用户名: 密码: 验证码:
ACE2基因多态性与原发性高血压和颈动脉IMT相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察ACE2基因A9570G多态性在人群中的分布,超声测量高血压患者颈动脉内中膜厚度(IMT),并探讨两者的关系。
     方法:选择符合入选标准的204例高血压患者和211例健康人群,所有受试者测量身高、体重、血压,测定空腹血糖、血脂、肝功能、肾功能。采用聚合酶链反应-限制性片段长度多态性(PCR-RFLP)的方法,进行ACE2基因分型。随访94名高血压患者,测量颈动脉内径和内中膜厚度。应用χ2检验比较组间基因型及等位基因频率,应用Logistic回归分析校正风险因素后,判别ACE2基因不同基因型与高血压及颈动脉IMT的关系。
     1、在男性人群中,高血压组G基因型和A基因型频率分别为59%和41%,对照组为44%和56%,两组间基因型分布有统计学差异(χ2=4.907,P=0.027)。
     2、在女性人群中,高血压组AA、AG、GG基因型分别占22%、37%和41%,对照组为22%、44%和34%,基因型分布无统计学差异(χ2=1.347,P=0.510)。高血压组A和G等位基因频率分别为41%和59%,对照组为44%和56%,两组间等位基因频率无统计学差异(χ2=0.644,P=0.422)。
     3、运用Logistic回归分析对年龄、体重指数、腰臀比、胆固醇、甘油三酯、高密度脂蛋白、低密度脂蛋白、吸烟史、饮酒史、高血压家族史等混杂因素校正后,G等位基因仍是男性高血压发病的危险因素之一(P=0.042,OR=1.241,95%CI=1.036-1.673),而不是女性高血压发病的危险因素。
     4、彩超检查结果显示,男性不同基因型高血压患者颈动脉IMT无差异(χ2=0.009,P=0.923)。女性不同基因型高血压患者颈动脉IMT亦无差异(χ2=0.131,P=0.718)。
     1、ACE2基因A9570G多态性与男性高血压病相关,G等位基因可能是男性患高血压的易感基因。
     2、ACE2基因A9570G多态性与女性高血压病不相关。
     3、ACE2基因A9570G多态性与高血压患者颈动脉IMT厚度不相关。
Objective:To investigate the relationship of ACE2 gene polymorphism with EH susceptibility and IMT of carotid in Hunan Han population.
     Methods:204 hypertension patients and 211 controls were recruited in this trail. Height, weight,blood pressure,fasting blood glucose, triglyceride,cholesterol,high density lipoprotein cholesterol,low density lipoprotein cholesterol,liver function and renal function were tested. The distribution of ACE2 gene A9570G polymorphism were analyzed by PCR-RFLP in all participants.The carotid arteries were performed with ultrsonography in 96 patients.χ2method was performed to evaluate association of genotype with essential hypertension. Logistic regression was performed to evaluate whether the different genotypes become the risk factor of essential hypertension and IMT.
     1. In male, Genotype frequencies for ACE2 gene A9570G G and A genotypes were 59% and 41% in hypertension group respectively,44% and 56% in controls.There was significant difference of genotype distribution between the cases and controls (χ2=4.907, P=0.027)
     2. In female, genotype frequencies for ACE2 gene A9570G AA,AG and GG genotypes were 22%,37% and 41% in hypertension group respectively,22%、44% and 34% in controls. There was no significant difference of genotype distribution between the cases and controls (χ2 =1.347, P=0.510).Allele frequencies of ACE2 gene has no significant difference between the cases and controls neither (χ2=0.644, P=0.422).
     3.When adjusted by risk factors including age, BMI, WHR, FBG, triglyeride, cholesterol, high density lipoprotein and low density lipoprotein, smoking, taking alcohol, EH family hostory, using logistic regression method analysis founded that there was relationship between ACE2 A9570G polymorphism and EH male group (P=0.042) but not in female group.
     4.The carotid artery IMT had no significant different bewteen different alleles frequence and gene types both in male and female patient(χ2=0.009,P=0.923 andχ2=0.131, P=0.718).
     l.The ACE2 gene A9570G polymorphism is associated with hypertension in male.G alleles may be the susceptibility gene of hypertension in male.
     2.The ACE2 gene A9570G polymorphism are not associated with hypertension among three genetypes in female.
     3.The ACE2 gene A9570G polymorphism is not associated with the carotid artery IMT in different alleles frequence nor genetypes both in male and female.
引文
[1]Rice T, Rankinen T, Province MA, et al., Genome-wide linkage analysis of systolic and diastolic blood pressure:the Quebec Family Study, Circulation, vol. 102,1956-1963,2000.
    [2]Donoghue M, Hsieh F, Baronas E, et al., A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin Ⅰto angiotensin 1-9, Circ Res, vol.87,E1-9,2000.
    [3]Danilczyk U, Eriksson U, Crackower MA, et al., A story of two ACEs, J Mol Med, vol.81,227-234,2003.
    [4]Tipnis SR, Hooper NM, Hyde R, et al., A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase, J Biol Chem, vol.275,33238-33243, 2000.
    [5]Ren Y, Garvin JL, and Carretero OA, Vasodilator action of angiotensin-(1-7) on isolated rabbit afferent arterioles, Hypertension, vol.39,799-802,2002.
    [6]Crackower MA, Sarao R, Oudit GY, et al., Angiotensin-converting enzyme 2 is an essential regulator of heart function, Nature, vol.417,822-828,2002.
    [7]Tikellis C, Cooper ME, Bialkowski K, et al., Developmental expression of ACE2 in the SHR kidney:a role in hypertension?, Kidney Int, vol.70,34-41, 2006.
    [8]Visona A, Pesavento R, Lusiani L, et al., Intimal medial thickening of common carotid artery as indicator of coronary artery disease, Angiology, vol.47,61-66, 1996.
    [9]Gu D, Reynolds K, Wu X, et al., Prevalence, awareness, treatment, and control of hypertension in china, Hypertension, vol.40,920-927,2002.
    [10]Turner AJ, Exploring the structure and function of zinc metallopeptidases:old enzymes and new discoveries, Biochem Soc Trans, vol.31,723-727,2003.
    [11]Duka I, Kintsurashvili E, Gavras I, et al., Vasoactive potential of the b(1) bradykinin receptor in normotension and hypertension, Circ Res, vol. 88,275-281,2001.
    [12]Ueda S, Masumori-Maemoto S, Wada A, et al., Angiotensin(1-7) potentiates bradykinin-induced vasodilatation in man, J Hypertens, vol.19,2001-2009, 2001.
    [13]Rice GI, Thomas DA, Grant PJ, et al., Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism, Biochem J, vol.383,45-51,2004.
    [14]Huang L, Sexton DJ, Skogerson K, et al., Novel peptide inhibitors of angiotensin-converting enzyme 2,J Biol Chem, vol.278,15532-15540,2003.
    [15]Hocht C, Opezzo JA, Gironacci MM, et al., Hypothalamic cardiovascular effects of angiotensin-(1-7) in spontaneously hypertensive rats, Regul Pept, vol. 135,39-44,2006.
    [16]Yagil C, Katni G, Rubattu S, et al., Development, genotype and phenotype of a new colony of the Sabra hypertension prone (SBH/y) and resistant (SBN/y) rat model of slat sensitivity and resistance, J Hypertens, vol.14,1175-1182,1996.
    [17]Gurley SB, Allred A, Le TH, et al., Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice, J Clin Invest, vol.116,2218-2225,2006.
    [18]Rentzsch B, Todiras M, Iliescu R, et al., Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function, Hypertension, vol.52,967-973,2008.
    [19]Ferrario CM, Jessup J, Chappell MC, et al., Effect of angiotensin-converting enzyme inhibition and angiotensin Ⅱ receptor blockers on cardiac angiotensin-converting enzyme 2, Circulation, vol.111,2605-2610,2005.
    [20]Zhao Q, Gu D, Kelly TN, et al., Association of Genetic Variants in the Apelin-APJ System and ACE2 With Blood Pressure Responses to Potassium Supplementation:The GenSalt Study, Am J Hypertens,2010.
    [21]Niu W, Qi Y, Hou S, et al., Correlation of angiotensin-converting enzyme 2 gene polymorphisms with stage 2 hypertension in Han Chinese, Transl Res, vol. 150,374-380,2007.
    [22]Fan X, Wang Y, Sun K, et al., Polymorphisms of ACE2 gene are associated with essential hypertension and antihypertensive effects of Captopril in women, Clin Pharmacol Ther, vol.82,187-196,2007.
    [23]Zhong J, Yan Z, Liu D, et al., Association of angiotensin-converting enzyme 2 gene A/G polymorphism and elevated blood pressure in Chinese patients with metabolic syndrome, JLab Clin Med, vol.147,91-95,2006.
    [24]Benjafield AV, Wang WY, and Morris BJ, No association of angiotensin-converting enzyme 2 gene (ACE2) polymorphisms with essential hypertension, Am JHypertens, vol.17,624-628,2004.
    [25]Enderle MD, Schroeder S, Ossen R, et al., Comparison of peripheral endothelial dysfunction and intimal media thickness in patients with suspected coronary artery disease, Heart, vol.80,349-354,1998.
    [26]Fasseas P, Brilakis ES, Leybishkis B, et al., Association of carotid artery intima-media thickness with complex aortic atherosclerosis in patients with recent stroke, Angiology, vol.53,185-189,2002.
    [27]Beebe HG, Salles-Cunha SX, Scissons RP, et al., Carotid arterial ultrasound scan imaging:A direct approach to stenosis measurement, J Vasc Surg, vol. 29,838-844,1999.
    [28]Sukernik MR, West OD, Chittivelu B, et al., Hemodynamic Predictors of Atherosclerosis in the Thoracic Aorta, Echocardiography, vol.15,157-162, 1998.
    [29]Langeveld BE, Henning RH, de Smet BJ, et al., Rescue of arterial function by angiotensin-(1-7):towards improvement of endothelial function by drug-eluting stents, Neth Heart J, vol.16,291-292,2008. 发现ACE2蛋白产物及受体。ACE2对调节肾内AngⅡ的浓度也起到重要作用,在大多数实验中,ACE2可以拮抗肾内AngⅡ浓度增加引起的血压升高。Crackower MA报道肾脏ACE2表达与高血压呈负相关。盐敏感高血压大鼠肾脏局部ACE2 mRNA水平较血压正常大鼠低,在给予高盐饮食后,其肾脏内ACE2mRNA水平进一步下降。相对于血压正常大鼠,自发高血压大鼠和易卒中高血压大鼠肾脏内ACE2蛋白含量均降低。糖尿病肾病大鼠肾内ACE2蛋白合成减少,拮抗AngⅡ减弱,其肾脏纤维化严重程度与ACE2基因多态性相关。还有研究发现,Ang1-7可使入球动脉舒张。予正常血压的大鼠或狗注入Ang1-7后,可起利尿效果。在离体近端肾小管培养液中加入AngⅠ后,在AngⅡ浓度升高的同时,Ang1-7、Ang1-9含量也随之升高,使用ACE2阻滞剂DX600可阻断该代偿反应的发生。 在肾移植患者及糖尿病肾病患者早期肾小球和肾小管中,内皮细胞分泌ACE2增多,而晚期含量却降低,使用ACEI可延缓该现象的出现,提示ACE2可以发挥肾脏保护作用。但也有不同的研究结论。给水负荷大鼠静脉注射Angl-7发挥抗利尿作用,并引起钠重吸收增加。Arima发现,肾脏局部Ang1-7不能发挥舒张肾脏血管或拮抗局部AngⅡ的作用。
    综上所述,RAS系统的各部分的平衡紊乱在高血压的发生、发展和靶器官损害方面起着重要作用。ACE2可对抗AngⅡ生物学活性,发挥舒张血管、抗增殖、保护心脏功能等作用。对ACE2基因多态性的研究显示ACE2基因多态性在人类高血压的发病中起重要作用,ACE2基因可能是高血压发病的候选基因。与其相关的研究对防止高血压及其他心血管疾病有重要意义。
    [1]Gu D, Reynolds K, Wu X, et al., Prevalence, awareness, treatment, and control of hypertension in china, Hypertension, vol.40,920-927,2002.
    [2]Mullins LJ, Bailey MA, and Mullins JJ, Hypertension, kidney, and transgenics:a fresh perspective, Physiol Rev, vol.86,709-746,2006.
    [3]Jeunemaitre X, Soubrier F, Kotelevtsev YV, et al., Molecular basis of human hypertension:role of angiotensinogen, Cell, vol.71,169-180, 1992.
    [4]Schmidt S, Sharma AM, Zilch O, et al., Association of M235T variant of the angiotensinogen gene with familial hypertension of early onset, Nephrol Dial Transplant, vol.10,1145-1148,1995.
    [5]Staessen JA, Kuznetsova T, Wang JG, et al., M235T angiotensinogen gene polymorphism and cardiovascular renal risk, J Hypertens, vol. 17,9-17,1999.
    [6]Brand E, Chatelain N, Keavney B, et al. Evaluation of the angiotensinogen locus in human essential hypertension:a European study, Hypertension, vol.31,725-729,1998.
    [7]Ortlepp JR, Metrikat J, Mevissen V, et al., Relation between the angiotensinogen (AGT) M235T gene polymorphism and blood pressure in a large, homogeneous study population, J Hum Hypertens, vol. 17,555-559,2003.
    [8]Katsuya T and Ogihara T, [Genes in rennin-angiotensin system], Nippon Rinsho, vol.62,111-119,2004.
    [9]Frossard PM, Lestringant GG, Malloy MJ, et al., Human renin gene Bgll dimorphism associated with hypertension in two independent populations, Clin Genet, vol.56,428-433,1999.
    [10]Barley J, Carter ND, Cruickshank JK, et al., Renin and atrial natriuretic peptide restriction fragment length polymorphisms:association with ethnicity and blood pressure, J Hypertens, vol.9,993-996,1991.
    [11]Hubert C, Houot AM, Corvol P, et al., Structure of the angiotensin I-converting enzyme gene. Two alternate promoters correspond to evolutionary steps of a duplicated gene, J Biol Chem, vol. 266,15377-15383,1991.
    [12]Espinel E, Tovar JL, Borrellas J, et al., Angiotensin-converting enzyme i/d polymorphism in patients with malignant hypertension, J Clin Hypertens (Greenwich), vol.7,11-15; quiz 16-17,2005.
    [13]Giner V, Poch E, Bragulat E, et al., Renin-angiotensin system genetic polymorphisms and salt sensitivity in essential hypertension, Hypertension, vol.35,512-517,2000.
    [14]Tamaki S, Nakamura Y, Tsujita Y, et al., Polymorphism of the angiotensin converting enzyme gene and blood pressure in a Japanese general population (the Shigaraki Study), Hypertens Res, vol. 25,843-848,2002.
    [15]Mettimano M, Lanni A, Migneco A, et al., Angiotensin-related genes involved in essential hypertension:allelic distribution in an Italian population sample, Ital Heart J, vol.2,589-593,2001.
    [16]Donoghue M, Hsieh F, Baronas E, et al., A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin Ⅰ to angiotensin 1-9, Circ Res, vol.87,E1-9,2000.
    [17]Tipnis SR, Hooper NM, Hyde R, et al., A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase, J Biol Chem, vol. 275,33238-33243,2000.
    [18]Danilczyk U, Eriksson U, Crackower MA, et al., A story of two ACEs, J Mol Med, vol.81,227-234,2003.
    [19]Turner AJ, Exploring the structure and function of zinc metallopeptidases:old enzymes and new discoveries, Biochem Soc Trans, vol.31,723-727,2003.
    [20]Towler P, Staker B, Prasad SG, et al., ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis, J Biol Chem, vol.279,17996-18007,2004.
    [21]Ferrario CM, Jessup J, Chappell MC, et al., Effect of angiotensin-converting enzyme inhibition and angiotensin Ⅱ receptor blockers on cardiac angiotensin-converting enzyme 2, Circulation, vol. 111,2605-2610,2005.
    [22]Komatsu T, Suzuki Y, Imai J, et al., Molecular cloning, mRNA expression and chromosomal localization of mouse angiotensin-converting enzyme-related carboxypeptidase (mACE2), DNA Seq, vol.13,217-220,2002.
    [23]Brosnihan KB, Neves LA, Anton L, et al., Enhanced expression of Ang-(1-7) during pregnancy, Braz J Med Biol Res, vol.37,1255-1262, 2004.
    [24]Burrell LM, Risvanis J, Kubota E, et al., Myocardial infarction increases ACE2 expression in rat and humans, Eur Heart J, vol.26,369-375; discussion 322-364,2005.
    [25]Lely AT, Hamming I, van Goor H, et al., Renal ACE2 expression in human kidney disease, J Pathol, vol.204,587-593,2004.
    [26]Castro-Chaves P, Cerqueira R, Pintalhao M, et al., New pathways of the renin-angiotensin system:the role of ACE2 in cardiovascular pathophysiology and therapy, Expert Opin Ther Targets, vol.14,485-496, 2010.
    [27]Rice GI, Thomas DA, Grant PJ; et al., Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism, Biochem J, vol.383,45-51, 2004.
    [28]Ueda S, Masumori-Maemoto S, Wada A, et al., Angiotensin(1-7) potentiates bradykinin-induced vasodilatation in man, J Hypertens, vol. 19,2001-2009,2001.
    [29]Duka I, Kintsurashvili E, Gavras I, et al., Vasoactive potential of the b(1) bradykinin receptor in normotension and hypertension, Circ Res, vol. 88,275-281,2001.
    [30]Tatemoto K, Takayama K, Zou MX, et al., The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism, Regul Pept, vol.99,87-92,2001.
    [31]Vickers C, Hales P, Kaushik V, et al., Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase, J Biol Chem, vol.277,14838-14843,2002.
    [32]Ferrario CM, Angiotension-(1-7) and antihypertensive mechanisms, J Nephrol, vol.11,278-283,1998.
    [33]Freeman EJ, Chisolm GM, Ferrario CM, et al., Angiotensin-(1-7) inhibits vascular smooth muscle cell growth, Hypertension, vol. 28,104-108,1996.
    [34]Li P, Chappell MC, Ferrario CM, et al., Angiotensin-(1-7) augments bradykinin-induced vasodilation by competing with ACE and releasing nitric oxide, Hypertension, vol.29,394-400,1997.
    [35]Neves LA, Averill DB, Ferrario CM, et al., Characterization of angiotensin-(1-7) receptor subtype in mesenteric arteries, Peptides, vol. 24,455-462,2003.
    [36]Huang L, Sexton DJ, Skogerson K, et al. Novel peptide inhibitors of angiotensin-converting enzyme 2, J Biol Chem, vol.278,15532-15540, 2003.
    [37]Hocht C, Opezzo JA, Gironacci MM, et al., Hypothalamic cardiovascular effects of angiotensin-(1-7) in spontaneously hypertensive rats, Regul Pept, vol.135,39-44,2006.
    [38]Iyer SN, Averill DB, Chappell MC, et al., Contribution of angiotensin-(1-7) to blood pressure regulation in salt-depleted hypertensive rats, Hypertension, vol.36,417-422,2000.
    [39]Ren Y, Garvin JL, and Carretero OA, Vasodilator action of angiotensin-(1-7) on isolated rabbit afferent arterioles, Hypertension, vol. 39,799-802,2002.
    [40]Yagil C, Katni G, Rubattu S, et al., Development, genotype and phenotype of a new colony of the Sabra hypertension prone (SBH/y) and resistant (SBN/y) rat model of slat sensitivity and resistance, J Hypertens, vol.14,1175-1182,1996.
    [41]Crackower MA, Sarao R, Oudit GY, et al., Angiotensin-converting enzyme 2 is an essential regulator of heart function, Nature, vol. 417,822-828,2002.
    [42]Gurley SB, Allred A, Le TH, et al., Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice, J Clin Invest, vol. 116,2218-2225,2006.
    [43]Tikellis C, Cooper ME, Bialkowski K, et al., Developmental expression of ACE2 in the SHR kidney:a role in hypertension?, Kidney Int, vol. 70,34-41,2006.
    [44]Rentzsch B, Todiras M, Iliescu R, et al., Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function, Hypertension, vol.52,967-973,2008.
    [45]Yagil Y and Yagil C, Hypothesis:ACE2 modulates blood pressure in the mammalian organism, Hypertension, vol.41,871-873,2003.
    [46]Benjafield AV, Wang WY, and Morris BJ, No association of angiotensin-converting enzyme 2 gene (ACE2) polymorphisms with essential hypertension, Am J Hypertens, vol.17,624-628,2004.
    [47]Sanchez R, Nolly H, Giannone C, et al., Reduced activity of the kallikrein-kinin system predominates over renin-angiotensin system overactivity in all conditions of sodium balance in essential hypertensives and family-related hypertension, J Hypertens, vol. 21,411-417,2003.
    [48]Maia LG, Ramos MC, Fernandes L, et al., Angiotensin-(1-7) antagonist A-779 attenuates the potentiation of bradykinin by captopril in rats, J Cardiovasc Pharmacol, vol.43,685-691,2004.
    [49]Zhong JC, Huang DY, Yang YM, et al., Upregulation of angiotensin-converting enzyme 2 by all-trans retinoic acid in spontaneously hypertensive rats, Hypertension, vol.44,907-912,2004.
    [50]Oudit GY, Crackower MA, Backx PH, et al., The role of ACE2 in cardiovascular physiology, Trends Cardiovasc Med, vol.13,93-101, 2003.
    [51]Eriksson U, Danilczyk U, and Penninger JM, Just the beginning:novel functions for angiotensin-converting enzymes, Curr Biol, vol. 12,R745-752,2002.
    [52]Murphy AM, Kogler H, Georgakopoulos D, et al., Transgenic mouse model of stunned myocardium, Science, vol.287,488-491,2000.
    [53]Sowter HM, Ratcliffe PJ, Watson P, et al., HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors, Cancer Res, vol.61,6669-6673,2001.
    [54]Averill DB, Ishiyama Y, Chappell MC, et al, Cardiac angiotensin-(1-7) in ischemic cardiomyopathy, Circulation, vol.108,2141-2146,2003.
    [55]Ishiyama Y, Gallagher PE, Averill DB, et al., Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors, Hypertension, vol.43,970-976, 2004.
    [56]Loot AE, Roks AJ, Henning RH, et al., Angiotensin-(1-7) attenuates the development of heart failure after myocardial infarction in rats, Circulation, vol.105,1548-1550,2002.
    [57]Goulter AB, Goddard MJ, Allen JC, et al., ACE2 gene expression is up-regulated in the human failing heart, BMC Med, vol.2,19,2004.
    [58]Zisman LS, Keller RS, Weaver B, et al., Increased angiotensin-(1-7)-forming activity in failing human heart ventricles: evidence for upregulation of the angiotensin-converting enzyme Homologue ACE2, Circulation, vol.108,1707-1712,2003.
    [59]Lin Q, Keller RS, Weaver B, et al., Interaction of ACE2 and integrin beta1 in failing human heart, Biochim Biophys Acta, vol.1689,175-178, 2004.
    [60]Guerrero PA, Schuessler RB,Davis LM, et al., Slow ventricular conduction in mice heterozygous for a connexin43 null mutation, J Clin Invest, vol.99,1991-1998,1997.
    [61]Kirchhoff S, Nelles E, Hagendorff A, et al., Reduced cardiac conduction velocity and predisposition to arrhythmias in connexin40-deficient mice, Curr Biol, vol.8,299-302,1998.
    [62]Santos RA, Campagnole-Santos MJ, and Andrade SP, Angiotensin-(1-7): an update, Regul Pept, vol.91,45-62,2000.
    [63]Santos RA, Ferreira AJ, Nadu AP, et al., Expression of an angiotensin-(1-7)-producing fusion protein produces cardioprotective effects in rats, Physiol Genomics, vol.17,292-299,2004.
    [64]Tikellis C, Johnston CI, Forbes JM, et al., Characterization of renal angiotensin-converting enzyme 2 in diabetic nephropathy, Hypertension, vol.41,392-397,2003.
    [65]Ye M, Wysocki J, Naaz P, et al., Increased ACE 2 and decreased ACE protein in renal tubules from diabetic mice:a renoprotective combination?, Hypertension, vol.43,1120-1125,2004.
    [66]Arima S, Role of angiotensin Ⅱ and endogenous vasodilators in the control of glomerular hemodynamics, Clin Exp Nephrol, vol.7,172-178, 2003.
    [67]Ferrario CM, Averill DB, Brosnihan KB, et al., Vasopeptidase inhibition and Ang-(1-7) in the spontaneously hypertensive rat, Kidney Int, vol. 62,1349-1357,2002.
    [68]Santos RA, Haibara AS, Campagnole-Santos MJ, et al., Characterization of a new selective antagonist for angiotensin-(1-7), D-pro7-angiotensin-(1-7), Hypertension, vol.41,737-743,2003.
    [69]Burgelova M, Kramer HJ, Teplan V, et al., Intrarenal infusion of angiotensin-(1-7) modulates renal functional responses to exogenous angiotensin Ⅱ in the rat, Kidney Blood Press Res, vol.25,202-210,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700