用户名: 密码: 验证码:
肿瘤基因工程纳米乳剂疫苗的药效学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤严重威胁人类生命和健康。恶性肿瘤的三大传统疗法-手术、放疗和化疗,治疗效果并不理想。随着免疫学、细胞生物学及分子生物学的飞速发展,肿瘤疫苗的研制与应用已成为治疗肿瘤复发、转移的有力手段。但由于存在缺乏特异性肿瘤抗原和有效的抗原提呈,以及MHC限制性、肿瘤异质性、疫苗生物利用度差等问题,使得现有疫苗的免疫效果不尽人意。黑色素瘤抗原(MelanomaAntigen,MAGE)是首先被发现的人类肿瘤特异性抗原,MAGE-1是MAGE家族的重要成员之一,广泛表达于多种组织的肿瘤,而在除睾丸和胎盘外的正常组织中均不表达,是肿瘤特异性免疫治疗理想的靶分子。目前,基于MAGE-1的肿瘤疫苗能诱导MAGE-1特异性CTL的产生,在肿瘤免疫治疗方面倍受重视。热休克蛋白(HeatShock Protein,HSP)具有分子伴侣作用,参与肿瘤抗原的加工递呈,在诱导肿瘤免疫反应中发挥重要作用;最近研究表明,制备结核杆菌HSP70与目的抗原融合蛋白是提高疫苗效能的有效方法。超抗原SEA可有效激活CD4~+T细胞,协同加强肿瘤抗原的免疫效果。纳米载药系统是近年来蓬勃发展起来的全新的药物载体,可有效提高所载药物,特别是蛋白质药物的生物利用度,与传统载药系统相比有很多优点。
Tumor is a big threat against people's health and life. The available protocols such as surgery, radiotherapy and chemotherapy are far from satisfaction. With the progress in immunology, cellular biology and molecular biology, tumor vaccines are regarded as the most attractive method and play an important role in prevention and therapy of tumor. However, the potency of tumor vaccines is not so forceful. The lack of tumor specific antigens, the short of effective antigen-present, the limitation of MHC, the polymorph of tumor cells and the low bioavailability are the major factors. The melanoma antigen (MAGE) was the first reported example of tumor specific antigens. MAGE-1 is one important number of MAGE. MAGE-1, expressing in most malignant tumors but not in normal tissue except for testis and placenta, has been used as the ideal target. The MAGE-1 vaccines can induce specific CTL and show potency in tumor immunotherapy. As molecular chaperone, heat shock protein (HSP) participates in processing and presentation of tumor antigen and plays an important role in eliciting antitumor immunity. Recent researches have demonstrated that linkage
引文
[1] Coley WB. The treatment of malignant tumours by repeated inoculations of erysipolas with a report of ten original cases. Am J Med Sci 1893, 105:487-511.
    [2] Kawakamiy, Eliyahus, Jenningsc, et al.Recognition of multiple epitopes in the human melanoma antigen gpl00 by tumor in filtrating T lymphocytes associated with in vivo tumor regression. J Immunol, 1995, 154(8):3961-3968.
    [3] 龙振洲.医学免疫学.第二版.北京:人民卫生出版社,1996,136.
    [4] Belz GT, Carbone FR, Heath WR. Cross-presentation of antigens by dendritic cells. Crit Rev Immunol, 2002, 22(5-6): 439-448.
    [5] Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H. The central role of CD4(+) T cells in the antitumor immune response. J Exp Med, 1998, 188 (12): 2357-2368.
    [6] Zeng G, Wang X, Robbins PF, Rosenberg SA, Wang RF. CD4(+) T cell recognition of MHC class II-restricted epitopes from NY-ESO-I presented by a prevalent HLA DP4 allele: association with NY-ESO-I antibody production. Proc Natl Acad Sci USA, 2001,98(7): 3964-3969.
    [7] Gillespie AM, Coleman RE. The potential of melanoma antigen expression in cancer therapy. Cancer Treat Rev, 1999, 25(4): 219-227.
    [8] Chang E Y,Chen CH,Ji H, et al.Antigen specific cancer immunotherapy using a GM-CSF secreting allogeneic tumor cell based vaccine. Int J Cancer, 2000, 86(5): 725-730.
    [9] Yang S ,Darrow TL,Seigler HF.Generation of primary tumor specific cytotoxic T lymphocytes from autologous and human lymphocyte antigen class I matched allogeneic peripheral blood lymphocytes by B7 gene modified melanoma cells.Cancer Res, 1997, 57(8): 1561-1568.
    [10]Yannelli JR, Wroblewski JM. On the road to a tumor cell vaccine: 20 years of cellular immunotherapy. Vaccine. 2004 Nov 15, 23(1):97-113.
    [11]Vermorken JB, Claessen AM, van Tinteren H, et al. Active specific immunotherapy for stage II and stage III human colon cancer: a randomised trial. Lancet 1999, 353: 345-350.
    [12] Thomas MC, Greten TF, Pardoll DM, Jaffee EM. Enhanced tumor protection by granulocyte-macrophage colony-stimulating factor expression at the site of an allogeneic vaccine. Hum Gene Ther, 1998, 9(6): 835-843.
    [13]Yang S, Darrow TL, Seigler HE Generation of primary tumor-specific cytotoxic T lymphocytes from autologous and human lymphocyte antigen class I-matched allogeneic peripheral blood lymphocytes by B7 gene-modified melanoma cells. Cancer Res, 1997, 57(8): 1561-1568.
    [14]Mullen CA, Petropoulos D, Lowe P.M. Treatment of microscopic pulmonary metas- tases with recombinant autologous tumor vaccine expressing interleukin 6 and Escheri- chia coil cytosine deaminase suicide genes. Cancer Res, 1996, 56 (16): 1361-1366.
    [15]Willimsky G, Blankenstein T. Interleukin-7/B7. 1-encoding adenoviruses induce re- jection of transplanted but not nontransplanted tumors. Cancer Res, 2000, 60: 685.
    [16]Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature, 1998 Mar 19, 392(6673): 245-252.
    [17]Nestle FO, Banchereau J, Hart D. Dendritic cells: On the move from bench to bed-side. Nat Med, 2001, 7(7): 761-765.
    [18]Guo Y, Wu M, Chen H, Wang X, Liu G, Li G, Ma J, Sy MS. Effective tumor vaccine generated by fusion of hepatoma cells with activated B cells. Science, 1994, 263 (5146): 518-520.
    [19]Reichardt VL, Brossart P, Kanz L. Dendritic cells in vaccination therapies of human malignant disease. Blood Rev. 2004 Dec, 18(4):235-43.
    [20]Holmes LM, Li J, Sticca RP, Wagner TE, Wei Y. A rapid, novel strategy to induce tumor cell-specific cytotoxic T lymphoctye responses using instant dentritomas. J Immunother. 2001, 24(2): 122-9.
    [21]Bhattacharya-Chatterjee M, Chatterjee SK, Foon KA. Anti-idiotype antibody vaccine therapy for cancer. Expert Opin Biol Ther, 2002, 2(8): 869-881.
    [22]Schaed SG, Klimek VM, Panageas KS, et al.T-cell responses against tyrosinase 368-376(370D) peptide in HLA~*A0201+ melanoma patients: randomized trial comparing incomplete Freund's adjuvant, granulocyte macrophage colony-stimulating factor, and QS-21 as immunological adjuvants. Clin Cancer Res, 2002, 8(5):967-972.
    [23]Perambakam S, Xue BH, Sosman JA, Peace DJ. Induction of Tc2 cells with specifi- city for prostate-specific antigen from patients with hormone-refractory prostate cancer. Cancer Immunol Immunother, 2002, 51(5): 263-270.
    [24]Marchand M1, van Baren N, Weynants P, Brichard V, Dreno B, Tessier MH, Rankin E, Parmiani G, Arienti F, Humbler Y, Bourlond A, Vanwijck R, Lienard D, Beauduin M, Dietrich PY, Russo V, Kerger J, Masucci G, Jager E, De Greve J, Atzpodien J, Brasseur F, Coulie PG, van tier Bruggen P, Boon T. Tumor regressions observed in patients with me- tastatic melanoma treated with an antigenic peptide encoded by gene MAGE 3 and pre sented by HLA A1.Int J Cancer, 1999, 80(2): 219-230.
    [25]Jager E, Jager D, Knuth A. CTL-defined cancer vaccines: Perspectives for active immunotherapeutic interventions in minimal resdiual disease. Cancer and Metast Rev, 1999, 18: 143-150.
    [26]Kim DK, Kim JH, Kim YT, Kim JW, Ioannides CG.The comparison of cytotoxic T- lymphocyte effects of dendritic cells stimulated by the folate binding protein peptide cul- tured with IL-15 and IL-2 in solid tumor. Yonsei Med J, 2002, 43(6): 691-700.
    [27]Tamura Y, Peng P, Liu K, Daou M, Srivastava PK. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science, 1997, 278(5335): 117-119.
    [28]Bodey B, Bodey B Jr, Siegel SE, et al. Failure of cancer vaccines: the significant limitations of this approach to immunotherapy. Anticancer Res, 2000, 20(4):2665-2676.
    [29]Novellino L, Castelli C, Parmiani G. A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother. 2005, 54(3):187-207.
    [30]van der Bruggen P, Traversari C, Chomez P, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science, 1991, 254(5038): 1643-1647.
    [31]Muscatelli F, Walker AP, De Plaen E, et al. Isolation and characterizationof a MAGE gene family in the Xp21.3 region. Proc Natl Acad Sci USA, 1995, 92(11): 4987-4991.
    [32]Lucas S, De Smet C, Arden KC, et al. Identification of a new MAGE gene with tumor-specific expression by representational diference analysis. Cancer Res, 1998, 58(4): 743-752.
    [33]Kirkin AF, Dzhandzhugazyan KN, Zeuthen J. Cancer/testis antigens: structural and immonobiological properties. Cancer Invest, 2002, 20(2): 222-236.
    [34]Juretic A, Spagnoli GC, Schultz Thater E, et al. Cancer / testis tumor-associated antigens: immunohistochemical detection with monoclonai antibodies. Lancet Oncol, 2003, 4(2): 104-109.
    [35]Park JH, Lee SW. Hypertonicity induction of melanoma antigen, a tumor-associated antigen. Mol Cells. 2002, 13(2):288-95.
    [36]Eichmuller S, Usener D, Thiel D, et al. Tumor-specific antigens in cutaneous T-cell lymphoma: expression and sero-reactivity, Int J Cancer, 2003, 20, 104(4): 482-487.
    [37]Kufer P, Zippelius A , Lutterbuse R, et al. Heterogeneous expression of MAGE-A genes in occult disseminated tumor cells: a novel multimarker reverse transcription-polymerase chain reaction for diagnosis of micrometastaticdisease. Cancer Res, 2002, 62(1): 251-261.
    [38]Li J, Yang Y, Fujie T, et al. Expression of the MAGE gene family in human gastric carcinoma. Anticancer Res, 1997, 17(5A): 3559-3563.
    [39]Katano M , Nakarnura M , Morisaki T, et al. Melanoma antigen-encoding gene-1 expression in invasive gastric carcinoma: correlation with stage of disease. J Surg Oncol, 1997, 64(3): 195-201.
    [40]Dhodapkar MV, Osman K, Teruya Feldstein J, et al. Expression of cancer /testis (CT)antigens MAGE-A1, MAGE-A3, MAGE-A4, CT-7, and NY-ESO-1 in malignant gammopathies is heterogeneous and correlates with site, stage and risk status of disease. Cancer Immun, 2003, 23(3): 9.
    [41]Sorcevic B, Spagnoli GC, Teraccian L, et al. Expression of cancer / testis tumor associated antigens in cervical squamous cell carcinoma. Oncology, 2003, 64 (4): 443-449.
    [42]Sadanaga N, Nagashima H, Tahara K, et al. The heterogeneous expression of MAGE-3 protein: difference between primary lesions and metastatic lymph nodes in gastric carcinoma. Oncol Rep, 1999, 6(5): 975-977.
    [43]Lu J, Leng X, Peng J, et al. Induction of cytotoxic T lymphocytes from the peripheral blood of a hepatoceilular carcinoma patient using melanoma antigen-1 (MAGE-1) peptide. Chin Med J (Engl). 2002, 115(7): 1002-1005.
    [44]Marchand M, van Baren N, Weynants P, et al, Tumor regressions observed inpatients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-AI. Int J Cancer. 1999, 80(2):219-230.
    [45]Coulie PG, Karanikas V, Lurquin C, et al. Cytolytic T cell responses of cancer patients vaccinated with a MAGE antigen, Immunol Rev 2002 Oct, 188(1):33-42.
    [46]Graff-Dubois S, Faure O, Gross DA, et al. Generation of CTL recognizing an HLA-A~*0201-restricted epitope shared by MAGE-A1, -A2, -A3, -A4, -A6,-A10, and -A12 tumor antigens: implication in a broad-spectrum tumor immunotherapy. J Immunol. 2002, 169(1):575-580.
    [47]Marchand M, Punt C J A, Aamdal S, et al. Immunisation of metastatic cancer patients with M AGE-3 protein combined with adjuvant SBAS-2: a clinical report, Eur J Cancer. 2003, 39(1):70-77.
    [48]Zhang Y, Chaux P, Stroobant V, et al.A MAGE-3 peptide presented by HLA-DRI to CD4+ T cells that were isolated from a melanoma patient vaccinated with a MAGE-3 protein. J Immunol, 2003, 171(1):219-225.
    [49]Sun X, Hodge LM, Jones HP, et al. Co-expression of granulocyte-macrophage colony-stimulating factor with antigen enhances humoral and tumor immunity after DNA vaccination. Vaccine. 2002, 20(9-10): 1466-1474.
    [50]Ye J, Chen GS, Song HP. Heat shock protein 70 / MAGE-1 tumor vaccine can enhance the potency of MAGE-l-specific cellular immune responses in vivo. Cancer Immunol Immunother. 2004, 53 (9):825-34.
    [51]Brossart MD. Dendritic cells in vaccination therapies of malignant diseases. Transfus Apheresis Sci. 2002, 27(2):183-186.
    [52]Sadanaga N, Nagashima H, Mashino K, et al. Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas. Clin Cancer Res. 2001, 7(8):2277-2784.
    [53]Wick M J, Ljunggren HG. Processing of bacterial antigens for peptide presentation on MHC class 1 molecules. Immunol Rev. 1999, 172:153-162.
    [54]Reimann J, Kaufmann SHE. Alternative antigen processing pathways for MHC-restricted epitope presentation in anti-infective immunity. Curt Opin Immunol. 1997, 9(4):462-469.
    [55]Zinkernagel RM. On cross-priming of MHC class 1-specific CTL: rule or exception? Eur J Immunol. 2002, 32(9):2385-2392.
    [56]Matsue H, Morita A, Matsue K, et al. New technologies toward dendritic cell-based cancer immunotherapies. J Dermatol. 1999, 26(11):757-763.
    [57]Overath P, Aebischer T. Antigen presentation by macrophages harboring intravesicular pathogens. Parasitol Today. 1999, 15(8):325-332.
    [58]Robinson SP, Saraya K, Reid CD. Developmental aspects of dendritic cells in vitro and in vivo. Leuk Lyphoma. 1998, 29(5-6):477-490.
    [59]Lindquist S. The heat-shock proteins.Annu Rev Genet,1988, 22: 631-677.
    [60]Feder ME, Hofmann GE.Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol, 1999, 61:243-282.
    [61]De Maio A.Heat shock proteins: facts, thoughts, and dreams. Shock, 1999, 11(1): 1-12.
    [62]Srivastava PK,Menoret A,Basu S,et al. Heat shock proteins come of age: Primitive functions acquire new roles in an adaptive world. Immunity, 1998, 8(6): 657-665.
    [63]Cristau B, Schafer PH, Pierce SK. Heat shock enhances antigen processing and accelerates the formation of compact class II alpha beta dimers. J Immunol. 1994, 152(4): 1546-56.
    [64]Panjwani N, Akbari O, Garcia S, Brazil M, Stockinger B. The HSC73 molecular chaperone: involvement in MHC class II antigen presentation. J Immunol. 1999, 163(4):1936-42.
    [65]Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity. 2001, 14(3): 303-313.
    [66]Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem. 2002, 277(17):15028-15034.
    [67]Moroi Y, Mayhew M, Trcka J, et al.Induction of cellular immunity by immunization with novel hybrid peptides complexed to heat shock protein 70. Proc Natl Acad Sci USA, 2000, 97(7): 3485-3490.
    [68]Kol A, Lichtman AH, Finberg RW, et al.Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol, 2000, 164(1):13-17.
    [69]Todryk S, Melcher AA.Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake. J Immunol, 1999, 163(3): 1398-1408.
    [70]Prohaszka Z, Singh M, Nagy K, et al.Heat shock protein 70 is a potent activator of the human complement system. Cell Stress Chaperones, 2002, 7 (1):17-22.
    [71]Delneste Y. Scavenger receptors and heat-shock protein-mediated antigen cross-presentation. Biochem Soc Trans. 2004, 32(Pt 4):633-635.
    [72]Krause SW, Gastpar R, Andreesen R. Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase i trial. Clin Cancer Res. 2004, 10(11):3699-3707.
    [73]Ma JH, Sui YF, Ye J, Huang YY, Li ZS, Chen GS, Qu P, Song HP, Zhang XM. Heat shock protein 70/MAGE-3 fusion protein vaccine can enhance cellular and humoral immune responses to MAGE-3 in vivo. Cancer Immunol Immunother, 2005 Sep, 54(9):907-914.
    [74]Castelli C, Rivoltini L, Rini F. Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer. Cancer Immunol Immunother. 2004, 53(3):227-233.
    [75]Janetzki S,Palla D,Rosenhauer V,et al.Immunization of cancer patients with autologous cancer derived heat shock protein gp96 preparations:A pilot study.Int J Cancer,2000, 88(2):232-238.
    [76]Tamura Y,Peng P, Liu K,et al.Immunotherapy of tumors with autologous tumor derived heat shock protein preparations. Science, 1997,278 (53 35):117-120.
    [77]Menoret A,Chandawarkar R.Heat shock protein based anti cancer immunotherapy: An idea whose time has come.Semin Onco1,1998,25(6):654-660.
    [78]Blachere NE, Li Z, Chandawarkar RY, Suto R, Jaikaria NS, Basu S, Udono H,Srivastava PK. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med. 1997, 186(8):1315-1322.
    [79] Roman E,Moreno C.Synthetic peptides non-covalently bound to bacterial HSP 70 elicit peptide specific T cell responses in vivo.Immunology 1996, 88 (4) :487-492.
    [80] Anthony LS, Wu H,Sweet H,et al.Priming of CD8+ CTL effector cells in mice by immunization with a stress protein in fluenza virus nucleo protein fusion molecule. Vaccine, 1999, 17(4):373-383.
    [81] Suzue K, Zhou X, Eisen HN, Young RA. Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class Ⅰ presentation pathway. Proc Natl Acad Sci USA, 1997, 94(24):13146-13151.
    [82] Hsu KF, Hung CF, Cheng WF, et al. Enhancement of suicidal DNA vaccine potency by linking Mycobacterium tuberculosis HSP 70 to an antigen. Gene Ther, 2001, 8(5):376-383.
    [83] Liu DW, Tsao YP, Kung JT, et al.Recombinant adeno-associated virus expressing human papillomavirus type 16 E7 peptide DNA fused with heat shock protein DNA as a potential vaccine for cervical cancer. J Virol, 2000, 74 (6) : 2888-2894.
    [84] Chert CH, Wang TL, Hung CF, et al.Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Res, 2000, 60(4): 1035-1042.
    [85] Lukacs KV, Lowrie DB, Stokes RW, et al. Tumor cells transfected with bacterial HSP gene lose tumorigenicity and induce protection against tumors. J Exp Med, 1993, 178 (1)343-348.
    [86] Melcher A, Todryk S, Hardwick N, et al. Tumor immunogenicity is determined by the mechanism of cell death via induction of HSP expression. Nat Med. 1998, 4(5): 581-587.
    [87] White J, Herman A, Pullen AM, Kubo R, Kappler JW, Marrack P. The V beta-specific superantigen staphylococcal enterotoxin B: stimulation of mature T cells and elonal deletion in neonatal mice. Cell. 1989 Jan 13, 56(1):27-35.
    [88] Li H, Lera A, Mariuzza RA. Structure-function studies of T-cell receptorsuperantigen interactions. Immunol Rev. 1998, 163:177-186.
    [89] Okamoto S, Kawabata S, Nakagawa I, Hamada S. Administration of superantigens protects mice from lethal Listeria monoeytogenes infection by enhancing eytotoxic T cells. Infect Immun. 2001, 69(11):6633-6642.
    [90] Kominsky SL, Torres BA, Hobeika AC, Lake FA, Johnson HM. Superantigen enhanced protection against a weak tumor-specific melanoma antigen: implications for prophylactic vaccination against cancer. Int J Cancer. 2001, 94(6):834-841.
    [91] 张立德,牟季美著.纳米材料和纳米结构.北京:科学出版社,2001,2-3.
    [92] 张志煜,崔作林著.纳米技术与纳米材料.北京:国防工业出版社,2000,4-6.
    [93] Emerich DF. Nanomedicine--prospective therapeutic and diagnostic applications. Expert Opin Biol Ther. 2005 Jan, 5(1):1-5.
    [94] Kubik T, Bogunia-Kubik K, Sugisaka M. Nanotechnology on duty in medical applications. Curr Pharm Biotechnol. 2005 Feb, 6(1):17-33.[95]Hing KA. Bone repair in the twenty-first century: biology, chemistry or engineering? Philos Transact A Math Phys Eng Sci. 2004 Dec 15, 362(1825):2821-2850.
    [96]Feng SS, Chien S. Chem Eng Sci, 2003, 58: 4087-4114.
    [97]Carrion C, Domingo JC, deMadariaga MA. Chem Phys Lipids, 2001, 113(1-2): 97-110.
    [98]Simes S, Moreira JN, Fonseca C, et al. Advanced Drug Delivery Reviews, 2004, 56(7): 947-965.
    [99]Junhwa S, Pochi S, Thompson DH. Journal of Controlled Release, 2003, 91(1-2): 187-200.
    [100]Lukyanov AN, Elbayoumi TA, Chakilam AR, et al. Journal of Controlled Release, 2004, 100(1):135-144.
    [101]Ringstorf H, Schlarb B, Venzmer J. Angew Chem Int Ed Engl, 1988, 27(1):113-145.
    [102]Ito A, Kuga Y, Honda H, Kikkawa H, Horiuchi A, Watanabe Y, Kobayashi T. Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett. 2004, 212(2):167-175.
    [103]van Dijkhuizen-Radersma R, Metairie S, Roosma JR, de Groot K, Bezemer JM. Controlled release of proteins from degradable poly(ether-ester) multiblock copolymers. J Control Release. 2005, 101(1-3): 175-186.
    [104]Bala I, Hariharan S, Kumar MN. PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Syst. 2004, 21(5):387-422
    [105]Tamilvanan S. Oil-in-water lipid emulsions: implications for parenteral and ocular delivering systems. Prog Lipid Res. 2004, 43(6):489-533.
    [107]Lawrence M J, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2000, 45(1):89-121.
    [108]Aucouturier J, Dupuis L, Ganne V (2001) Adjuvants designed for veterinary and human vaccines. Vaccine. 19(17-19):2666-2672.
    [109]Shi R, Hong L, Wu D, Ning X, Chen Y, Lin T, Fan D, Wu K. Enhanced immune response to gastric cancer specific antigen Peptide by coencapsulation with CpG oligodeoxynucleotides in nanoemulsion. Cancer Biol Ther. 2005 Feb, 4(2): 218-24.
    [110]Gasparini R, Pozzi T, Montomoli E. Increased immunogenicity of the MF59-adjuvanted influenza vaccine compared to a conventional subunit vaccine in elderly subjects. Eur J Epidemiol. 2001, 17(2): 135-140.
    [111]Yamshchikov GV, Barnd DL, Eastham S, Evaluation of peptide vaccine immunogenicity in draining lymph nodes and peripheral blood of melanoma patients. Int J Cancer. 2001, 92(5):703-711.
    [112]Banzhoff A, Nacci P, Podda A. A new MF59-adjuvanted influenza vaccine enhances the immune response in the elderly with chronic diseases: results from an immunogenicity recta-analysis. Gerontology. 2003, 49(3):177-84.
    [113]Torchilin, Vladimir P. Drug targeting. Eur J Pharm Sci, 2000, 11(2): 81-91.
    [114]Thompson WW, Anderson DB, Heiman ML. Biodegradable microspheres as a delivery system for rismorelin porcine, a porcine- growth- hormone- releasing-hormone. J Controlled Release, 1997, 43(1): 9-22.
    [115]Foster TP, Moseley WM, Caputo JF, etal. Sustained elevated serum somatotropin concentrations in Holstein steers following subcutaneous delivery of a growth hormone releasing factor analog dispersed in water, oil or microspheres. Controlled Release, 1997, 47(1): 91-99.
    [116]Damge C, Hillairebuys D, Puech R, et al. Effects of orally-administered insulin nanocapsules in normal and diabetic dog. Diabetes Nutr Metab, 1995, 8(1): 3-9.
    [117]Lamprecht A, Schafer U, Lehr CM. Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm Res, 2001, 18(6): 788-793.
    [118]Chavany C, Connell Y, Neckers L. Contribution of sequence and phosphorothioate content to inhibition of cell-growth and adhesion caused by c-myc antisense oligomers. Mol Pharmacol, 1995, 48(4): 738-746.
    [119]Fritz H, Maier M, Bayer E. Cationic polystyrene nanoparlicles: preparation and characterization of a model drug carrier system for antisense oligonucleotides. J Colloid Interface Sci, 1997, 195(2): 272-288.
    [120]Godard G, Boutorine AS, Saisonbehmoaras E, et al. Antisense effects of cholesterol- oligodeoxynucleotide conjugates as sociated with poly (alkylcyanoacrylate) nanoparticles. Eur J Biochem, 1995, 232(2): 404-410.
    [121]Nakada Y, Fattal E, Foulquier M, et al. Pharmacokinetics and biodistribution of oligonucleotide adsorbed onto poly (isobutylcyanoacrylate) nanoparticles after intravenous administration in mice. Pharm Res, 1996, 13(1): 38-43.
    [122]Morin C, Barratt G, Fessi H, et al. Improved intracellular delivery of a muramyl dipeptide analog by means of nanocapsules. Int J Immunopharmacol, 1994, 16(5-6): 451-456.
    [123]Barratt G, Puisieux F, Yu WP, et al. Antimetastatic activity of mdp-1-alanyl-cholesterol incorporated into various types of nanocapsules. Int J Immunopharmacol, 1994, 16(5-6): 457-461.
    [124]Allemann E, Brasseur N, Benrezzak O, et al. Peg- coated poly (lactic acid) nanoparticles for the delivery of hexadecafluoro zinc phthalocyanine to emt-6 mouse mammary tumors. J Pharm Pharmacol, 1995, 47(5): 382-387.
    [125]Sharma D, Chelvi TP, Kaur J, et al. Noveltaxol (R) formulation: polyvinyl-pyrrolidone nanoparticle-encapsulated taxol (R) for drug delivery in cancer therapy. Oncol Res, 1996, 8(7-8): 281-286.
    [126]Leroux JC, Cozens R, Roesel JL, et al. Pharmacokinetics of a novel hiv-1 protease inhibitor incorporated into biodegradable or enteric nanoparticles following intravenous and oral-administration to mice. J Pharm Sci, 1995, 84(12): 1387-1391.
    [127]Lobenberg R, Kreuter J. Macrophage targeting of azidothymidine: a promising strategy for AIDS therapy. Aids Res Hum Retrov, 1996, 12(18): 1709-1715.
    [128]Rodrigues JM, Croft SL, Fessi H, et al. The activity and ultrastructural localization of primaquine- loaded poly (d, 1-lactide) nanoparticles in leishmania- donovani infected mice. Trop Med Parasitol, 1994, 45(3): 223-228.
    [129]Karajgi JS, Vyas SP. A lymphotropic colloidal carrier system for diethylcar-bamazine- preparation and performance evaluation. J Microencapsul, 1994, 11(5): 539-545.
    [130]Fresta M, Puglisi G, Giammona G, et al. Pefloxacine mesilate- loaded and ofloxacin- loaded polyethylcyanoacrylate nanoparticles- characterization of the colloidal drug carrier formulation. J Pharm Sci, 1995, 84(7): 895-902.
    [131]Kreuter J. Nanoparticles and microparticles for drug and vaccine delivery [J]. J Anat, 1996, 189(3): 503-505.
    [132]O'Hagan DT. Microparticles and polymers for the mucosal delivery of vaccines. Adv Drug Deliv Rev, 1998, 34(2-3): 305-320.
    [133]Kossovsky N, Gelman A, Hnatyszyn HJ, et al. Surface modified diamond nanoparticles as antigen delivery vehicle. Bioconjugate Chem, 1995, 6(5): 507-511.
    [134]Bergemann C, Miler- Schulte D, Oster J, et al. Magneticion- exchange nano- and microparticles for medical, biochemical and molecular biological applications. Magn Magn Mater, 1999, 194(1-3): 45-52.
    [135]Fricker J. Drugs with a magnetic attraction to tumours. Drug Discovery Today, 2001, 6(8): 387-389.
    [136]Ferranti V, Marchais H, Chabenat C, et al. Primidone-loaded poly- epsiloncaprolactone nanocapsules: incorporation efficiency and in vitro release profiles. Int J Pharm 1999, 193(1): 107-111.
    [137]Zimmer A, Mutschler E, Lambrecht G, et al. Pharmacokinetic and pharmaco-dynamic aspects of an ophthalmic pilocarpine nanoparticle- delivery- system. Pharmaceut Res, 1994, 11(10): 1435-1442.
    [138]Calvo P, VilaJato JL, Alonso MJ. Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. In J Pharm, 1997, 153(1): 41-50.
    [139]Allemann E, Leroux JC, Gurny R, et al. In vitro extended release properties of drug-loaded poly (dl-lactic acid nanoparticles produced by a salting- out procedure. Pharm Res, 1993, 10(12): 1732-1737.
    [140]Schroder U, Sabel BA. Nanoparticles, a drug carrier system to pass the blood-brain barrier, permit central analges effects of iv dalargin injections. Brain Res, 1996, 710 (1-2): 121-124.
    [141]Alyautdin RN, Petrov VE, Langer K, et al. Delivery loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res 1997, 14(3): 325-328.
    [142]Polato L, Benedetti LM, Callegaro L, et al. In vitro evaluation of nanoparticle formulations containing gangliosides. J Drug Target, 1994, 2(1): 53-59.
    [143]Kim YI, Fluckiger L, Hoffman M, et al. The antihypertensive effect of orally administered nifedipine-loaded nanoparticles in spontaneously hypertensive rats. Brit J Pharmacol, 1997, 120(3): 399-404.
    [144]Labhasetwar V, Song CX, Humphrey W, et al. Arterial uptake of biodegradable nanoparticles: effect of surface modifications. J Pharm Sci, 1998,87(10):1229-1234.
    [145] 中华人民共和国卫生部药政局.新药(西药)临床前研究指导原则汇编.1993.137-139.
    [146] S.M. Moghimi, A.C. Hunter, J.C. Murray. Long-circulating and target specific nanoparticles: theory to practice. Pharmacol. Rev. 2001, 53(2):283-318.
    [147] S.V. Vinagradov, T.K. Bronich, A.V. Kabanov. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Del Rev. 2002, 54(1):135-147.
    [148] Foster KA, Yazdanian M, Audus KL. Microparticulate uptake mechanisms of in-vitro cell culture models of the respiratory epithelium. J Pharm Pharmacol. 2001, 53(1):57-66.
    [149] Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res. 1997, 14(11):1568-1573.
    [150] Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res. 1996, 13(12): 1838-1845.
    [151] R.A. Kroll, M.A. Pagel, L.L. Muldoon, S. Roman-Goldstein, S.A. Fiamengo, E.A. Neuwelt. Improving drug delivery to intracerebral tumor and surrounding brain in a rodent model: a comparison of osmotic versus bradykinin modification of the blood-brain and/or blood-tumor barriers. Neurosurgery. 1998, 43 (9): 879-886.
    [152] Zauner W, Farrow NA, Haines AM. In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J Control Release. 2001.71(1):39-51.
    [153] 李立新,樊晶,王学谦.脂质体包裹人血红蛋白微囊的制备及其对大鼠血液的影响.天津医药.2004,32(2):101-103.
    [154] Chong CS, Cao M, Wong WW, et al. Enhancement ofT helper type 1 immune responses against hepatitis B virus core antigen by PLGA nanoparticle vaccine delivery. J Control Release. 2005 Jan 20, 102(1):85-99.
    [155] Tanguay S, Killion JJ. Direct comparison of ELISPOT and ELISA-based assays for detection of individual cytokine-secreting cells. Lymphokine Cytokine Res, 1994,13 (4): 259-263.
    [156] Scheibenbogen C, Lee KH, Stevanovic S, et al.Analysis of the T cell response to tumor and viral peptide antigens by an IFN gamma-ELISPOT assay. Int J Cancer, 1997, 71 (6):932-936.
    [157] Griffioen M, Borghi M, Schrier PI,Detection and quantification of CDS(+)T cells specific for HLA-A*0201-binding melanoma and viral peptides by the IFN-gamma ELISPOT assay. Int J Cancer, 2001,93(4):549-555.
    [158] Reynolds SR, Zeleniuch-Jacquotte A, Shapiro RL,et al.Vaccine -induced CD8+ T-cell responses to MAGE-3 correlate with clinical outcome in patients with melanoma. Clin Cancer Res,2003, 9 (2):657-662.
    [159] Lando PA, Olsson C, Kalland T, et al. Regulation of superantigen-induced T cell activation in the absence and the presence of MHC class Ⅱ. J Immunol. 1996, 157(7):2857-2863.
    [160] Tortes BA, Kominsky S, Perrin GQ, Hobeika AC, Johnson HM. Superantigens: the good, the bad, and the ugly. Exp Biol Med (Maywood). 2001, 226(3):164-176.[161] Alain Luxembourg, Howard Grey. Strong induction of tyrosine phosphorylation, intracellular calcium, nuclear transcription factors and interferonc, but weak induction of IL-2 in naive T cells stimulated by bacterial superantigen.Cellular Immunology. 2002, 219: 28-37.
    [162] WaeckerleoMen Y, Groettrup M. PLGA microspheres for improved antigen delivery to dendritic cells as cellular vaccines. Adv Drug Deliv Rev. 2005 Jan 10, 57(3):475-82.
    [163] Shen Z, Reznikoff G, Dranoff G, Rock KL. Cloned dendritic cells can present exogenous antigens on both MHC class Ⅰ and class Ⅱ molecules. J Immunol. 1997 Mar 15, 158(6):2723-30.
    [164] Ludewig B, Barchiesi F, Peficin M, Zinkernagel RM, Hengartner H, Schwendener RA. In vivo antigen loading and activation of dendritic cells via a liposomal peptide vaccine mediates protective antiviral and anti-tumor immunity.Vaccine, 2000, 19(1): 23-32.
    [165] Shi R, Hong L, Wu D, Ning X, Chen Y, Lin T, Fan D, Wu K. Enhanced immune response to gastric cancer specific antigen Peptide by coencapsulation with CpG oligodeoxynucleotides in nanoemulsion. Cancer Biol Ther. 2005 Feb, 4(2): 218-24.
    [166] Kawakami S, Yamashita F, Hashida M. Disposition characteristics of emulsions and incorporated drugs after systemic or local injection. Adv Drug Deliv Rev. 2000 Dec 6, 45(1):77-88.
    [167] Ostrand-Rosenberg S, Sinha P, Danna EA, Antagonists of tumor-specific immunity: tumor-induced immune suppression and host genes that co-opt the anti-tumor immune response. Breast Dis. 2004, 20(2):127-135.
    [168] Florence AT. Issues in oral nanoparticle drug carrier uptake and targeting. J Drug Target. 2004, 12(2):65-70.
    [169] Ogawa Y, Okada H, Yamamoto M, et al. In vivo release profiles of leuprolide acetate from microcapsules prepared with polylactic acids or copoly (lactic/ glycolic) acids and in vivo degradation of these polymers.Chem Pharm Bull, 1988, 36(7):2576-2581.
    [170] Damge C, Hillaire-Buys D, Puech R, et al. Effects of orally administered insulin nanocapsules in normal and diabetic dogs [J]. Diabetes, Nutr, Metab, 1995, 8 (1)3-9.
    [171] Cho YW, Flynn MJ. Oral delivery of insulin. Lancet, 1989, 23:1518-1519.
    [172] Cho YW. Pharmaceutical compositions. WO: 8705505, 1987-03-12. (CA 1987, 108: 62488)
    [173] Cho YW, Flynn MJ. Pharmaceutical formulations.WO:9003164, 1989-09-29. (CA1990, 113: 158697)
    [174] Cho YW, Flynn MJ, Shepherd TS. Pharmaceutical foumulations. WO: 9114454, 1991-04-02. (CA 1991,115:239787)
    [175] Cho YW. Microparticular pharmaceutical compositions in micellar form. WO: 9512385, 1994-05-11. (CA 1995, 123: 93921)
    [176] 吴琼珠,平其能,刘国华.小鼠口服胰岛素复乳后降血糖效果的实验研究.中国医药工业杂志,1990,21(10):445-448.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700