用户名: 密码: 验证码:
带填充墙钢交错桁架结构的抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢交错桁架结构体系的构件截面较小,填充墙对结构抗震性能的影响较大,有关的研究文献还未见发表。本文通过理论研究和数值分析探讨了填充墙对钢交错桁架结构抗震性能的影响,建立了用等效斜压杆代替填充墙的简化分析模型,给出了周期折减系数。研究了带填充墙钢交错桁架的抗震性能和屈服机制,指出了结构的薄弱杆件和薄弱层,提出了改善结构纵向屈服机制的抗震措施和有关填充墙及RC楼板的抗震构造设计建议,为我国正在编制完善的钢交错桁架结构体系设计规范提供技术参考。主要研究内容如下:
     (1)基于带填充墙钢框架结构的实验研究,验证了仿真分析方法的可靠性。根据在水平外力作用下填充墙的应力分布规律,借鉴有关研究文献,建立了将填充墙简化为RC等效斜压杆的简化分析模型。考虑材料非线性、几何非线性和接触非线性,模拟填充墙与主体结构之间的钢筋连接及面面接触关系,对带填充墙钢交错桁架结构进行了数值模拟分析,验证了采用等效斜压杆模型进行结构非线性分析的可行性。
     (2)提出了计取填充墙的刚度影响,带填充墙钢交错桁架结构周期折减系数的取值范围。通过对多个结构模型进行模态分析,研究了填充墙对钢交错桁架结构的自振周期及振型的影响。检验了等效斜压杆模型用于带填充墙钢交错桁架结构,进行模态分析的适用性。
     (3)研究了带填充墙钢交错桁架结构在多遇地震作用下的抗震性能,提出了对结构底层进行抗震加强设计的建议。建立了多个带填充墙钢交错桁架结构的有限元模型,通过对钢交错桁架结构进行振型分解反应谱法和动力时程分析,比较了将填充墙用有限单元法分析、用等效斜压杆模型和不计填充墙的刚度进行分析的结构楼层顶点位移、层间位移角及基底剪力等分析结果,对钢交错桁架结构受填充墙影响的抗震性能进行了评价。
     (4)研究了带填充墙钢交错桁架结构体系的抗震能力及屈服机制,提出了改善结构纵向屈服机制的措施。通过对结构进行能力谱分析,研究了与性能点相对应的结构顶点位移同抗震目标位移的关系,对结构横向及纵向的抗震能力进行了评估。通过对结构杆件的相对刚度设计是否合理、结构的整体安全性及结构整体塑性变形能力的研究,根据带填充墙钢交错桁架结构的塑性铰出铰顺序、铰的状态、塑性铰的分布规律及屈服机制,指出结构的薄弱构件及薄弱层。提出了在结构的纵向布置柱间支撑、增加底层钢柱的刚度及强度,有效改善结构屈服机制的建议。
     (5)分析了填充墙对结构抗震性能的有利作用,结合工程设计及施工实践中的通常做法和结构使用过程中存在的墙体出平面稳定及装修维护等问题,对于带填充墙钢交错桁架结构提出了填充墙与主体结构连接的抗震构造设计要求。针对RC楼板是钢交错桁架结构纵向连接的重要构件,分析了填充墙对RC楼板在结构受力过程中的影响,提出了在结构设计中加强RC楼板局部配筋的抗震设计要求。
The member size of steel staggered truss structure system is smaller comparatively, the structure anti-seismic performance is influenced by infilled walls apparently, papers about the influence have not been published until now. In this paper, the theoretical investigation and numerical analysis of the influence are carried out for the anti-seismic performance of steel staggered truss structure with infilled walls. The model is built to do the analysis by the equivalent synclinal compressive pole instead of the infilled walls, the period reduction factors are recommended. Study on the yield mechanism and the anti-seismic performance of steel staggered truss structures with infilled walls, the weak components and weak storeys are pointed out. The method is recommended to improve the yield mechanism of the longitudinal structure, some design advices about the anti-seismic construction measurement of infilled walls and RC slabs are suggested. What has been studied is to provide technical references for the design specifications of steel staggered truss structure system that is being compiled and updated in china.The main contents in this paper are as follows:
     (1) Based on the experiment of steel frame structure with infilled walls, the process of numerical simulation analysis is tested and verified. The simplified analysis model of equivalent synclinal compressive pole instead of the infilled walls is built according to the stress arrangment regulation in the infilled walls and referring to the research works of infilled walls. The numerical simulation analysis is carried out for steel staggered truss structures with infilled walls considering the material nonlinearity、 geometric nonlinearity and contact nonlinearity simulating the relationships of steel bar links and face to face contact for the infilled walls with the main steel structure. It is verified to be workable to do the structure nonlinear analysis adopting the equivalent synclinal compressive pole model.
     (2) The range of the period reduction factors is suggested for the steel staggered truss structures with infilled walls considering the stiffness of infilled walls. Study on the influence of the infilled walls for the steel staggered truss structure about natural period and modal of vibration based on many analysis models. The simplified analysis model of equivalent synclinal compressive pole is verified to be accurate for structure natural period analysis.
     (3) The anti-seismic performance of steel staggered truss structure is studied under the frequent earthquakes. The proposal is suggested to enhance the anti-seismic design for the first storey structure. Many models of steel staggered truss structures with infilled walls are built and the response spectrum analysis and dynamic time history analysis are carried out. The results of the storey drift、the displacement of top point and the base shear forces are studied comparatively with three conditions including of ignoring the infilled walls stiffness、using the finite element method for infilled walls and adopting the equivalent synclinal compressive pole model. The anti-seismic performance of steel staggered truss structures is evaluated considering the infilled walls.
     (4) Study on the seismic resistant capability and the yield mechanism of steel staggered truss structure system with infilled walls, the method is proposed to improve the yield mechanism of the longitudinal structure. The seismic resistant capability of structure for transverse direction and longitudinal direction are evaluated by working with the capacity graphs and the structure top point displacement relevant to the performance point comparing with the anti-seismic target displacement. Study on the structure relative stiffness design rationality、the structure overall safety and the structure overall plastic deformation capacity, based on the plastic-hinge sequence of appearance、the plastic-hinge capacity、the plastic-hinge distribution regularities and the yield mechanism of steel staggered truss structure with infilled walls, the structure weak components and weak storeys are pointed out. To improve the structure yield mechanism effectively, the method of adopting column bracing for the longitudinal structure and increasing the first storey steel columns stiffness and strength is suggested.
     (5) The suggestion of anti-seismic design connections between the infilled walls and the main structure coulmns is proposed for steel staggered truss structure with infilled walls, based on the contribution of infilled walls for structure anti-seismic performance, considering the general connections during the project design and construction process、the out of plane stability problem of infilled walls and the decoration maintenance problem during the process of service. Due to the infilled walls are the important components for the longitudinal links of steel staggered truss structure, the anti-seismic enhanced reinforcement is suggested to be adopted for RC slabs at some regions in the structure design process. The analysis of RC slab is done considering the influence of infilled walls under the effect of external forces.
引文
[1]Hannos R J, Lemessurjer W J, Pahl P J. New steel framing system promises major savings in high-rise apartments[J]. Architectural Reccord,1966,139(6):191-196.
    [2]Cohen M P, Design solution utilizing the staggered steel truss system. Engineering Joural, AISC,1986,23(3):97-106.
    [3]Scalzi J B. The Staggered Truss System-structural Consideration[J]. Engineering Journal AISC, 1971,8(10):25-30.
    [4]Bakke H P, Kloiber L A, Nuhn A C. Staggered Truss Building Systems[J]. Civil Engineering ASCE,1969,39 (8):56-59.
    [5]Hassler A E. Erecting the Staggered Truss System:a View From the Field[J]. Engineering Journal AISC,1986,123(4):166-172.
    [6]Socrates A I, Stanley D L, Staggered Truss Adapted to High Rise[J]. Civil Engineering ASCE, 1985,80 (9):44-47.
    [7]冉红东,苏明周,李虎,等.循环荷载作用下空腹式交错桁架钢结构抗震性能试验研究[J].建筑结构学报,2008,29(6):91-98.
    [8]冉红东,苏明周,马云美,等.混合式交错桁架体系在循环荷载下的非线性分析[J].建筑结构,2007,37(10):50-52.
    [9]冉红东,苏明周,胡天兵,等.循环荷载作用下混合式钢交错桁架结构的滞回性能实验研究[J].土木工程学报,2009,24(11):55-62.
    [10]郑廷银,马梦寒.钢结构住宅体系初探[J].南京工业大学学报,2003,25(2):98-103.
    [11]Kim J H, Lee Y M. Inelastic Behavior of Staggered Truss Systems[J]. Structural Design of Tall and Special Buildings,2007,16(7):85-105.
    [12]Gupta R P, Goel S C. Dynamic Analysis of Staggered Truss Framing System[J]. Journal of Structural Division,1972,98(7):1475-1492.
    [13]Wexler N, Lin F B. Steel Design Guide Series 14:Staggered Truss Framing Systems[M]. USA: American Institute of Steel Construction,2002.
    [14]Leffler. R. E. Calculation of Wind Drift in Staggered-truss Buildings[J]. Engineering Journal AISC,1983,3(1):1-28.
    [15]Harson R. D. A Seismic Design of Staggered Truss Buildings[J]. Journal of Structural Engineering,1974,100(1):175-193.
    [16]Milan J, Aura R. Integrated Transport Systems in the European Union:An Overview of Some Recent Developments[J]. Transport Reviews,2001,21(4):469-497.
    [17]卢林枫,顾强,苏明周.错列桁架体系柱子平面内计算长度[J].建筑结构,2006,36(8):31-34.
    [18]李启才,何若全,顾强,等.交错桁架体系中桁架与柱的链接节点设计方法研究[J].建筑钢结构进展,2008,10(4):39-42.
    [19]朱道洪,李启才.交错桁架体系连接方式对结构性能的影响[J].苏州科技学院学报,2009,22(2):13-16.
    [20]赵宝成,顾强,申林,等.钢管混凝土柱交错桁架结构有限元分析与试验研究[J].建筑结 构,2009,39(2):45-47.
    [21]王祖华,吴勇明.钢筋混凝土错列桁架体系的结构分析[J].华南理工大学学报,1993,24(3):1-9.
    [22]莫涛,周绪红,刘永健,等.交错桁架结构体系的受力性能分析[J].建筑结构学报,2000,21(6):49-54.
    [23]潘英,周绪红.交错桁架体系的抗震性能动力分析[J].土木工程学报,2002,35(4):12-16.
    [24]莫涛,周绪红.交错桁架结构体系的极限承载力及其影响因素分析[J].建筑结构学报,2005,26(4):81-85.
    [25]周绪红,刘永健,莫涛.轻钢交错桁架结构体系与钢框架的对比分析[J].钢结构,2001,16(2):5-7.
    [26]周绪红,莫涛.交错桁架结构体系的空间二阶弹塑性全过程分析[J].土木工程学报,2005,38(5):10-14.
    [27]卢林枫,周绪红,刘永健,等.交错桁架结构的设计[J].西安建筑科技大学学报,2007,39(3):308-313.
    [28]周绪红,周期石,黄湘湘.竖向荷载作用下交错桁架结构的内力计算[J]:工程力学,2004,21(3):25-30.
    [29]周绪红,周期石.水平荷载作用下交错桁架结构的内力和侧移计算[J].建筑结构学报,2004,25(4):66-71.
    [30]许红胜,周绪红,蒋建国.交错桁架结构体系的若干构造设计问题[J].建筑结构,2006,36(8):35-36.
    [31]卢林枫,顾强,苏明周,等.钢结构错列桁架体系扭转效应评定[J].建筑结构,2007,37(2):82-84.
    [32]尹越,李顺,陈志华.交错桁架多层钢结构多模态推倒分析方法研究[J].土木工程学报,2010,43(5):51-55.
    [33]尹越,李顺,白林佳.交错桁架多层钢结构推倒分析方法研究[J].地震工程与工程振动,2008,28(3):52-57.
    [34]李晓娟,顾强.连续模态Pushover分析法在钢交错桁架结构中的应用与改进[J].世界科技研究与发展,2009,31(6):1134-1135.
    [35]燕兰,武建东.交错桁架结构体系的静力非线性分析[J].低温建筑技术,2010,141(3):52-53.
    [36]张勇,张崇厚.多层与高层错列桁架钢结构体系抗侧力性能对比[J].清华大学学报,2007,47(12):2100-2104.
    [37]殷凌云,王志浩.错列桁架结构体系的抗侧力特性和简化计算[J].建筑结构,2002,32(2):34-35.
    [38]周期石,周绪红,刘永健.交错桁架结构动力特性的简化分析方法[J].建筑科学与工程学报,2006,23(4):28-33.
    [39]李晓娟,顾强.钢交错桁架结构动力计算模型的研究[J].科学技术与工程,2010,10(3):815-817.
    [40]聂维中,卢林枫.钢结构交错桁架多层公寓的设计[J].山西建筑,2007,33(21):1-2.
    [41]周秀月,苏明周,胡天兵,等.钢结构混合式交错桁架体系的横向合理结构布置探讨[J].西安建筑科技大学学报,2006,38(3):416-418.
    [42]张崇厚,张勇,刘彦生.高烈度地震区的错列双桁架钢结构住宅体系[J].清华大学学报, 2008,48(6):926-930.
    [43]许红胜,周绪红,刘永健.钢结构交错桁架体系在强震作用下的破坏模式[J].建筑科学与工程学报,2007,24(2):63-67.
    [44]周绪红,莫涛,刘永健,等.高层钢结构交错桁架结构的试验研究[J].建筑结构学报,2006,27(5):86-92.
    [45]付涛,刘永健.交错钢桁架体系的腹杆布置及其截面形式研究[J].四川建筑科学研究,2006,32(6):34-36.
    [46]瞿芹,郑晓燕,范亚坤.钢木混合结构错列桁架体系受力性能[J].沈阳建筑大学学报,2010,26(5):892-898.
    [47]刘开国.交错钢桁架结构的整体稳定与动力特性分析[J].建筑结构,2004,34(5):28-29.
    [48]何鹏辉,温换玲,高晓莉.Pushover分析的基本原理和设计方法[J].低温建筑技术,2009,135(9):62-64.
    [49]潘毅,杨成,赵世春,等.基于Pushover方法的既有建筑结构安全性能鉴定[J].西南交通大学学报,2010,45(2):174-178.
    [50]张凯,刘洪兵,王巍峰,等.竖向不规则结构的抗震性能评估[J].振动与冲击,2009,28(7):175-178.
    [51]刁现伟,董冰.平面不对称结构的Pushover分析及抗震性能评估[J]:华东交通大学学报,2005,22(5):9-11.
    [52]刘晶波,郭冰,刘阳冰.组合梁-方钢管混凝土柱框架结构抗震性能的Pushover分析[J].地震工程与工程振动,2008,28(5):87-93.
    [53]楚留声,白国良.型钢混凝土框架Pushover分析[J]:地震工程与工程振动,2009,29(2):51-56.
    [54]刘金龙.能力谱方法在模态Pushover分析中的应用[J].沈阳建筑大学学报,2009,25(1):90-94.
    [55]肖明葵,马占杰.结构抗震性能评估的改进模态能力谱法[J].重庆大学学报,2007,30(2):115-119.
    [56]沈蒲生,龚胡广.多模态静力推覆分析及其在高层混合结构体系抗震评估中的作用[J].工程力学,2006,23(8):69-73.
    [57]王素裹,韩小雷,季静.现浇楼板对RC框架结构破坏形式的影响分析[J].土木建筑与环境工程.2009,31(1):66-71.
    [58]王素裹,韩小雷,季静,等.现浇楼板对框架梁受力影响的研究[J].华南地震,2009,29(2):3541.
    [59]王素裹.强震作用下现浇RC楼板对框架结构破坏形态影响的研究[D].广州,华南理工大学,2009.
    [60]黄宇峰,刘永键.交错桁架结构体系的楼板与钢桁架间滑移的理论分析[J].湖南大学学报,2003,31(3):106-108.
    [61]付涛,刘永健,严钧.交错桁架结构抗剪连接件的设计与构造[J].长沙交通学院学报,2007,23(1):10-13.
    [62]吴阳,柳炳康.汶川地震框架填充墙结构震害数值模拟分析[J].合肥工业大学学报,2010,33(9):1372-1377.
    [63]李宏男,肖诗云,霍林生.汶川地震震害调查与启示[J].建筑结构学报,2008,29(4):10-19.
    [64]刘国兴,杨庆山,温军.汶川地震都江堰市建筑结构震害详查与分析[J].建筑结构(增刊),2009,39(2):227-231.
    [65]霍林生,李宏男,肖诗云,等.汶川地震钢筋混凝土框架结构震害调查与启示[J].大连理工大学学报,2009,49(5):718-723.
    [66]张鑫,徐向东.汶川大地震钢筋混凝土框架结构震害调查[J].山东建筑大学学报,2008,23(6):547-550.
    [67]温增平,徐超,陆鸣,等.汶川地震重灾区典型钢筋混凝土框架结构震害现象[J].北京工业大学学报,2009,35(6):753-760.
    [68]程云,刘明,王长玉,等.填充墙与柱脱开构造方式的平面外稳定研究[J].华中科技大学学报,2008,25(4):238-241.
    [69]Chaker Amar A, Cherifati Arslan. Influence of masonry infill panels on the vibration and stiffness characteristics of RC frame buildings[J]. Earthquake Engineering and Structural Dynamics,12(3):1061-1065.
    [70]曹万林,王光远,吴建有,等.轻质填充墙异形柱框架结构层刚度及其衰减过程的研究[J].建筑结构学报,1995,16(5):20-31.
    [71]朱荣华,沈聚敏.砖填充墙钢筋混凝土框架拟动力地震反应试验及理论分析[J].建筑结构学报,1996,17(4):27-34.
    [72]Mehrabi, A. B., Shing, P. B., Schuller, et al. Experimental evaluation of masonry-infilled RC frames[J]. Journal of Structural Engineering (ASCE),1996,122(3):228-237.
    [73]齐彬,郭子雄.考虑填充墙影响的教学楼框架结构推覆分析[J].工程抗震与加固改造,2010,32(2):31-36.
    [74]周振铁,唐兴荣.多层砌体填充墙框架结构的非线性有限元分析[J].淮海工学院学报,2010,19(2):59-63.
    [75]贾连光,孙鹏,肖青.考虑填充墙对钢框架结构体系影响的静力非线性分析[J].沈阳建筑大学学报,2008,24(1):11-15.
    [76]刘玉姝,李国强.带填充墙钢框架结构抗侧力性能实验及理论研究[J].建筑结构学报,2005,26(3):78-84.
    [77]赵滇生,陈亮,王伟伟.带ALC墙板的钢框架结构滞回性能分析[J].浙江工业大学学报,2010,38(4):448-452.
    [78]戴绍斌,余欢,黄俊.填充墙与钢框架协同工作性能非线性分析[J].地震工程与工程振动,2005,25(3):24-28.
    [79]李英民,韩军,田启祥,等.填充墙对框架结构抗震性能的影响[J].地震工程与工程振动,2009,29(3):51-58.
    [80]叶艳霞,黄华,朱钦,等.填充墙作用框架结构动力分析[J].沈阳建筑大学学报,2010,26(1):4146.
    [81]童岳生,钱国芳.砖填充墙钢筋混凝土框架的变形性能及承载能力[J].西安冶金建筑学院学报,1985,42(2):1-21.
    [82]刘世美,黄东升,丁天庭.填充墙刚度系数对框架结构抗震性能的研究[J].浙江工业大学学报,2011,39(3):292-296.
    [83]王祖华,吴勇明.错列桁架-框架-剪力墙结构体系的分析[J].华南理工大学学报,1995,23(3):140-146.
    [84]吴勇明,王祖华.错列桁架-框架-剪力墙结构的内力与位移计算[J].华南理工大学学 报,1995,23(1):126-134.
    [85]赵欣,李国强.轻质砌块填充墙对钢框架地震反应影响分析[J].地震工程与工程振动,2006,26(3):159-161.
    [86]赵宝成,顾强,何若全,等.交错桁架结构楼板受力性能的实验研究[J].武汉理工大学学报,2009,31(13):69-72.
    [87]杨伟,欧进萍.抗震结构填充墙性能的有限元模拟分析[J].华南理工大学学报,2010,38(7):140-144.
    [88]史少鹏,刘伟庆,王曙光,等.带填充墙框架的精细化有限元模拟与分析[J].南京工业大学学报,2011,33(5):79-83.
    [89]杨亮,唐兴荣.具有不同构造措施的砌体填充墙框架结构性能的非线性有限元模拟[J].盐城工学院学报,2010,23(2):55-60.
    [90]胡晓明,孙伟民.框架结构填充墙边界裂缝有限元分析及防治对策[J].南京工业大学学报,2003,25(4):28-32.
    [91]谈一评,肖剑飞,张亦静.填充墙刚度设计分析[J].世界地震工程,2010,26(1):53-56.
    [92]程志辉,陈辉明.带填充墙框架结构架空层的抗倒塌评估与加固设计[J].工程抗震与加固改造,2011,33(3):75-81.
    [93]黄兰兰,李洪泉,李振宝,等.砌块填充墙抗震性能实验研究[J].工程抗震与加固改造,2011,33(1):60-66.
    [94]刘世美,黄东升,丁天庭.填充墙刚度系数对框架结构抗震性能的研究[J].浙江工业大学学报,2011,39(3):292-296.
    [95]刘肖凡,彭少民,李嵩峰.钢框架砌体维护体系实验研究及有限元分析[J].武汉理工大学学报,2004,26(12):52-55.
    [96]谢强,姚谦峰,薛松涛.高层轻板框架结构的刚度和承载力分析[J].西安建筑科技大学学报,2000,32(3):205-208.
    [97]叶艳霞,黄华,朱钦,等.填充墙作用框架结构动力分析[J].沈阳建筑大学学报,2010,26(1):41-46.
    [98]阎红霞,杨庆山,张丽英.ABAOUS在超高层结构动力弹塑性分析中的应用[Jl.震灾防御技术,2010,5(1):108-114.
    [99]王金昌,陈页开.ABAQUS在土木工程中的应用[M].杭州,浙江大学出版社,2006.
    [100]ABAQUS Inc. Abaqus theory manual [M].2007.
    [101]ABAQUS Inc. Abaqus user's manual [M].2007.
    [102]庄茁,由小川,廖剑晖,等.基于ABAQUS的有限元分析和应用[M].北京,清华大学出版社,2008.
    [103]GB50017-2003钢结构设计规范[S].北京,中国计划出版社,2003.
    [104]GB 50010-2010钢筋混凝土设计规范[s].北京,中国建筑工业出版社,2010.
    [105]GB50003-2001砌体结构设计规范[S].北京,中国建筑工业出版社,2002.
    [106]Chen W F. Plasticity in reinforced concrete[M]. New York, McGraw-Hill Book Co.1982.
    [107]Stafford-smith, B., Lateral stiffness of infilled frames[J]. Journal of the Structural Division(ASCE),1962(88):183-199.
    [108]Stafford-smith, B., Behavior of square infilled frames[J]. Journal of the Structural Division(ASCE),1966(92):381-403.
    [109]JGJ 3-2010,高层建筑混凝土结构技术规程[S].北京,中国建筑工业出版社,2010.
    [110]GB 50009-2001(2006版).建筑结构荷载规范[S].北京,中国建筑工业出版社,2006.
    [111]JGJ99-98高层民用建筑钢结构技术规程[s].北京,中国建筑技术研究院,1998.
    [112]GB 50011-2010,建筑抗震设计规范[S].北京,中国建筑工业出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700