用户名: 密码: 验证码:
基于LED阵列的自由曲面光学系统与控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大功率发光二级管(LED)芯片流明效率、封装集成度的提升和制造成本的下降,大功率LED越来越多的应用于各种照明领域。由于单颗LED芯片的总光通量有限,将多颗LED芯片以平面阵列的形式进行整体封装形成扩展光源模块来提高光源光通量已经成为LED封装的主流趋势。但另一方面,多LED芯片的集成封装会导致光源的发光面积增大,光源的近场区域不再可以视为点光源和Lambert型配光来进行处理,为LED的应用光学设计带来了巨大的难题。本论文围绕实现阵列式LED扩展光源的光束控制及其优化方法,进行了LED自由曲面光学设计与LED阵列优化的相关研究工作,提出了一系列新的自由曲面透镜算法与空间整体照明设计方法,并基于这些算法设计了各种新型自由曲面透镜,提高了LED光学系统的光效,实现了配光可控和光型可变换。研究内容主要包括小间距LED阵列自由曲面光学系统优化方法和大间距LED阵列的光学系统设计与阵列排布方式的自动优化方法等。
     针对小间距LED芯片阵列光源的照度分布优化,提出了一种基于网格调控理论来实现全出光角度可控的自由曲面透镜优化算法。该算法在等能量划分的基础上进行了能量映射优化,实现了对扩展光源的光型可控。在此方法的基础上,我们又提出了非对称形式的网格调控方法。该方法除上述方法的优点以外,能量映射关系更为灵活。基于两种方法我们设计的两款LED阵列式道路照明模块,具有较高的亮度、照度均匀性和较低的眩光值。
     针对小间距LED芯片阵列扩展光源的光强度分布优化,提出一种基于逆向拟合方法的自由曲面优化方法。该方法利用采集、反馈不同出射角度的光强度分布信息来反向优化透镜面型,使得扩展光源所造成的配光劣化得到补偿。利用该方法设计了正态分布形式的高光效、可调节地面导航光学系统,各项光学指标符合ICAO的相关要求。
     针对大间距LED光源阵列的优化排布,提出了两种基于区域补偿理论的均匀照明自动调节算法——区域扩展法和亚区域补偿法。此方法能够根据实际的光强度获得可用于模拟运算的光强度分布形式,通过对LED阵列的排布方式进行优化,可以改善照明均匀性。在实际应用中,实现利用较少的LED模块获得较高的照度均匀优化效果,案例均匀度达到了0.6以上。
     针对大间距LED阵列光源的自由曲面光学系统设计,我们提出了一种基于自由曲面结构阵列的扩展光源光束控制方法。在该方法的基础上,我们设计了能够实现一维扩束、圆形均匀照明、矩形均匀照明的光学系统,并提出了一种光型可变换的阵列结构光学系统。在微结构板的基础上提出了利用自由曲面算法对微结构光学薄膜的面型进行优化,使得光学薄膜实现光效增加、均匀照明和光型可控。同时我们研发了一款适用于舞台灯的多通道阵列式LED光源的调光控制系统,利用DMX512通讯协议控制单片机进行PWM调光最终实现8种颜色的256级调光,从而实现全彩照明。在色品图的颜色覆盖范围超过传统舞台灯的范围,能够生成更多的极端颜色照明。
High power light-emitting diodes (LEDs), with increasing luminous efficiency and cost performance in recent years, have more and more applications in lighting. Due to small luminous flux of single LED chip, it is a tendency to use multi-chip package to enhance luminous flux. However, LED chip array will lead to large light-emitting area which can not be treated as point source. And this is a great difficulty for LED optical system design. To overcome the drawbacks of controllable radiation pattern (RP) and optimization method of LED array lighting, this dissertation mainly focuses on the research of freeform optics design and arrangement plan for LEDs array. Based on these methods, multifarious novel freefrom lens are designed to increase the optical efficiency and to form controllable beam pattern. Achievements are presented below.
     For the illuminance distribution of LED chips array with small spacing, we propose a novel freeform lens algorithm based on optimizing the division of target grids for uniform illumination, which provides the illuminance information and adjusts the energy mapping. Based on this method, we develop a non-symmetry optimization method. It has more flexible light energy mapping relationship than symmetry method. Based on these two methods, we design two novel road lighting modules with LED chip array source, which can provide both high illuminance/luminance uniformity and glare control.
     For the light intensity distribution of LED chip array with small spacing, we propose a circle-symmetry freeform lens algorithm based on reversing fitting design method for extended source, which collects and feeds back the light intensity distribution information and reversing optimize freeform surface of lens. It can quantificationally correct light intensity distribution error which are created by the extended source. As an example, aeronautical ground optical system is designed with this method, which can meet the requirements of ICAO very well.
     For the arrangement plan of LED array with large spacing, we propose two auto-optimization algorithms based on Illuminated area Expending and Sub-regions Compensating methodologies for uniform illumination, which input initial values of lamp and optimize arrangment of LED array. As an example, aeronautical ground optical system is designed with this method, which can meet the requirements of ICAO very well. In the practical application, we get a high uniformity of illumination distribution (0.6) with less LED modules.
     For the optical system design of LED array with large spacing, we propose a ray control method based on collimation and beam expender optical system for extended source, which uses micro-freefrom array lens or flim to control the collimated rays emitted from LED array. We can get a variety of radiation patterns by overlaying or removing lens. At the same time, we develop a milti-channel control system for LED stage lamp, which can form full variety colours. Its colour range is larger than the traditional lamps and more extreme colours can be created.
引文
[1]S. Liu and X. B. Luo. LED Packaging for Lighting Applications:Design, Manufacturing and Testing. John Wiley and Sons,2011.
    [2]E. F. Schubert. Light-Emitting Diodes Cambridge:Cambridge University Press, 2006.
    [3]A. Zukauskas, M. S. Shur and R. Gaska. Introduction to Solid-State Lighting. New York:John Wiley,2002.
    [4]E. F. Schubert and J. K. Kim. Solid-state light source getting smart. Science,2005, 308:1274-1278.
    [5]M. R. Krames, O. B. Shchekin, R. M. Mach, G. O. Mueller, L. Zhou, G. Harbers and M. G. Craford. Status and future of high-power light-emitting diodes for solid-state lighting. Journal of Display Technology,2007,3(2):160-175.
    [6]中国半导体照明产业发展年鉴(2006).北京:科学出版社,2006.
    [7]Z. Y. Liu, S. Liu, K. Wang and X. B. Luo. Status and prospects for phosphor-based white LED packaging. Frontiers of Optoelectronics in China,2009,2(2):119-140.
    [8]S. Liu, X. B. Luo, K. Wang, Z. Y. Liu, Z. H. Chen, F. Chen, S. J. Zhou, Q. Zhang, H. Yan, P. Wang and Z. Qin. Design of LED packaging for lighting applications. 6th China International Forum on Solid State Lighting, Shenzhen, China,2009.
    [9]K. Wang, S. Liu, F. Chen, Z. Y. Liu and X. B. Luo. Optical design for LED lighting.5th China International Forum on Solid State Lighting, Shenzhen, China, 2008.
    [10]J. B. Jiang and S. To. LED secondary optics design.5th China International Forum on Solid State Lighting, Shenzhen, China,2008.
    [11]L. W. Sun, S. Z. Jin, and S. Y. Cen. Free-form microlens for illumination applications. Appl. Opt.48(29),5520-5527 (2009).
    [12]K. Wang and S. Liu. A sensor integrated ultra-long span LED street lamp system. 8th IEEE International Conference on Electronics Packaging Technology, Shanghai, China,2007.
    [13]王恺,罗小兵,刘宗源,甘志银,陈明祥,刘胜.超长间距LED道路照明系统.照明,2008,1.
    [14]O. Dross, R. Mohedano, P. Benitez, J. C. Minano, J. Chaves, J. Blen, M. Hernandez and F. Munoz. Review of SMS design methods and real world applications. Proc. of SPIE, Bellingham, WA, USA,2004,35-47.
    [15]Y. K. Zhen, Z. N. Jia and W. Z. Zhang. The optimal design of TIR lens for improving LED illumination uniformity and efficiency. Proc. of SPIE,2007, 68342K.
    [16]J. L. Alvarez, M. Hernandez, P. Benitez and J. C. Minano. TIR-R Concentrator:a new compact high-gain SMS design. Proc. of SPIE,2002.
    [17]J. Bortz, N. Shatz and D. Pitou. Optimal design of a nonimaging projection lens for use with an LED source and a rectangular target. Proc. of SPIE,2000.
    [18]J. Bortz, N. Shatz and M. Keuper. Optimal design of a nonimaging TIR doublet-lens illumination system using an LED source Proc. of SPIE,2004.
    [19]R. Winston, J. C. Minano and P. Benitez. Nonimaging Optics. San Diego, USA: Elsevier Academic Press,2005.
    [20]J. Chaves. Introduction to Nonimaging Optics. Boca Raton:CRC Press,2008.
    [21]J. C. Minano, M. Hernandez, P. Benitez, J. Blen, O. Dross, R. Mohedano and A. Santamaria. Free-form integrator array optics. Proc. of SPIE,2005.
    [22]V. Oliker. Freeform optical systems with prescribed irradiance properties in near-field. Proc. of SPIE,2006,634211.
    [23]汪巍.基于透射型自由曲面理论的均匀照明设计方法研究:[硕士论文].杭州:浙江大学图书馆,2006.
    [24]郝翔.基于自由曲面的LED照明系统研究:[硕士论文].杭州:浙江大学图书馆,2008.
    [25]黄健.非成像光学系统设计方法及其在LED道路照明工程中的应用:[硕士论文].杭州:浙江大学图书馆,2008.
    [26]H. Ries and J. Muschaweck. Tailored freeform optical surfaces. Journal of the Optical Society of America A,2002,19(3):590-595.
    [27]A. Timinger, J. Muschaweck and H. Ries. Designing tailored free-from surfaces for general illumination. Proc. of SPIE,2003,128-132.
    [28]R. Jetter and H. Ries. Optimized tailoring for lens design. Proc. of SPIE,2005.
    [29]H. Ries and J. Muschaweck. Tailoring freeform lenses for illumination. Proc. of SPIE,2001.
    [30]P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez and W. Falicoff. Simultaneous multiple surface optical design method in three dimensions. Optical Engineering,2004,43(7):1489-1502.
    [31]F. Munoz, P. Benitez, O. Dross, J. C. Minano and B. Parkyn. Simultaneous multiple surface design of compact air-gap collimators for light-emitting diodes. Optical Engineering,2004,43(7):1522-1530.
    [32]O. Dross, R. Mohedano, P. Benitez, J. C. Minano, J. Chaves, J. Blen, M. Hernandez and F. Munoz. Review of SMS design methods and real world applications. Proc. of SPIE,2004.
    [33]P. Benitez, J. C. Minano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, J. L. Alvarez and W. Falicoff. SMS design method in 3D geometry: examples and applications. Proc. of SPIE,2004.
    [34]W. A. Parkyn. The design of illumination lenses via extrinsic differerntial geometry. Proc. of SPIE,1998.
    [35]W. A. Parkyn. Illumination lenses designed by extrinsic differential geometry. Proc. of SPIE,1998.
    [36]W. A. Parkyn. Segmented illumination lenses for step lighting and wall-washing. Proc. of SPIE,1999.
    [37]H. Ries and A. Rabl. Edge-ray principle of nonimaging optics. Journal of the Optical Society of America A,1994,11(10):2627-2632.
    [38]张以谟.应用光学(第3版).北京:电子工业出版社,2008.
    [39]梁铨廷.物理光学(第3版).北京:电子工业出版社,2010.
    [40]L. Piegl and W. Tiller. The NURBS Book 2nd ed. Springer,1997.
    [41]L. Wang, K. Y. Qian and Y. Luo. Discontinuous free-form lens design for prescribed irradiance. Applied Optics,2007,46(18):3716-3723.
    [42]Y. Ding, X. Liu, Z. R. Zheng and P. F. Gu. Freeform LED lens for uniform illumination. Optics Express,2008,16(17):12958-12966.
    [43]A. Rabl and J. M. Gordon. Reflector design for illumination with extended sources: the basic solutions. Applied Optics,1994,33:6012-6021.
    [44]J. Bortz and N. Shatz. Generalized functional method of nonimaging optical design. Proc. of SPIE,2006,6338:633805.
    [45]J. Bortz and N. Shatz. Iterative generalized functional method of nonimaging optical design. Proc. of SPIE,2007,6670:66700A.
    [46]F. R. Fournier, W. J. Cassarly and J. P. Rolland. Optimization of single reflectors for extended sources. Proc. of SPIE,2008,7103:710301.
    [47]T. X. Lee, K. F. Gao, W. T. Chien and C. C. Sun, Light extraction analysis of GaN-based LEDs with surface texture and/or patterned substrate, Opt. Express, 2007,15,6670-6676.
    [48]I. Moreno. Configurations of LED arrays for uniform illumination. Proc. SPIE, 2004,5622:713-718.
    [49]I. Moreno, M. A. Alejo and R. I. Tzonchev. Design light-emitting diode arrays for uniform near-field irradiance. Applied Optics,2006,45(10):2265-2272.
    [50]I. Moreno, G. Gregory, J. Howard, J. Koshel, Spatial distribution of LED radiation, International Optical Design Conference, eds., Proc. SPIE 6342,634216:1-7 (2006).
    [51]Z. Qin, K. Wang, F. Chen, X. B. Luo and S. Liu. Analysis of condition for uniform lighting generated by array of light emitting diodes with large view angle. Optics Express,2010,18(16):17460-17476.
    [52]D. Ramane, A. Shaligram, Optimization of multi-element LED source for uniform illumination of plane surface. Optics Express,2011,19(S4):A639-A648.
    [53]A. J. W. Whang, Y. Y. Chen and Y. T. Teng. Designing uniform illumination systems by surface-tailored lens and configurations of LED arrays. Journal of Display Technology,2009,5(3):94-103.
    [54]刘恩科.半导体物理学(第7版).北京:电子工业出版社,2009.
    [55]罗静华.大功率LED驱动控制技术:[硕士论文].西安:西安电子科技大学图书 馆,2010.
    [56]单浩仁.基于DALI的智能照明系统硬件设计:[硕士论文].西安:西安电子科技大学图书馆,2010.
    [57]秦岸.基于LED光源的高速公路隧道照明节能技术研究:[硕士论文].重庆:重庆大学图书馆,2010.
    [58]DMX512协议说明,美国舞台灯光协会,1990
    [59]I. Moreno and C. C. Sun. LED array:where does far-field begin? Proc. SPIE,2008, 7058:70580R.
    [60]F. Chen, K. Wang, Z. Qin, D. Wu, X. B. Luo and S. Liu. Design method of high-efficient LED headlamp lens. Optics Express,2010,18(20):20926-20938.
    [61]Z. Y. Liu, K. Wang, S. Liu and X. B. Luo. Studies on optical consistency of white LEDs affected by phosphor thickness and concentration using optical simulation. IEEE Transactions on Components and Packaging Technologies,2010,99: 1521-3331.
    [62]Z. Y. Liu, K. Wang, S. Liu and X. B. Luo. Optical analysis of color distribution in white LEDs with various packaging methods. IEEE Photonics Technology Letters, 2008 20(24),2027-2029.
    [63]K. Wang, S. Liu, F. Chen, Z. Qin, Z. Y. Liu, and X. B. Luo. Freeform LED lens for rectangularly prescribed illumination. J. Opt. A, Pure Appl. Opt.2009,11(10), 105501.
    [64]C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee and S. M. Huand. Precise optical modeling for LED lighting verified by cross correlation in the midfield region. Opt. Letter,31 2193-2198.
    [65]CIE, (commission Internationale del'Eclairage). Calculation and measurement of luminance and illuminance in road lighting (CIE publication 30.2, Vienna,1982).
    [66]CIE, (commission Internationale del'Eclairage). Road surfaces and lighting (CIE publication 66, Paris,1984).
    [67]http://www.dialux.com/
    [68]http://www.CREE.com/
    [69]http://www.osram.com/
    [70]http://www.nichia.com/
    [71]http://www.philipslumileds.com/
    [72]J. Bortz, N. Shatz and M. Keuper. Optimal design of a nonimaging TIR doublet-lens illumination system using an LED source. Proc. of SPIE,2004,5529, pp.8-16.
    [73]Y. K. Zhen, Z. Jia and W. Z. Zhang. The optimal design of TIR lens for improving LED illumination uniformity and efficiency.2007, Proc. of SPIE,6834.
    [74]A. Domhardt, S. Weingaertner, U. Rohlfing and U. Lemmer. TIR optical for non-rotationally symmetric illumination design. Proc. of SPIE,2008,7103-7104.
    [75]Access the NTSB aviation accident database, US National Transportation Safety Board (NTSB).2008.
    [76]International civil Aviation Organization (ICAO). Annex 14,2004,1, Aerodrome Design and Operations APP 2-7.
    [77]S. M. Ross. First Course in Probability.2004, A (8th Edition) 267-269.
    [78]J. L. Alvarez, M. Hernandez, P. Benitez, and J. C. Minano. TIR-R Concentrator:a new compact high-gain SMS design. Proc. SPIE,2002,4446-4455.
    [79]F. Munoz, P. Benitez, O. Dross, J. C. Minano and B. Parkyn. Simultaneous multiple surface design of compact air-gap collimators for light emitting diodes.
    [80]E. M. Guttsait. Analysis of LED modules for local illumination. J. Commun. Technol. Electron.2007,52(12),1377-1395.
    [81]I. Moreno, U. Contreras. Color distribution from multicolor LED arrays. Optics Express,2007,15(6):3607-3618.
    [82]I. Moreno, J. Munoz, and R. Ivanov. Uniform illumination of distant targets using a spherical light-emitting diode array.2007, Opt. Eng.46(3),033001.
    [83]B. Kim, J. Kim, W. S. Ohm and S. Kang. Eliminating hotspots in a multi-chip LED array direct backlight system with optimal patterned reflectors for uniform illuminance and minimal system thickness. Optics Express,2010,18(8): 8595-8604.
    [84]R. Deepa and S. Arvind, Modeling and simulation of multi-element LED source. J.Light. Visual Environ,2010,18(8):8595-8604.
    [85]R. Deepa, and S. Arvind. Optimization of multi-element LED source for uniform illumination of plane surface. Optics Express,2011,19(S4):A639-A649.
    [86]北京市户外广告牌技术规范.2010
    [87]J. W. Pan and C. W. Fan, High luminance hybrid light guide plate for backlight module application
    [88]X. J. Shen, L. W. Pan and L. Lin. Microplastic embossing process:experimental and theoretical characterizations.2002, Sens. Actuators:A 97-98,428-433.
    [89]B. K. Lee, D. S. Kim and T. H. Kwon. Replication of microlens arrays by injection molding. Microsyst Technol,2004,10(6-7):531-535.
    [90]M. He, X. C. Yuan, N. Q. Ngo, J. Bunand S. H. Tao. Low-cost and efficient coupling technique using reflowed sol-gel microlens. Opt. Express,2003, 11(14):1621-1627.
    [91]R. Guo, S. Z. Xiao, X. M. Zhai, J. W. Li, A. Xia and W. Huang. Micro lens fabrication by means of femtosecond two photon photopolymerization. Opt. Express,2006,14(2):810-816.
    [92]F. Merola, M. Paturzo, S. Coppola, V. Vespini and P. Ferraro. Self-patterning of a polydimethylsiloxane microlens array on functionalized substrates and characterization by digital holography. J. Micromech. Microeng,2009,19(12): 125006.
    [93]L. T. Jiang, T. C. Huang, C. R. Chiu, C. Y. Chang and S. Y. Yang. Fabrication of plastic microlens arrays using hybrid extrusion rolling embossing with a metallic cylinder mold fabricated using dry film resist. Opt. Express,2007, 15(19):12088-12094.
    [94]T. C. Huang, B. D. Chan, J. K. Ciou and S. Y. Yang. Fabrication of microlens arrays using a CO2-assisted embossing technique. J. Micromech. Microeng.2009, 19(1):015-018.
    [95]S. M. Kim and S. N. Kang. Replication qualities and optical properties of UV-molded microlens arrays. J. Phys. D Appl. Phys.2003,36(20):2451-2456.
    [96]H. C. Cheng, C. H. Wang, C. F. Huang and Y. H. Hu. Micro fabrication of microlens arrays by micro dispensing. Polym. Adv. Technol,201021(9):632-639.
    [97]Mount-Learn Wu, Yun-Chih Lee and Jenq-Yang Chang Azimuthally isotropic irradiance of GaN-based light-emitting diodes with GaN microlens arrays. Optics Express,2009,17(8):6148-6155.
    [98]H. C. Cheng, C. F. Huang, Y. Lin, Y. K. Shen. Brightness field distributions of microlens arrays using micro molding. Optics Express,2010,18(26):26887-26904.
    [99]S. Moller and S. R. Forrest. Improved light out-coupling in organic light-emitting diodes employing ordered microlens arrays. J. Appl. Phys,2002,91:3324-3327.
    [100]M.-K. Wei and I-L. Su, "Method to evaluate the enhancement of luminance efficiency in planar OLED light emitting devices for microlens array. Opt. Express, 2004,12,5777-5782.
    [101]H. Peng, Y. L. Ho, X.-J. Yu, M. Wong, and H.-S. Kwok. Coupling efficiency enhancement in organic light-emitting devices using microlens array-theory and experiment. J. Display Technol.2005,1,278-282.
    [102]J. Lim, S. S. Oh, D. Y. Kim and B. Park. Enhanced out-coupling factor of microcavity organic light-emitting devices with irregular microlens array. Opt. Express,2006,14,6564-6571.
    [103]Y. Sun and S. R. Forrest. Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography. J. Appl. Phys,2006, 100:073106.
    [104]M.-K. Wei, I-L. Su, Y.-J. Chen, M. Chang, H.-Y. Ling, and T.-C. Wu. The influence of a microlens array on planar organic light-emitting devices. J. Micromech. Microeng.2006,16,368-374.
    [105]H. Greiner. Light extraction from organic light emitting diode substrates: simulation and experiment. Jpn. J. Appl. Phys.2007,46,4125-4137.
    [106]C.-J. Yang, S.-H. Liu, H.-H. Hsieh, C.-C. Liu, T.-Y. Cho, and C.-C. Wu. Microcavity top-emitting organic light-emitting devices integrated with microlens arrays:simultaneous enhancement of quantum efficiency, cd/A efficiency, color performances, and image resolution. Appl. Phys. Lett,2007,91,253508-253512.
    [107]T. Nakamura, N. Tsutsumi, N. Juni and H. Fuji. Thin-film waveguiding mode light extraction in organic electroluminescent device using high refractive index substrate. J. Appl. Phys,2005,97,054505.
    [108]M. K. Wei, J. H. Lee, H. Y. Lin and T. C.Wu. Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array. J. Opt. A:Pure Appl. Opt.2008,10,055302.
    [109]H. Y. Lin and T. C. Wu. Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices. Optics Express,2008,16(15): 11044-11051.
    [110]M. He, X. C. Yuan, N. Q. Ngo, J. Bu and S. H. Tao. Low-cost and efficient coupling technique using reflowed sol-gel microlens. Optics Express,2003,11(14): 1621-1627.
    [111]http://www.philipslumileds.com/
    [112]http://www.etcconnect.com/
    [113]http://www.crpowtech.com/
    [114]http://luminitco.com/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700