用户名: 密码: 验证码:
深水钢质立管弯曲抑制装置的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深水立管系统是深水油气开发装备中最为薄弱的构件之一,在风、浪、流以及顶部浮体运动的联合作用下,立管端部和触地段等局部位置会产生过度弯曲而导致立管发生强度破坏、屈曲破坏以及疲劳破坏等。深水立管系统中的弯曲抑制装置为过度弯曲问题提供了有效的解决途径。因此,本文依托国家高技术研究发展计划(863计划)资助项目“南海深水油气勘探开发关键技术及装备重大项目——深水立管工程设计关键研究课题”,重点研究了深水立管弯曲抑制装置的关键技术问题,主要内容包括:功能性接头设计、静水压溃分析、径向屈曲与屈曲扩展分析以及关键位置弯曲抑制结构设计等。
     深水立管主要呈现柔性结构的特征,当其与刚性结构固定连接时,就会在连接处的立管结构中形成弯曲应力的高度集中区。在这种情况下,通常采用应力接头结构作为过渡,以降低立管端部结构的弯曲应力集中程度。目前,有关应力接头的大部分研究工作都集中在新型材料的应用和对现有结构的分析上,而应力接头的设计工作主要还是凭借设计人员的实际工程经验来进行的。因此,如果立管系统服役的平台结构或海洋环境发生变化,就会给设计工作带来很大的难度。针对这一问题,本文提出了应力接头的设计原理和设计方法,并在综合考虑各方面影响因素的情况下,对重要参数的选择和控制方法进行了工程推荐。根据该设计方法可以快速准确地得到满足实际工程需求的应力接头结构,还能较为准确地对相关力学性能进行分析和计算。同时,本文在考虑百年一遇极端海况的条件下,应用数值模拟方法验证了设计结果的正确性及合理性,评估了应力接头结构的弯曲抑制能力。本文还基于实际工程项目,对带有应力接头的立管系统进行了动力响应分析和疲劳分析,进一步证明了该设计方法在实际工程应用中的可行性和有效性。
     然而,在深水立管系统的实际工程应用中除了设计相应结构来抑制过度弯曲以外,对由过度弯曲引发的相关工程问题的分析和评估也十分重要。特别是当这些过度弯曲位置含有结构缺陷时,立管就很可能产生局部径向屈曲甚至发生屈曲扩展破坏。而现有的立管径向屈曲及屈曲扩展评估工作大都是基于大径厚比海底管道进行的,由于结构特点和载荷环境的不同导致计算误差较大。因此,本文基于薄壁圆柱壳的径向屈曲理论深入研究了不同径厚比深水立管的压溃屈曲特点,并对大量具有不同径厚比和初始椭圆度的深水立管模型进行了压溃屈曲及后屈曲行为的分析计算,得到了适用于小径厚比深水立管压溃屈曲分析的临界压力公式。并在此基础上,对深水立管在联合载荷作用下的径向屈曲问题进行了深入研究,提出了立管径向屈曲的凹陷系数,建立了针对特定载荷环境和屈曲模态的径向屈曲分析方法以及局部径向屈曲条件下的屈曲扩展数值模拟方法,对发展深水立管的屈曲评估理论具有重要意义。
     同时,由于深水立管自身结构特点和环境载荷的影响,还会使其在除端部以外的立管触地段和悬浮段等局部位置产生过度弯曲。钢悬链线立管的触地段是典型的局部过度弯曲区域,常常由于过度弯曲而发生强度破坏和屈曲破坏,而且由于往复的弯曲运动还使得触地段成为疲劳破坏的高发区域。目前,在实际工程中对于这类可能发生过度弯曲的局部位置进行弯曲抑制设计时,主要还是简单地通过增加壁厚实现的,但随之而来的应力集中和疲劳等问题也十分突出。因此,本文以钢悬链线立管的触地段为例,基于应力接头的设计思想和设计原理,提出了对过度弯曲的局部位置进行弯曲抑制结构设计的一般方法。然后,根据建立的径向屈曲及屈曲扩展评估方法,对新型钢悬链线立管触地段进行了屈曲分析和评估,并通过有限元方法对其进行了动力响应分析和疲劳分析,为局部弯曲抑制结构设计方法的实际工程应用奠定了基础。
     综上,本文针对深水立管系统在设计阶段及服役期间所面临的过度弯曲问题,提出了应力接头和新型立管触地段等弯曲抑制结构的设计原理和方法,发展了深水立管的径向屈曲及屈曲扩展评估理论,为深水立管弯曲抑制装置的实际工程应用提供了理论和技术支撑。
Deep-water riser system is one of the weakest components in deep-water oil and gas development system. The strength fracture, buckling failure and fatigue damage will be generated at riser ends and local bending position, especially under the combined loads of wind, wave, current and top floating body movement. This paper is funded by national high technology research and development program (863program), and focused on the key technical programs of deep-water riser bending restraint system. It includes functional joint design, hydrostatic collapse, buckling and buckling propagation and local bending restraint design.
     Deep-water riser mainly reflects the characteristics of flexible structures. When they are directly connected with rigid structures, high stress concentration will be generated at he connection structure. In this case, the Stress Joint (SJ) is developed to reduce the bending stress concentration at the ends of riser. At present, most research work of Stress Joint (SJ) is focused on new materials application and structural analysis, and the SJ design mainly depends on the actual engineering experience of designers. Hence, the design work is subject to loads enviroment. To resolve this problem, a SJ design method is proposed in the paper, and the parameters control methods are recommended for actual projects in consideration of various aspects of influencing factors. According to this new design method, the SJ design dimensions which satisfy practical engineering demands can be rapidly and accurately obtained, and the related mechanical performance can be assessed accurately. In the meantime, taking the100-year extreme sea state conditions into account, the accuracy and rationality of design results are verified based on the finite element analysis, and the bending stress reduction effects and bending control ability are evaluated for the designed SJ. Then based on the actual engineering project, the dynamic response analysis and fatigue analysis are carried out for a riser system with SJ, and the analysis results further validate the feasibility and effectiveness of this design method in practical engineering.
     In practice, in addition to design of SJ, the analysis and evaluation of engineering problems caused by excessive bending are also very important. The buckling and buckling propagation, especially in the defective structures, could occur in the large bending deformation area. The existing riser buckling assessments are based on submarine pipelines of large diameter-thickness ratio, which leads to enormous calculation error due to the different structural characteristics and load environments. So using the cylindrical shell buckling theory, the collapse buckling characteristics of deep water risers with different diameter-thickness ratio are investigated. The collapse buckling and buckling propagation analysis are implemented for riser models with various diameter-thickness ratio and ovality. A critical pressure formula for the collapse buckling analysis of small diameter-thickness risers is proposed for combined loads. And the riser depression coefficient of local buckling is proposed with the complicatd loading conditions and buckling modes. In addition, the numerical simulation method of buckling propagation is established under local buckling. The above researches have great significance to the development of deep-water riser buckling assessment theory.
     Furthermore, the local excessive bending, due to structural characteristics and loading conditons, could be generated beyond the end of riser. For example, at the near end of Steel Catenary Riser (SCR), the touch-down zone often has strength failure and buckling failure due to excessive bending. The near-end becomes a high risk area of fatigue failure because of the cyclic bending motions. At present, to deal with these problems is mainly achieved by increasing the wall thickness, which causes stress concentration and fatigue problems. Therefore, a structural optimization method is proposed for the excessive bending location based on SJ. Then, buckling and buckling propagation analysis and assessment are studied for a SCR touch-down zone according with the proposed methods in this thesis. The dynamic response analysis and fatigue analysis are carried out by finite element analysis. These analysis results useful for the SCR touch-down zone restraint design in the engineering application.
     To summarize, in order to resolve the excessive bending of deep-water riser system in design and service, a new design method for bending restraint structures is proposed. The radial buckling and buckling propagation theory is developed with recommendations for bending suppression system in the actual engineering application.
引文
[1]Ricardo Franciss, Elton Ribeiro. Analyses of a large diameter steel lazy wave riser for ultra deepwater in Campos Basin [C]. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering. Canada:ASME,2004,1:355-361.
    [2]Kjell Morisbak Lund, Better Jensen, Daniel Karunakaran, et al. A steel catenary riser concept for Statfjord C [C], Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering. Portugal:ASME,1998:98-1361.
    [3]Nygard M. K., Sele A., Lund K. M.. Design of a 25.5-in titanium catenary riser for the Asgard B platform [C]. Proceedings Offshore Technology Conference. Houston, USA:OTC, 2000,3:343-354.
    [4]Gautam Chaudhury, Jonathan Kennefick. Design, testing and installation of steel catenary risers [C]. Proceedings Offshore Technology Conference. Houston, USA:OTC, 1999,2 (2):339-346.
    [5]Gore C. T., El Paso, Basim B Mekha. Common sense requirements (CSRs) for steel catenary risers (SCRs) [C]. Proceedings Offshore Technology Conference. Houston, USA:OTC, 2002:14153-MS.
    [6]Douglas R. Korth, Bob Shian J. Chou, Gary D. McCullough. Design and implementation of the first buoyed steel catenary risers [C]. Proceedings Offshore Technology Conference. USA:OTC,2002:14152-MS.
    [7]Anthi Miliou, Spencer J. Sherwin, J. Micheal R. Graham. Fluid dynamic loading on curved riser pipe [J]. Journal of Offshore Mechanics and Arctic Engineering,2003,125(3): 176-182.
    [8]O'Brien P. J., McNamara J. F.. Analysis of Flexible riser systems subject to three-dimensional sea-state loading [C]. Proceedings of the International Conference on Behavior of Offshore Structures. Norway:BOSS,1988:88.
    [9]曾季芳.海洋复合材料柔性立管的力学性能和优化设计[D].大连:大连理工大学,2009.
    [10]Martins C. A., Higashi E.. A parametric analysis of steel catenary risers:Fatigue behavior near the top [C].Proceedings of the International Offshore and Polar Engineering Conference. Seattle, USA:ISOPE,2000,2:54-59.
    [11]Lim F, K., Manning B. V. G., Alfstad O.. Snorre field TLP rigid riser system:an overview [C]. Proceedings of the Offshore Europe Conference. Aberdeen, United Kingdom: 1991,23086-MS.
    [12]Myers R. J., Delgado J. H.. Jolliet TLWP well systems [C]. Proceedings of the Twenty-second Annual Offshore Technology Conference. Houston, USA:OTC 1990,6401-MS.
    [13]de Andrade E. Q., Siqueira E. F. N., Mourelle M. M., Caldwell C.. Titanium stress joint design for the top connection of a SCR in HPHD [C]. Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering. San Diego, California, USA: OMAE,2007:29058.
    [14]Fischer F. J., Lo K.H., Wang S. S.. Material requirements for risers [C]. Proceedings of the International Workshop on Advanced Materials for Marine Construction, White Paper No.2. New Orleans, USA:1997.
    [15]Sparks C. Lightweight composite production risers for a deep water tension leg platform [C]. Proceedings of the 5th International Conference on Offshore Mechanics and Arctic Engineering. Tokyo, Japan:OMAE,1986,3:86-93.
    [16]Sparks C., Odru P., Metivaud G., Auberon M.. Composite risers for deepwater applications [J]. Rev. Inst. Fr. Petrol.,1995,48(2):241-249.
    [17]Fischer F. J.. Composite risers for deepwater offshore structures [J]. Rev Inst Fr Petrol,1995,50(1):35-43.
    [18]Baugus V., Baxter C., Trim A.. Use of titanium taper joints in risers-the Neptune field and future designs [C]. Proceedings of the 17th International Conference on Offshore Mechanics and Arctic Engineering. Lisbon, Portugal:OMAE,1998:0365.
    [19]Young R. D., Fowler J. R., Fisher E. A., Luke R. R. Dynamic analysis as an aid to the design of marine risers [J]. Journal of Pressures Vessel Technology,1978,100:200-205.
    [20]Young R. D., Fowler J. R.. Mathematics of the Marine Riser [C]. Proceedings Energy Technology Conference and Echibition. USA:ASME,1978, TX.
    [21]Palmer A. C., Martin J. H.. Buckle propagation in submarine piplines [J]. Nature, .1975,254:46-48.
    [22]Palmer A. C., King R. A.. Subsea pipeline engineering [M]. Oklahoma:Penn Well Corporation,2004:171-197.
    [23]Fabian 0.. Collapse of cylindrical elastic tubes under combined bending pressure and axial loads [J]. International journal of solids and structures,1977,13(12): 1257-1270.
    [24]Wihoit J.C., Merwein J. E.. The effect of axial tension on moment carrying capacity of line pipe stressed beyond the elastic limit [C]. Proceedings of the Offshore Technology Conference, USA:OTC 1990:1335-MS.
    [25]Bai Yong, Igland R. T., Moan T.. Tube collapse under combined external pressure, tension and bending [J]. Marine structure,1997,10 (5):389-410.
    [26]Bai Yong, Bai Qiang. Subsea pipeline and risers [M]. Oxford:Elsevier Science Ltd, 2005:37-49.
    [27]Dama E., Karamanos S. A.. Failure of locally buckled pipelines [J].Journal of pressure vessel technology,2007,129(2):272-279,
    [28]Lee L. H. N., Ariman T., Chen C. C.. On buckling of buried pipelines by seismic excitation [C]. Pressure vessel and piping. San Francisco:ASME,1980:80-C2/PVP-75.
    [29]Lee L. H.N., Ariman T., Chen C. C.. Elastic-plastic buckling of buried pipelines by seismic excitations [J]. International journal of soil dynamics and earthquake engineering,1984,3 (4):168-173.
    [30]Chen C. C., Ariman T., Lee L. H. N.. Elastic buckling analysis of buried pipelines under seismic loads [C]. Pressure vessel and piping. San Francisco:ASME,1980,80-C2/PVP-76.
    [31]Souza L. T., Murray D.. Analysis for wrinkling behavior of girth-welded line pipe [J]. Journal of offshore mechanics and arctic engineering,1999(2):121-53.
    [32]Junes A Villarraga, Jose F Rodriguez, Core Mart'inez. Buried pipe modeling with initial impefecitongs [J].Journal of pressure vessel technology,2004(5):126-251.
    [33]Alfred B Dorey, David W Murray, Roger Cheng. Initial imperfection models for segments of line pipe [J]. Journal of offshore mechanics and arctic engineering, 2006(11):128-323.
    [34]Dyau J. Y., Kyriakides S.. On the response of elastic-plastic tubes under combined bending and tension [J]. Journal of offshore mechanics and arctic engineering, 1992,114(1):50-62.
    [35]Corona E., Kyriakides S.. On the collapse of inelastic tubes under combined bending and pressure [J]. International journal of solids and structures,1988,24(5):505-535.
    [36]Kyriakides S.. Efficiency limits for slip-on type buckle arrestors for offshore pipelines [J]. Journal of engineering mechanics,2002,128(1):102-111.
    [37]贾旭,侯静,田英辉.静水压力作用下海底单层保温管道压溃屈曲分析[J].中国海上油气,2006,18(5):341-343.
    [38]闰澎旺,田英辉,周宏杰等.安装期单层保温管层间剪切力分析[J].海洋工程,2005,23(3):17-23.
    [39]刑静忠,柳春图,徐永君.埋设悬跨海底管道的屈曲分析[J]. 工程力学,2006,23(2):173-176.
    [40]姚宝恒,任平,李志刚等.基于Galerkin截断法的大深度管道铺设动力学行为分析[J].振动与冲击,2008,27(10):43-45.
    [41]林桂霞.中厚壁圆管轴压屈曲极限变形理论研究[D].长春:吉林大学,2005.
    [42]曾晓辉,柳春图,刑静忠.海底管道铺设的力学分析[J].力学与实践,2002,24(2):9-21.
    [43]Wierzbicki T., Bhat S.U.. Initiation and propagation of buckles in pipelines [J]. Solids structures,1986,22(9):985-1005.
    [44]Jesen H.M.. Collapse of hydrostatically loaded cylindrical shells [J]. Solids structures,1988,24(1):51-64.
    [45]Xue J., Hoo Fatt MS.. Buckling of a non-uniform, long cylindrical shell subjected to external hydrostatic pressure [J]. Engineering structures,2002,24(8):1027-1034.
    [46]Xue Jinanghong. A non-linear finite-element analysis of buckle propagation in subsea corroded pipelines [J]. Finite elements in analysis and design,2006,42(14): 1211-1219.
    [47]Assanelli A.P., Toscano R. G., Johonson D.H., Dvorkin E. N.. Experimental/numerical analysis of the collapse behavior of steel pipes [J]. Engng. Computations,2000,17(4): 459-486.
    [48]Toscano R. G., Gonzalez M., Dvorkin E.N.. Validation of a finite element model that simulates the behavior of steel pipes under external presure [J]. The journal of pipeline integrity,2003,2:74-84.
    [49]Toscano R.G., Mantovano L., Dvorkin E. N.. On the numerical calculation of collapse and collapse propagation pressure of steel deep-water pipelines under external pressure and bending:Experimental verification of the finite element results [C]. Proceedings 4"'international conference on pipeline technology. Ostend Belgium, 2004:1117-1428.
    [50]Park T. D., Kyriakides S.. On the performance of integral buckle arrestors for offshore pipelines [J]. International journal of mechanical science,1997,39(6):643-669.
    [51]Johns T.G., Mesloh R. E., Sorenson J.E.. Propagating buckle arrestors for offshore pipelines [C]. Proceeding of Offshore Technology Conference, Houston, USA:OTC, 1996:2680-MS.
    [52]Netto T. A., Estefen S. F.. Buckle arrestors for deepwater pipelines [J]. International journal of marine structures,1996,9(9):873-883.
    [53]Kyriakides S., Park T.D., Netto T. A.. On the design of integral buckle arrestors for offshore pipelines [J]. International journal of applied ocean research,1998,20(1): 95-104.
    [54]Netto T. A., Kyriakides S.. Dynamic performance of integral buckle arrestors for offshore pipelines. Part Ⅰ:Experimental [J]. International journal of mechanical science,2000,42(7):1405-1423.
    [55]Netto T. A., Kyriakides S.. Dynamic performance of integral buckle arrestors for offshore pipelines. Part Ⅱ:Analysis [J]. International journal of mechanical science, 2000,42 (7):1425-1452.
    [56]Toscano R.G., Mantovano L.O., Amenta P.M., et al. Collapse arrestors for deepwater pipelines. Cross-over mechanisms [J]. Computer and structures,2008,86(7-8):728-743.
    [57]Estefen S. F.. Collapse behavior of intact and damaged deepwater pipelines and influence of the reelinig method of installation [J]. Journal of constructional steel research,1999,50(2):99-114.
    [58]Albermani F., Khalilpasha H., Karampour H.. Propagation buckling in deep sub-sea pipelines [J]. Engineering structures,2011,33(9):2547-2553.
    [59]Shunfeng Gong, Bin Sun, Sheng Bao, Yong Bai. Buckle propagation of offshore pipelines under external pressure [J]. Marine structures,2012,29(1):115-130.
    [60]Groll J.G. A.. Analysis of buckle propagation in marine pipelines [J]. International journal of construction and steel research,1985,5(2):103-122.
    [61]周承倜,马良.海底管道屈曲及其传播现象[J].中国海上油气,1994,6(6):1-8.
    [62]黄玉盈.海底管线的屈曲和屈曲船舶[J].力学进展,1984,14(1):23-28.
    [63]卞雪航,吴海欣,余杨等.深水海底管道屈曲传播实验设计[J].海洋技术,2011,30(4):93-95.
    [64]Xue J., Hoo Fatt M. S.. Symmetric and anti-symmetric buckle propagation modes in subsea corroded pipelines [J]. Marine structures,2005,18(1):43-61.
    [65]Xue J., Hoo Fatt M.S.. Buckling of a non-uniform, long cylindrical shell subjected to external hydrostatic pressure [J]. Engineering structures,2002,24(8):1027-1034.
    [66]Xue J., Hoo Fatt M. S.. Buckle propagation in pipelines with non-uniform thickness [J]. Ocean Engineering,2001,28(10):1383-1392.
    [67]Xue J.. A non-linear finite-element analysis of buckle propagation in subsea corroded pipelines [J]. Finite elements in analysis and design,2006,42(14-15):1211-1219.
    [68]Stephen A.. Steel catenary riser for deepwater enviroment [C]. Proceeding of Offshore Technology Conference, Houston, USA:OTC,1998:8607-MS.
    [69]API. API-RP-2RD. Design of risers for floating production systems and tension-leg platform [S]//USA:API,1998.
    [70]DNV. DNV-OS-F201. Dynamic risers [S]//Norway:DNV,2001.
    [71]Matlock H.. Correlation for design of laterally loaded piles in soft clay [C]. Proceeding of Offshore Technology Conference, Houston, USA:OTC,1970,25(1):577-594.
    [72]Stevens J. B. M., Audibert J. M. E.. Re-examination of P-y curve formulations [C]. Proceeding of Offshore Technology Conference, Houston, USA:OTC,1979,34(2):261-291.
    [73]Bostrom B., Svano G., Eiksund G., Leira B. J.. Response effects of riser-soil interaction modeling [C]. Proceedings of International Conference on Offshore Mechanics and Arctic Engineering. Lisbon, Portugal:ASME,1998:OMAE98-3093.
    [74]Brige C., Howells H., Toy N., Parke G., Woods R.. Full-scale model tests of a steel catenary riser [C]. Fluid Structure Interaction II. Southampton, USA:WIT,2003: 107-116.
    [75]Brige C., Laver K., Clukey E., Evans T.. Steel catenary riser touchdown point vertical interaction models [C]. The 2004 Offshore Technology Conference. Houston, USA:OTC, 2004:16628-MS.
    [76]Brige C., Willis N.. Steel catenary risers-results and conclusions from large scale simulations of seebed interactions [C]. Proceedings of the International Conference on Deep Offshore Technology. Louisiana, New Orleans,2002.
    [77]Pesce C. P., Aranha J. AP., Martins C. A.. Dynamic curvature in catenary risers at the touch down point region:an experimental study and the analytical boundary layer solution [J]. International journal of offshore and polar engineering,1998,8(4): 302-310.
    [78]Thethi R., Moros T.. Soil interaction effect on simple catenary [C]. Proceedings of the 2001 Deepwater Pipeline and Riser Technology Conference. Houston, USA:2001:1-24.
    [79]de Oliveira, Goto Y., Okarmoto T.. Theoretical and methodological approaches to flexible pipe design and application [C]. The 17th Offshore Technology Conference. Houston, USA:OTC,1985:5004-MS.
    [80]Mekha B. B., Heijermans B.. The prince TLP steel catenary risers design and fatigue challenges [C]. The 22nd International Conference on Offshore Mechanics and Arctic Engineering. Cancun, Mexico:OMAE,2003:374075.
    [81]de Lemos C.A. D., Vaz M. A.. Flexible riser fatigue procedure using a long term distribution of FPSOs heading direction [C]. The 21st International Conference on Offshore Mechanics and Arctic Engineering. Oslo, Norway:OMAE,2002:28145.
    [82]Leira B. J., Holmas T., Herfjord K. Estimation of extreme response and fatigue damage for colliding risers [C]. The 21st International Conference on Offshore Mechanics and Arctic Engineering. Oslo,Norway:OMAE,2002:28435.
    [83]黄维平,王爱群,李华军.海底管道悬跨段流致振动实验研究及涡激力模型修正[J].工程力学,2007,24(12):153-157.
    [84]王慧初,武冬青,田平.粘土中横向静载桩P-y曲线的一种新的统一法[J].河海大学学报,1991,25(1):577-594.
    [85]余龙,谭家华.锚泊线与海底接触的有限元建模及其非线性分析[.1].中国海洋平台,2005,20(2):25-29.
    [86]Arcandra. Hull/Mooring/Riser coupled dynamic analysis of a deepwater floating platform with polyester lines [D]. Houston, USA:Texas A&M University,2001.
    [87]Kokarakis J. E., Bernitsas M M. Nonlinear three-dimensional dynamic analysis of marine risers [J]. Journal of energy resource technology,1978,109(3):105-111.
    88] Bernitsas M. M.. Three-dimensional nonlinear large deflection model for dynamic behavior of risers,piplines and cables [J]. Journal of ship research,1982,26(1): 59-64.
    89] Peyrot A. H., Goulois A. M,. Analysis of cable structures [J]. Computers and Structures, 1979,10 (5):805-813.
    [90]Karayaka M., Xu L. X.. Catenary equations for top tension riser systems [C]. The 13rd International Offshore and Polar Engineering. Honolulu, USA:2003:91-97.
    [91]Lawrence P., Krolikowski, Tom A.. An improved linearization technique for frequency domain riser analysis [C]. The 1980 Offshore Technology Conference. Houston, USA:OTC, 1980:3777-MS.
    [92]Langley R. S.. The linearization of three dimensional drag force in random seas with current [J]-Applied ocean research,1984,6(3):126-131.
    [93]Eatock Taylor R., Rajagopalan A.. Load spectra for slender offshore structures in waves and currents [J]. Earthquake engineering and structural dynamics,1983,11 (6):831-842.
    [94]Kao S.. An assessment of linear spectra analysis methods for offshore structures via random sea simulation [J]. Journal of energy resources technology,1982,104(1):39-46.
    [95]Patel M. H., Sarohia S., Ng K. F.. Finite element analysis of the marine riser [J]. Engineering Structures,1984,6(3):175-184.
    [96]Patel M. H., Jesudasen A. S.. Theory and model tests for the dynamic response of free hanging reisers [J]. Journal of sound and vibration,1987,112(1):149-166.
    [97]Pesce C. P., Martins C. A., Silveira L. M. Y. D.. Riser-soil interaction:local dynamics at TDP and a discussion on the eigenvalue and the VIV problems [J]. Journal of offshore mechanics and arctic engineering,2006,28(1):39-55.
    [98]周宏杰,闫澍旺,孙国民.复杂条件下双层立管的有限元分析[J].海洋工程,2004,22(1):74-79.
    [99]郭海燕,傅强,娄敏,海洋输液立管涡激振动响应及其疲劳寿命研究[J].工程力学,2005,22(4):220-224.
    [100]郭海燕,董文乙,娄敏.海中输流立管涡激振动实验研究疲劳寿命分析[J].中国海洋大学学报,2008,38(3):503-507.
    [101]Moe G., Amisen 0.. An analytic model for static analysis of catenary risers [C]. Proceedings of the International Offshore and Polar Engineering Conference. Stavanger, Norway:ISOPE,2001,2:248-253.
    [102]Senra S. F., Jacob B. P., Ana Lucia F. L. Torres, Marcio M Mourelle. Sensitivity sdudy on fatigue behavior of steel catenary risers [C]. Proceedings of the International Offshore and Polar Engineering Conference. Kitakyushu, Japan:ISOPE,2002,12: 193-198.
    [103]Chai Y. T., Varyani K. S., Barltrop N. D.. Three-dimensional lump-mass formulation of a catenary riser with bending, torsion and irregular seabed interaction effect [J]. Ocean engineering,2002,29(12):1503-1525.
    [104]Chen J. J., Wang D. J.. Nonlinear dynamic analysis of flexible marine-risers [J]. China ocean engineering,1991,5(4):373-384.
    [105]Chen Z., Reuben R.L., Owen D.G.. Development of a Fatigue Model for Prediction of Flexible Pipe Life Expectancy [C]. The 1st International Offshore and Polar Engineering Conference. Edinburgh, UK:OMAE,1991:400-413.
    [106]Cunff C. L., Fontaine E., Biolley F.. Riser fatigue due to currents and waves [C]//The 21st International Conference on Offshore Mechanics and Arctic Engineering. Oslo, Norway:OMAE,2002:28123.
    [107]Pasto S.. Fatigue-induced risk assessment of slender structures with circular cross-section at lock-in [D]. Braunschweig, Germany:Technical University Carolo-Wilhelmina at Braunschweig,2005.
    [108]Ye W., Shanks J., Fang J.. Effects of fully coupled and quasi-static semi-submersible vessel motion on steel catenary risers wave loading fatigue [C]. The 2003 Offshore Technology Conference. Houston, USA:OTC,2003:14157-MS.
    [109]Martins C. A., Pesce C. P.. A simplified procedure to assess the fatigue-life of flexible risers [C]. Proceedings of the International Offshore and Polar Engineering Conference. Kitakyushu, Japan:ISOPE,2002:179-186.
    [110]Chaudhury G.. Combined low and high frequency fatigue of platforms in deep waters [C]. The 20th International Conference on Offshore Mechanics and Arctic Engineering. Rio de Janeiro, Brazil:OMAE,2001:OFT1252.
    [111]Campbell M.. The complexities of fatigue analysis for deepwater risers [C]. The 1999 Deepwater Pipeline Conference. New Orleans, USA:1999:1-13.
    [112]Bhat S., Dutta A., Wu J., et al. Pragmatic solutions to touch-down zone fatigue challenges in steel catenary risers [C]. The 2004 Offshore Technology Conference. Houston, USA:OTC,2004:16627-MS.
    [113]Bai Y., Tang A., Osullivan E., et al. Steel catenary riser fatigue due to vortex induced spar motions [C]. The 2004 Offshore Technology Conference. Houston, USA:OTC, 2004:16629-MS.
    [114]白兴兰.基于惯性耦合的深水钢悬链线立管非线性分析方法研究[D].青岛:中国海洋大学,2009.
    [115]郭小刚,张立人,金星等.深海采矿流-固耦合软管系统的非线性动力学模型[J].工程力学,2000,17(3):93-104.
    [116]余建星,孙犯,傅明炀.海底管线涡激振动响应动力特性[J].天津大学学报,2009,42(1):1-5.
    [117]余建星,李红涛.波流联合作用下海底管跨疲劳失效的分析[J],天津大学学报,2006,39(9):1015-1020.
    [118]薛鸿翔,唐文勇,张圣坤.深海立管涡激共振疲劳寿命简化计算方法[J].工程力学,2008,25(5):231-240.
    [119]陈云水,王德禹.深海立管的若干结构力学研究进展[J].中国海洋平台,2007,22(5):1-9.
    [120]Myers R. J., Delgado J. H. Jolliet TLWP well systems [C].Proceedings of the 22nd Offshore Technology Conference. Houston, USA:OTC,1990,6401:509-515.
    [121]Sparks C.. Fundamentals of marine rise mechanics:Basic principles and simplified analysis [M]. USA:Penn Well Corporation,2007:127-142.
    [122]Morooka C. K., Coelho F. M., Shiguemoto D. A.. Dynamic behavior of a top tensioned riser in frequency and time domain [C]. Proceedings of the 16th International Offshore and Polar Engineering Conference. San Francisco, USA:ISOPE,2006:31-36.
    [123]Chung J. S., Felippa C. A.. Nonlinear static analysis of deep ocean mining pip-Part Ⅱ:numerical studies [J]. Journal of energy resources technology,1981,103(1): 39-55.
    [124]Chung J. S., Cheng B. R., Huttelmaier H. P.. Three-dimensional coupled responses of a vertical deep-ocean pipe [J]. International journal of offshore and polar engineering. 1994,4(4):229-239.
    [125]Bea Y. S., Bernitsas M. M.. Importance of nonlinearities in static and dynamic analyses of marine risers [C]. Proceedings of the 5th International Offshore and Polar Engineering Conference. Hague, Dutch:ISOPE,1995,2:209-218.
    [126]Chang Y. J., Chen G. M., Liu J.. Long-term wave induced fatigue of deep-water drilling riser [J]. Journal of mechanical strength,2009,31(5):797-802.
    [127]Larsen C., Passano E.. Fatigue life analysis of production risers [C]. Offshore Technology Conference. Houston, USA:OTC,1987:427-437.
    [128]ASTM Standard E1049-85. Standard practixes for cycle counting in fatigue analysis [S]//West Conshohocken:PA:ASTM International,1999.
    [129]赵冬岩,余建星,岳志勇等.含缺陷海底管道屈曲稳定性的数值模拟[J].天津大学学报,2009,42(12):1067-1071.
    [130]孙国正.海洋管道的屈曲问题[J].油气储运,1984,3(5);1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700