我国能源现状及政策解析.资源与发展,2006(1):31~35
    [6] J. R. Dyni.Geology and resources of some world oil shale deposits. Oil Shale,2003,20(3):193~252
    [7]关德师,牛嘉玉,郭丽娜等.中国非常规油气地质.北京:石油工业出版社,1995:228~287
    [8] C. F. Knut son.Developments in oil shale in1989.AAPG,1990(74):372~379
    [9]柳蓉,刘招君.国内外油页岩资源现状及综合开发潜力分析.吉林大学学报,2006,36(6):892~896
    [10]钱家麟,王剑秋,李术元.世界油页岩资源利用和发展趋势.吉林大学学报,2006,36(6):878~879
    [11]何永光,宋岩.油页岩的综合利用.煤炭加工与综合利用,2005(1):53~56
    [12]荆红卫,刘虹,张平等.页岩油工业固体废弃物农业利用试验研究.北京师范大学学报(自然科学版),2001,37(2):17~22
    [13] Wang Qing, Bai Jingru, Sun Baizhong, et al.Strategy of Huadian oil shale comprehensive utilization. Oil shale,2005,22(3):305~316
    [14]肇永辉.页岩油加工方案的研究.沈阳化工,2000,29(2):79~80
    [15] P.Dacombe,M.Pourkashanian,WilliamsA.Combustion-induced-fragmentation behavior of isolated coal particles. Fuel,1999,78(15):1847~1857
    [16] J.F.Stubington,T.M.Linjewile.The effects of fragmentation on devolatilization of large coal particles. Fuel,1989,68(2):155~160
    [17] R.chirone, L.Massimilla.Primary fragmentation in fluidized bed combustion of anthracites .power technology,1991,64(3):249~258
    [18] R.Chirone, L. Massimilla.Primary fragmentation of a coal in fluidized bed combustion, 22nd Symposium on combustion, the combustion Institute,1988,267~279
    [19] R.Chirone, Salatino.P, Massimilla.L.Secondary fragmentation of char particles during combustion in a fluidized bed. Combustion and Flame,1989,77(1):79~90
    [20] S.H. Lee, S.D. Kim, D.H. Lee.Particle size reduction of anthracite coals during devolatilization in a thermo balance reactor. Fuel,2002,81(14):1633~1639
    [21] J. M. Lee, J.S. Kim, Kim J.J.Comminution characteristics of Korean anthracite in a CFB reactor. Fuel,2003,82(11):1349~1357
    [22]马利强,路霽鸰,岳光溪.流化床条件下煤的一次爆裂特性的实验研究.燃料化学学报,2000,28(1):44~48
    [23]吴正舜,刘欣,吴创之等.煤在燃烧过程中的破碎.电站系统工程,2003,19(2):4~7
    [24]何宏舟,骆仲泱,方梦祥等.龙岩煤不同宏观煤岩组分的热破碎性质研究.燃料化学学报,2005,33(5):534~539
    [25]姚海,傅培舫,周怀春.煤颗粒热膨胀破碎特性的试验研究.热科学与技术,2006,5(3):262~267
    [26]吴正舜,张春林.煤在燃烧过程中破碎模型的建立.燃料化学学报,2003,31(1):17~21
    [27]俞云,徐明厚.燃烧过程中脱挥发分引起煤颗粒破碎的研究.华中科技大学学报,2005,33(8):8~11
    [28]李爱民,池涌,严建华等.大颗粒碳在流化床中燃烧的热应力破碎理论.煤炭学报,1998,23(2):208~211
    [29]黄建辉,徐明厚.煤燃烧过程中的热应力破碎的研究.华中科技大学学报,2004,32(5):78~80
    [30]黄建辉,徐明厚.煤燃烧过程中一次破碎的影响因素分析.工程热物理学报,2005,26(3):519~522
    [31] Fabrizio Scala,Piero Salatino ,et al.Attrition of sorbents during fluidized bed calcination and sulphation.powder technology,2000,107(1):153~167
    [32] Ernst-Ulrich Hartge ,Cornelis Klett.Dynamic simulation of the particle size distribution in a circulating fluidized bed combustor.Chemical Engineering Science,2007,62(1):281~293
    [33] J.M.Rodrígue, J.R.Sanchez, A.Alvaro, et al.Fluidization and elutriation of iron oxide particles.A study of attrition and agglomeration processes in fluidized beds.powder technology,2000,111(3):218~230
    [34]王辉,姜秀民,刘建国等.石英砂流化床床料的磨损实验与灰色关联分析.化工学报,2006,57(5):1133~1137
    [35]吕俊复,杨海瑞,张健胜等.流化床燃烧煤的成灰特性.燃烧科学与技术,2006,9(1):1~5
    [36]王进伟,赵新木,李少华等.循环流化床锅炉煤灰成分对其磨耗特性的影响.化工学报,2007,58(3):739~744
    [37] D.Dakic,G.Honing,M.Valk.Fragmentation and swelling of various coals during devolatilization in a fluidized bed.Fuel,1989,68(7):911~916
    [38] A.Bouhafid,J.P.Vantelon.The impact of thermal pre-treatment on oil shale attrition and fragmentation in fluidized bed combustion.Experimental Thermal and Fluid Science,2004,28(1):677~682
    [39] R.Chirone, L.Massimilla, P.Salatino.Comminution of carbons in fluidized bed combustion.Progress of Energy Combustion Science,1991,17(4):297~326
    [40] Marbán G., J.J.Pis, A.B.Fuertes.Characterizing fuels for atmospheric fluidized bed combustion.Combustion and Flame,1995,103(2):41~58
    [41] Zhang Hongtao, Cen Kefa,Yan Jianhua,et al.The fragmentation of coal particle during the coal combustion in a fluidized bed.Fuel,2002,81(14):1835~1840
    [42]张慧,李小彦.扫描电子显微镜在煤岩学上的应用.电子显微学报,2004,23(4):467~468
    [43] Cetine,Guptar,Moghtaderi.B.Effect of paralysis pressure and heating rate on radiate pine char structure an apparent gasification reactivity.Fuel,2005,84(15):1324~1334
    [44]杜辉.基于蚁群算法的灰色预报模型及其在舰船运动预报中的应用:[硕士论文].哈尔滨:哈尔滨工程大学,2007.12~13
    [45]刘思峰,党耀国,方志耕等.灰色系统理论及其应用.北京:科学出版社,2007:1~8
    [46]邓聚龙.灰理论基础.武汉:华中科技大学出版社,2003:2~4
    [47]马金凤,吴景兴,邹天舒等.中储式制粉系统锅炉掺烧褐煤技术的研究.动力工程,2008,28(1):14~18
    [48]李小东.层次-灰色关联分析法及其在污水处理方案有选中的应用:[硕士论文].太原:太原理工大学,2006.32~34
    [49]杨海瑞,肖显斌,Wirsum M等.循环流化床锅炉内的灰平衡模型研究.煤炭转化,2002,25(3):59~63
    [50]吕俊复,杨海瑞,张建胜等.一种研究飞灰粒径分布和磨耗的简单方法.燃烧科学与技术,2006,9(5):387~390
    [51]杨海瑞,岳光溪,王宇等.循环流化床锅炉物料平衡分析.热能与动力工程,2005,20(3):291~295
    [52] Lin CL,Wey MY.Influence of hydrodynamic parameters on particle attrition during fluidization at high temperature.The Korean Journal of Chemical Engineering,2005,22(1):154~160

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700