用户名: 密码: 验证码:
分区自动拣选系统拣选策略优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着客户订单的逐渐多样化和客户服务要求的逐步提高,现代物流配送中心对订单处理时间提出了更高的要求。拣选作业作为订单处理过程中的重要环节,其作业效率是衡量配送中心整体效率的关键。据统计,拣选作业时间占物流配送中心作业总时间的35%左右。为有效减少拣选作业时间,越来越多行业采用自动拣选系统代替人工拣选系统。相对人工拣选系统,自动拣选系统作业效率高、差错率低,适用于小批量、多品种的货物拣选。
     分拣机系统因其高时效、占地面积小等特点成为应用最广泛的一种自动拣选系统。多台分拣机通常被划分至多个拣选区内,各拣选区可以同时对同一订单并行拣选,有效减少订单处理时间。因此,分区划分后的自动拣选系统即分区自动拣选系统应用越来越普遍,而系统优化问题,成为提高配送中心作业效率的关键因素。
     目前国内外对于拣选系统的研究大多集中在人工拣选领域,与自动拣选系统相关的文献较少。为数不多的自动拣选系统领域的文献,也多集中在分拣机的改造和设备选型方面,较少涉及拣选策略优化。基于此,本文总结对分区自动拣选系统作业效率影响较大的三大拣选策略:品项分配策略、分区合流顺序分配策略和订单拣选顺序分配策略。以订单处理总时间最小化为目标,运用禁忌搜索法、动态聚类法、贪婪算法、动态规划法、遗传算法等方法对以上三大拣选策略进行优化。本文的主要研究内容和成果如下:
     (1)分析分区自动拣选系统工作流程,建立并行拣选、串行合流模式下拣选系统的数学模型。
     在分区自动拣选系统数学模型中,将订单处理总时间分为两部分:合流时间和延迟时间。其中,合流时间由设备性能及客户订单决定,在设备稳定的情况下为常量;延迟时间由当前订单及前一订单的订单结构决定,为变量。在分析系统模型的基础上,总结订单处理总时间的影响因素。
     (2)品项分配子问题中,将优化目标由订单处理总时间最小转化为延迟因子总和最小,设计两种算法对模型进行求解。
     首先提出延迟因子表示当前订单某一拣选区在某一特殊情况下的延迟时间。特殊情况的表现为前一订单各拣选区和当前订单前面拣选区延迟时间均为零。通过理论证明,拣选区延迟因子与延迟时间具有相同的变化趋势,因此可利用延迟因子对模型进行求解,降低模型求解难度。
     根据各拣选区品项数量是否固定,分别提出基于品项交换的禁忌搜索算法和基于品项转移的动态聚类算法。最后通过实例仿真证明两种算法的有效性。
     (3)分区合流顺序优化子问题中,分析分区合流顺序变化必要条件,并以此提出贪婪启发式算法求解模型。
     首先分析分区合流顺序对订单处理总时间的影响,以订单处理总时间最小为目标,建立以分区合流顺序为变量的系统模型。将此模型抽象为一般系统模型1(分组)|rη=c(i-1)j+tη|Cmax'并运用集合划分理论证明该问题为NP-hard司题。
     提出分区合流顺序变化而使订单处理总时间减少的必要条件,并以此为基础,设计贪婪启发式算法与动态规划法相结合对模型进行求解。仿真显示算法可大幅减小系统订单处理总时间,提高作业效率。
     (4)订单拣选顺序优化子问题中,运用自适应遗传算法进行模型求解,并对算法进行改进。
     首先从理论、实例两方面分析订单拣选顺序对订单处理总时间的影响,以订单拣选顺序为变量、订单处理总时间最小为目标建立系统模型,并将模型简化为TSP问题。提出改进的自适应遗传算法对模型进行求解。其中,算法的改进部分体现在两个方面:一、初始种群的生成过程中:引进海明距离表示种群中两个个体的差异,并选取海明距离较大的个体生成初始种群,以防止陷入局部最优解。二、改进交叉概率和变异概率:当进化过程处于“停滞”状态时,增加较优个体的交叉和变异概率,避免陷入局部最优。最后通过实验证明算法的优越性。
The orders become more and more diversified and the demand of customer service becomes higher and higher in the modern logistics distribution center. All of above need a faster order fulfillment time. Picking is an important operation in the order handling process and the working efficiency of the picking operation is the key factor which affects the total working effieicncy of the distribution center. According to statistics, the picking time accounts for about35%of the total order fulfillment time. Therefore, more and more distribution centers become to apply automated order picking system. Compared to manual order picking system, the automated order picking system is faster and less prone to mistakes, so it is suitable for the order in which there are many kinds of SKU and the total number of SKUs is small.
     The dispenser system is widely used in the distribution center among all kinds of automated order picking system since it is faster and needs less space. Usually, the dispensers are divided into several zones, so different zones can pick one order simutaniously and the order picking time will be reduced. Therefore, the research on the zone automated order picking system will have a great significance.
     However, most researchers focus on the manual order picking system as so far, the literatures about the automated order picking system are much fewer. Worse than that, most literatures about the automated order picking system focus on the mechanical improvement and the equipment selection, little refers to the optimization of picking strategy. Because of all above reasons, this paper concludes three picking strategies which have most important impact on the working efficiency of the zone automated order picking system:item assignment strategy, merging sequence assignment strategy and the order picking sequence assignment strategy. Based on this, the tabu search algorithm, dynamic cluster algorithm, greedy heuristic algorithm, dynamic programming method and genetic algorithm are used to optimize the strategies to minimize the order fulfillment time. The main content and the achievement of this paper are as follows.
     (1) Analyze the working process of the zone automated order picking system, builds the mathematical model of the system based on parallel picking and serial merging method.
     In the model of the zone automated order picking system, the order picking time is divided into two parts:merging time and delay time. The merging time is decided by parameters of the equipment and the number of SKUs in the current order. If the system can run steady, the merging time is a constant; whereas the delay time is a variable since it is decided by the order structure of the current order and prior order.
     The impact factors which will influence the order picking time are given based on the model of the system.
     (2) Considering the sub problem of item assignment, converts the optimizing object from minimizing order picking time to minimizing the summation of the delay time, and then design two algorithms to solve the problem.
     First, the delay factor is proposed to represent the delay time under a special situation. Under the special situation, the delay times of the following zones in the prior order and prior zones in the current order are zero. The delay factor is proven to have the same vary trend with the delay time for each zone, so it can be used to solve the model of the sub problem to simply the complexity.
     The tabu search algorithm based on item exchange and the dynamic cluster algorithm based on item shift are proposed respectively aimed at whether the number of kind of SKUs is fixed in each zone. The simulation verified the validity of the two algorithms.
     (3) Considering the sub problem of merging sequence optimization, the necessary condition of changing the merging sequence is proposed firstly, and then the greedy heuristic algorithm based on the necessary condition is proposed to solve the problem.
     First, we analyze the impact of different merging sequences on the order picking time, and then build the system model regarding the merging sequences of zones as variables. The model is abstracted as a general system model and expressed as 1(group)|rη=c(r-1)j+tη|Cmax. This model is proven to be a NP-hard model with3-partition theory.
     The necessary condition of changing the merging sequence of a zone is proposed, and then a greedy heuristics algorithm combined with the dynamic programming method is designed to solve the model. The simulation result shows the order picking time can be reduced and picking efficiency is improved by the algorithm.
     (4) Regarding sub problem of the order picking sequence optimization, we improve the self-adaptive genetic algorithm to solve it.
     First, we analyze the impact of the order picking sequence on the order picking time, and then build the mathematical model regarding the order picking sequence as variable. This model can be simpled to be TSP problem model. At last, the improved self-adative genetic algorithm is proposed to solve the model. There are two differences between the proposed algorithm and the traditional self-adaptive genetic algorithm:First, the proposed algorithm brings HD distance into it. The HD distance of two genes represents the degree of difference between them. We choose the genes which have longer HD distance with other genes to form the initial solutions group. This will help avoiding local best solution. Second, the proposed algorithm improves the crossing probability and the variation probality. When the evolution process is stopped, increasing the crossing probability and the variation probability of the better genes will help avoiding local best solution. The simulation result shows the validity of the proposed algorithm.
引文
[1]MARC Goeschalckx, JALAL Ashayeri. Classification and design of order picking [J]. Logistics Information Management,1989,2(2):99-106.
    [2]TOMPKINS J. A., WHITE J.A., BOZER Y.A., FRAZELLE E.H.. Facilities planning[M]. New jersey:Jogn Wiley & Sons,2003.
    [3]沈长鹏.订单结构与拣选系统的适配问题研究[D].济南:山东大学,2011.
    [4]吕龚栋.物流中心拣选系统解决方案综述[J].物流技术与应用,2007,12(4):61-66.
    [5]DE KOSTER R, LE-DUC T, ROODBERGEN K J. Design and control of warehouse order picking:A literature review[J]. European Journal of Operational Research,2007,182(2):481-501.
    [6]吴耀华.利用高科技构建节约型物流配送系统[J].物流技术,2007,26(8):5-6.
    [7]GOETSCHALCKX M, ASHAYERI J. Classification and design of order picking[J]. Logistics Information Management,1989,2(2):99-106.
    [8]冯佳.一种配送中心订单拣选方式优化的算法[D].广州:暨南大学,2008.
    [9]李诗珍.配送中心拣货作业优化设计与控制研究[D].西安:西南交通大学,2004.
    [10]肖际伟.配送中心拣货系统优化[D].济南:山东大学,2010.
    [11]MARGARIT KHACHATRYAN. Small parts high volume order picking systems[D]. Georgia:Georgia Institute of Technology,2006.
    [12]黄启明.自动分拣系统及其应用前景分析[J].物流技术,2002(5):7-8.
    [13]张贻弓.基于拣选区拣选策略的分拣机系统综合优化研究[D].济南:山东大学,2011.
    [14]王艳艳.并行自动分拣系统分拣任务及补货缓存[D].济南:山东大学,2012.
    [15]PRATIK J. P, RUSSELL D. M. Selecting between batch and zone order picking strategies in a distribution center[J]. Trasportation Research(Part E),2008,44(5): 696-719.
    [16]MEIFEI Y, RENE B. M, DE KOSTER. The impact of order batching and picking area zoning on order picking system performance [J]. European Journal of Operational Research,198(2):480-490.
    [17]李诗珍,王转,张克诚.配送中心拣货作业中的订单分批策略研究[J].物流技术,4(1):31-33.
    [18]李诗珍,杜文宏.基于聚类分析的订单分批拣货模型及启发式算法[J].统计与决策,2008,12(1):53-55.
    [19]马士华,文坚.基于时间延迟的订单分批策略研究[J].工业工程与管理,2004,6(1):1-4.
    [20]NOUD G, SDEEF V. D. V. Order batching to minimize total travel time in a parallel-aisle warehouse[C].]. HE Transactions,2001,33:385-398.
    [21]HO Y. C, TSENG Y. Y. A study on order-batching methods of order-picking in a distribution centre with two cross-aisles [J]. International Journal of Production Research,2006,44(17):3391-3417.
    [22]TSAI C. Y, LIOU J. J. H, HUANG T. M. Using a multiple-GA method to solve the batch picking problem:considering travel distance and order due time[J]. International Journal of Production Research,2008,46(22):6533-6555.
    [23]ZHANG Y G, WU Y H. Research of efficiency optimization in tobacco automated sorting system[C]. Proceedings of the 2007 International Conference on Automation and Logistics, New Jersey:IEEE,2007:1209-1213.
    [24]WU Y H, ZHANG Y G. Order-picking optimization for automated picking system with parallel dispensers [J]. Chinese Journal of Mechanical Engineering (English Edition),2008,21(6):25-29.
    [25]张贻弓,林茂.卷烟分拣设备的选型与优化[J].物流技术与应用,2008(9):86-87.
    [26]杨玮,刘昌祺,曹巨江等.物流配送中心拣选系统分析[J].包装工程,2005,26(1):108-109.
    [27]杨玮,曹巨江.EIQ分析法在物流配送中心拣货系统设计中的应用[J].机械设计与制造,2006(9):160-161.
    [28]谢琼.EIQ在物流中心规划设计中的应用[J].中国物流与采购,2006,(12):76-77.
    [29]计三有,静余.EIQ分析法在图书物流中心规划中的应用[J].东南大学学报(自然科学版),2007,37(Sup Ⅱ):333-336.
    [30]陈宁宁.面向卷烟配送中心拣选系统EIQ分析[D].济南:山东大学,2005.
    [31]刘德宝.复合式卷烟分拣系统研究与设计[D].济南:山东大学,2006.
    [32]李娜娜,王莉,戴建民.卷烟配送中心自动分拣系统的规划设计[J].物流科技,2008,31(4):133-135.
    [33]李静.卷烟配送中心自动分拣系统配置与优化研究[D].济南:山东大学,2009.
    [34]张小勇.卷烟物流配送中心的规划与设计[J].物流技术与应用,2006,11(5):82-85.
    [35]孙磊,吴耀华,张冠女.动态EIQ-ABC分析在配送中心规划中的应用[J].山东大学学报(工学版),2007,37(3):81-85.
    [36]LIU P, ZHOU C, WU Y. H, et al. Slotting the complex automated picking system in tobacco distribution center[C]. Proceedings of the 2008 International Conference on Automation and Logistics, New Jersey:IEEE,2008:2126-2130.
    [37]LIU P, WU Y. H, XU N. Assigning SKUs to multiple automated-picking areas over multiple periods[C]. Proceedings of the 2009 International Conference on Automation and Logistics, New Jersey:IEEE,2009:50-55.
    [38]刘鹏.通道式自动分拣系统的配置优化研究[D].济南:山东大学,2011.
    [39]吴颖颖,吴耀华,王艳艳.随机订单拣选系统建模及仿真分析[J].系统仿真学报,2011,23(1):162-166.
    [40]冯华威,李云军.AHP在配送中心分拣策略中的应用[J].商品储运与养护,2007,29(6):88-89.
    [41]DALLARI F, MARCHET G, MELACINI M. Design of order picking system[J]. The International Journal of Advanced Manufacturing Technology,2009, 42(1):1-12.
    [42]肖际伟.复合式卷烟分拣系统分拣机组合优化[J].系统工程理论与实践,2010,30(2):251-256.
    [43]鞠镁隆,沈敏德.卷烟自动分拣机的创新设计[J].轻工机械,2006,24(1):123-125.
    [44]沈敏德,陈照强,范维华等.带缓存的条烟并行分拣系统开发研究[J].物流技术,2009,28(2):140-141.
    [45]谢伟东,王磊,佘翊妮等.条烟自动分拣的异步法及其装置[J].工程设计学报,2007,14(2):112-116.
    [46]秦峰华.卷烟自动分拣机的性能优化与实现[D].济南:山东大学,2007.
    [47]袁阿勇.新型智能化货物分拣系统的研究与开发[D].武汉:武汉理工大学2006.
    [48]张鹏,沈敏德,范维华.基于Profibus-DP的塔式卷烟自动分拣机的设计应用[J].烟草科技,2007,36(3):23-24.
    [49]张鹏,鞠镁隆,沈敏德,范纬华.基于PLC控制的卧式卷烟自动分拣机设计[J].机电一体化,2008(5):77-79.
    [50]范启印,马俊骑,冉文学等.虚拟视窗算法在成品烟自动分拣控制中的应用[J].昆明理工大学学报:理工版,2004,29(1):65-72.
    [51]WU Y H, ZHANG Y G, WU Y Y. Compressible virtual window algorithm in picking process control of automated sorting system[J]. Chinese Journal of Mechanical Engineering (English Edition),2008,21(3):41-45.
    [52]吴颖颖,吴耀华,沈长鹏.基于顺序拣选策略的压缩动态虚拟视窗算法[J].山东大学学报(工学版),2012,42(1):66-71.
    [53]王艳艳,吴耀华,刘鹏.自动分拣系统分拣作业任务优化[J].机械工程学报,2011,47(20):10-17.
    [54]HESKETT J L. Cube-per-order index-a key to warehouse stock location[J]. Transportation and Distribution Management,1963(3):27-31.
    [55]HESKETT J L. Putting the cube-per-order index to work in warehouse layout[J]. Transport and Distribution Management,1964,4(8):23-30.
    [56]KALLINA C, LYNN J. Application of the cube-per-order index rule for stock location in a distribution warehouse [J]. Indterfaces,1976,7(1):37-46.
    [57]FRANCIS R. L, MCGINNIS L. F, WHITE J. A. Facility layout and location:an nanlytical approach[M]. Englewood Cliffs:Prentice-Hall,1992.
    [58]BYNZER H, JOHANSSON M. I. Storage location assignment:Using the product structure to reduce order picking times [J]. International Journal of Production Economics,1996:595-603.
    [59]SADIQ M. A hybrid clustering algorithm for reconfiguration of dynamic order picking systems [D]. Arkansas:University of Arkansas,1995.
    [60]SADIQ M, LANDERS T L, TAYLOR G D. An assignment algorithm for dynamic picking systems[J]. ⅡE Transactions,1996,28(8):607.
    [61]LEE M. A storage assignment policy in a man-on-board automated storage-retrieval system[J]. International Journal of Production Research,1992, 30(10):2281-2292.
    [62]AMIRHOSSEINI M M, SHARP G P. Simultaneous analysis of products and orders in storage assignment[J]. Manufacturing Science and Engineering,1996(4): 803-811.
    [63]HUA W, CHEN Z. Clusters and filling-curve-based storage assignment in a circuit board assembly kitting area[J]. ⅡE Transactions,2008,40(1):569-585.
    [64]HUA W. Cluster based storage policies in kitting area[D]. Georgia:Georgia Institute of Technology,2001.
    [65]JIANG-LIANG H, YU-JEN W, YA-JUNG Y. A model for storage arrangment and re-allocation for storage management operations[J]. International Journal of Computer Integrated Manufacturing,2010,23(4):369-390.
    [66]YON-CHUN C, YAO-HUNG C, HUI-MIN C. Recency-based storage assignment and warehouse configuration for recurrent demands[J]. Computers & Industrial Engineering,2012,62:880-889.
    [67]MUPPANI V. R, ADIL G. K. A branch and bound algorithm for class based storage location assignment[J]. European Journal of Operational Research,2008, 189(2):492-507.
    [68]MUPPANI V. R, ADIL G. K. Efficient formation of storage classes for warehouse storage location assignment-a simulated annealing approach[J]. The International Journal of Management Science,2008,36:609-618.
    [69]JEWKERS E, LEE C, VICKSON R. Production location, allocation and server home base location for an order picking line with multiple servers[J]. Computers & Operations Research,2004,31:623-626.
    [70]JANE C C, LAIH Y W. A clustering algorithm for item assignment in a synchronized zone order picking system[J]. European Journal of Operational Research,2005,166(2):489-496.
    [71]PETERSON C. G, GERALD A. Considerations in order picking zone configuration[J]. International Journal of Operations & Production Management, 2002,27:793-805.
    [72]GARFINKEL M. Minimizing multi-zone orders in the correlated storage assignment problem[D]. Georgia:Georgia Institute of Technology,2005.
    [73]DE KOSTER R, LE-DUC T, ROODBERGEN K. J. Design and control of warehouse order picking:A literature review[J]. European Journal of Operational Research,2007,182:481-501.
    [74]JASON C. H. P, MING-HUNG W. A study of storage assignment problem for an order picking line in a pick-and-pass warehousing system [J]. Computers& Industrial Engineering,2009,57:261-268.
    [75]HAN M H, MCGINNIS L F, SHIEH J S, et al. On sequenceing retrievals in an automated storage/retrieval system[J]. HE Transactions,1987,19(1):56-66.
    [76]LEE H F, SCHAEFER S K. Retrieval sequencing for unit-load automated storage and retrieval systems with multiple openings [J]. International Journal of Production Research,1996,34(10):2943-2962.
    [77]ASCHEUER N, GROTSCHEL M, ABDEL-HALIM E S. Order picking in an automatic warehouse:Solving online asymmetric TSPs[J]. Mathematical Methods of Operations Research,1999,49(4):501-515.
    [78]CHRISTOPHE T, OLLI B, WOUT D, BIRGER R. Using a TSP heuristic for routing order pickers in warehouses[J]. European Journal of Operational Research,2010,200(3):755-763.
    [79]GU J, MARC G, LEON F. M. Research on warehouse operation:A comprehensive review[J]. European Journal of Operational Research,2007, 177(1):1-21.
    [80]MAKRIS P. A, GIAKOUMAKIS I. G. K-Interchange heuristic as an optimmization procedure for material handling applications[J]. Applied Mathematical Modelling,2003,27(5):345-358.
    [81]RATLIFF H.D, ROSENTHAL A.S. Order-picking in a rectangular warehouse:A solvable case of the travelling salesman problem[J]. Operations Research,1983, 31(4):507-521.
    [82]ROODBERGEN K. J, DE KOSTER R. Routing order pickers in a warehouse with a middle aisle[J]. European Journal of Operational Research,2001,133(1): 32-43.
    [83]CHANG F. L, LIU Z. X, XIN Z, LIU D.D. Research on order picking optimation problem of automated warehouse[J]. Systems Engineering-Theory & Practice, 2007,27(2):139-143.
    [84]KIM B I, SUNDERESH S. H, ROBERT J G, ART S O. Clustering-based order-picking sequence algorithm for an automated warehouse[J]. International Journal of Production Research,2003,41(15):3445-3460.
    [85]张贻弓,吴耀华.可合流的自动分拣系统订单排序优化[J].山东大学学报(工学版),2008,38(5):67-71.
    [86]张国庆,刘龙青,张晓萍.基于订单排序组合的企业物流成本优化研究[J].物流技术,2007,26(9):52-55.
    [87]GHOST J B. Job selection in a heavily loaded shop[J]. Computers & Operations Reearch,1997,24(2):141-145.
    [88]ALIDAEL B, KOCHENBERGER G A, AMINIM M. Greedy solutions of selection and ordering problems[J]. European Journal of Operational Research, 2001,134(1):203-215.
    [89]肖依永,常文兵,张人千.基于模拟退火算法的多节点订单排序模型[J].计算机应用研究,2009,26(2):460-463.
    [90]姜伟立,袁增伟,吴海锁,毕军,孙丽.基于遗传算法的染色体生产订单排序与节水研究[J].环境污染与防治,2011,33(4):16-19.
    [91]CAROL A P, Eli SCHRAGENHEIM. ERP tools, techniques and applications for integating the supply chain[M]. The United States of American:CRC Press LLC, 2004.
    [92]卢引娣,黄卫来,蔡建湖.基于TOC的分销系统订单排序法则[J].工业工程,2008,11(4):78-80.
    [93]王倩丽,王建.蚂蚁算法在订单排序中的应用[J].西安航空技术高等专科学校学报,2007,25(1):67-68.
    [94]吴红,王远世,陈光聪,陈浩钦.基于奇偶蚁群算法的印刷厂订单排序方法研究[J].现代计算机,2010,24(2):9-12.
    [95]傅智海,沈虹.一种带权的印刷业订单排序算法[J].西安工业学院学报,2004,24(2):155-159.
    [96]贾天理.下乡家电运筹式TOC供应链系统订单排序模型研究[J].绵阳师范学院学报,2009,28(5):11-14.
    [97]周泓,姬彬.求解作业排序问题的通用混合遗传算法研究[J].系统工程理论与实践,2001,66(12):66-71.
    [98]MICHAEL L. P. Scheduling:theory, algorithms, and systems(3th ed). New York: Spring Science+ Business Media,2008.
    [99]WEN-HUNG K, DAR-LI Y. Single-machine group scheduling with a time-dependent learning effect[J]. Computers & Operations Research,2006,33: 2099-2112.
    [100]M. C. JANSSEN, R. J. D. VERBEEK, A. VOLGENANT. On scheduling a single machine with resource dependent release times[J]. Computers & Operations Research,2011,38:713-716.
    [101]J. BEHNAMIAN, M. ZANDIEH, S.M.T. FATEMI GHOMI. Parallel-machine scheduling problems with sequence-dependent setup times using an ACO, SA and VNS hybrid algorithm[J]. Expert Systems with Applications,2009,36:9637-9644.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700