用户名: 密码: 验证码:
ABD蛋白的表达及对K562,HL60细胞的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景慢性粒细胞白血病(chronic myeloid leukemia, CML)是发生于造血干细胞的克隆性恶性肿瘤,1845年Craigie[1]和Bennet [2]在爱丁堡发现。在1960年,Nowell和Hunger-ford首先在费城发现CML病人具有获得性的染色体异常,将这个异常的染色体命名为费城染色体(Philadelphia,Ph[3, 4])。1973年,Rowley发现它是9号和22号染色体长臂间交互易位的结果,即t(9,22) (q34;ql1)[ 5]。1983年以后,证实了9号染色体上c-abl与22号染色体上bcr基因交互易位,在22号染色体上形成了BCR—ABL融合基因,编码BCR—ABL融合蛋白,表达P190,P210,P230融合蛋白,具有很强的酪氨酸激酶活性,可使一系列信号蛋白发生持续性的磷酸化,导致白血病的发生[6]。
     CML病人经历慢性期、加速期、急变期三个阶段,各自的中位数时间分别为3~4年;6~9个月;3~6个月[7]。目前,CML的治疗方法主要有化疗、干扰素治疗、STi571(甲磺酸伊马替尼)、干细胞移植等。传统的化疗手段虽能改善症状,缓解病情,但不能阻止疾病的转化,不能从根本上消除恶性克隆;干扰素治疗血液学缓解率70~80%,存活期延长72个月;异基因骨髓移植(allo-BMT)是目前最有希望治愈慢粒的方法,但有30%~35%患者移植后出现与移植物抗宿主病(GVHD)相关的致命性并发症,另外,患者本身的年龄要求以及不到1/3的患者可找到配型相一致的同胞骨髓供者等因素限制了其临床应用;自体骨髓移植(ABMT)相关并发症发生率较低,不受年龄限制,但缺乏有效的体外骨髓净化措施以预防残留白血病细胞导致的复发。STi571是一种bcr-abl融合蛋白酪氨酸激酶抑制剂,STi571单独或者联合干扰素治疗有效的CML患者,血液学缓解率可以达到90%,已经肯定能延长CML患者生存期,这为CML的靶向治疗开辟了一个新的领域,但是STi571的耐药性问题至今无法解决。目前,众多的临床及实验研究表明,bcr-abl融合基因及其表达产物bcr-abl融合蛋白是慢性粒细胞性白血病治疗上的特异性靶位[8, 9]。随着对bcr-abl癌蛋白的结构和功能的不断研究,人们逐渐认识到在不同的结构域水平对该蛋白的结构和功能进行干预,同样也可以抑制bcr-abl蛋白酪氨酸激酶的活性,这也提示人们继续探索更好的慢粒的治疗方法。ABD(肌动蛋白结合域,actin binding domain)区是bcr-abl融合蛋白上C末端的一个结构域[10],研究表明,ABD在BCR/ABL PTK介导的白血病生成中起重要作用[11-13],白血病的发生依赖于碳末端的ABD存在,ABD变异可以降低体外肿瘤细胞的生存活力[11],而在体内则延迟肿瘤的发病时间,因此如果能够有效调控ABD区,就有可能控制bcr-abl融合蛋白的转化活性,从而达到治疗CML的目的。本实验通过分子生物学方法得到ABD片断,进行融合表达,对ABD的功能进行研究,从而为白血病的靶向治疗奠定新的分子基础。
     实验目的体外获得bcr-abl融合基因的ABD区结构域,进行原核表达,并将融合表达蛋白作用于白血病细胞系,进一步探讨其对白血病的细胞周期和增殖的影响,为探索CML新的药物作用靶点和新的治疗药物奠定了基础。
     实验方法根据GenBank中人ABD结构域基因的碱基序列,按照引物设计原则,针对ABD基因设计引物。以带有人类慢性粒细胞白血病bcr-abl基因全长的PGD210质粒[14]为模板,应用PCR技术扩增出ABD基因的编码序列,测序结果证实与GenBank中完全一致;将ABD基因的插入到融合有PTD(蛋白转导结构域,protein tansductong domain)基因片段的原核表达载体pET32a中,以获得PTD-ABD融合基因。将构建重组原核表达载体pET32a-PTD-ABD转化感受态细胞大肠杆菌BL21后,予以IPTG诱导,改变诱导条件,使目的蛋白PTD-ABD在上清中有较大量表达。大量诱导细菌,用次氮基三乙酸镍琼脂糖(Ni-NTA agarose)亲和层析珠对可溶性目的蛋白进行纯化。将目的蛋白PTD-ABD与K562细胞和Hela,HL60细胞共培养,用免疫荧光和Western blot的方法观察和验证目的蛋白的跨膜转运情况;用光学显微镜和细胞计数研究细胞形态和生长曲线的变化; MTT、流式细胞仪技术研究PTD-ABD融合蛋白对K562细胞和HL60细胞的增殖和凋亡的作用。
     实验结果ABD结构域基因被有效的扩增,DNA序列分析表明所构建的PTD -ABD融合基因的表达质粒与预期设计相同,ABD、PTD、PTD-ABD融合蛋白得到正确的表达。且PTD-ABD目的蛋白成功导入K562细胞和HL60中,能显著抑制HL60细胞的生长,并且对HL60细胞的增殖具有明显的抑制作用。
     实验讨论本研究成功地构建了原核表达载体pET32a-PTD-ABD,并顺利表达PTD-ABD融合蛋白于上清中。在功能实验中,研究了目的蛋白对K562,HL60细胞的作用。这一实验结果为下一步研究目的蛋白的作用机制,以及为探索CML新的治疗药物和新的药物作用靶点奠定了基础。
Background: Chronic myeloid leukaemia (CML) is a rare disease with an incidence of 1 or 2 cases per 105 people every year. It is classified into 3 stages: the chronic stage, the accelerate stage, the blast crisis. The median survival duration is 3-4 years, 6-9 years, 3-6 years respectively.
     CML is a malignant haemopoietic stem cell disorder. 1845, CML was identified by Craigie and Bennet.1960, Nowell and Hunger-ford found the abnormal chromosome in the CML patients in Philadelphia, the Ph chromosome (Ph) was named then. 1973, Rowley conformed that Ph was characterized by the t (9; 22) (q34; q11) reciprocal chromosomal translocation. 1983 ,researchers confirmed that Ph is cytogenetic hall- mark ,a shortened chromosome 22 that arises from a reciprocal translocation, t(9;22) (q34;q11), which gives origin to a hybrid bcr-abl oncogene, encoding a BCR-ABL(p210) fusion protein with elevated tyrosine kinase activity, and its functional consequence is the Bcr-Abl oncoprotein. Most clinic and laboratary researches provided direct evidences that BCR-ABL is probabaly the main cause of CML, and this fusion gene and BCR–ABL (p210) fusion protein are the main target in the therapy for CML.
     Currently, there are many methods to treat CML, including chemotherapy, interferon, STi571, stem cell transplant and so on. Conventional chemotherapy can usually control the overall tumor burden during the chronic phase, with resolution of symptoms. However, such treatment could not prevent disease progression or kill the malignant cells. Interferon-αhas been used in CML therapy for many years, however the hematology remission rate is only 70-80 percent . Survival time of cases only can be extended for 72 months. Allogeneic bone marrow transplatantion (allo-BMT) is the only treatment which has been shown to be curative potential in CML. However, some fatal complications often develop, such as graft -versus-host disease (GVHD) in 30%-35% percent of patients. In addition, the requirements for patient’s age and histocompatibility (only 30 percent patients can find a matched sibling donor) limit its applicability. The majority of patients are not eligible for this treatment. Autologous bone marrow transplantation (ABMT) has a lower accidence of complications than allo-BMT, and may become a standard treatment for those patients ineligible for sibling domor allogeneic BMT.
     With the advancement of the construction and function of bcr-abl fusion protein reseaches, scientists have found that blocking some domain’s fuction of the BCR-ABL protein may be an effective method for inhibiting CML cell growth. Maybe this method is hopeful to cure CML in the future.
     ABD (actin binding domain), is a C-terminal domain of BCR-ABL protein. It is required for CML pathogenesis. Therefore, inhibition of ABD represents a potential strategy for inhibiting BCR-ABL oncogencity. It also can helpful to find a new clinical therapeutic medicine or a new target of CML.
     Aim: To study the ABD’s fouctions of BCR-ABL protein on cell cycle and apoptosis of K562 cell and HL60 cell, and to provide the experimental basis for new therapy of CML.
     Methods: The ABD gene was amplified from PGD210 plasmid. In order to obtain PTD-ABD fusion gene, the ABD and PTD gene were successively inserted into pET32a vector. The recombination plasmids were transformed into E.coli BL21 and the expression of the fusion protein was induced by IPTG. Fusion protein was purificated from the surpernatant of cell lysates via Ni-NTA affinity chromatography. The purified fusion protein was loaded to cultured K562 and HL60 cells. Whether the fusion protein entered into K562 cells and Hela cells was detected by western blot and immunofluorescence. Growth curve of K562 and HL60 cells treated by PTD-ABD fusion protein was determined by MTT assay. The apoptosis of PTD-ABD fusion protein on K562 and HL60 cells was investigated by flow cytometry.
     Results: The ABD gene was effectively amplified by the method of PCR. The DNA sequencing result showed that the constructed plasmid containing PTD-ABD fusion gene was the same as that designed. The fusion protein was successfully expressed in prokaryotic plasmid, PTD-ABD protein was shifted into both adherent cell and suspension cell successfully.
     PTD-ABD fusion protein can significantly inhibit the growth of HL60 cell,and could accelerate the apoptosis of HL60 cell.
     Conclusion: The ABD gene has been successfully amplified and expressed, and stuy to the effects of PTD-ABD fusion protein on K562 and HL60 cells was done. The results of the experiment provide a basis to find a new therapeutic target of CML.
引文
1 Craigie D. Case of disease of the spleen, in which death took placein consequence of the presence of purulent matter in the blood. Edinburgh Medical Surgery Journal, 1845,(64):400-413.
    2 Bennett JH. Case of hypertrophy of the spleen and liver , in which death took place from suppuration of the blood. Edinburgh Medical Surgery Journal, 1845,64:413-423.
    3 Heisterkamp N, Stam K, Groffern J et al. Structural organization of the bcr gene and its role in the Ph,translocation. Nature, 1985,315:758-761.
    4 Nowell PC, Hungerford KA. A minute chromosome in human chronic granulocytic leukemia. Science, 1960:1497-501.
    5 Rowley JD. A. new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature, 1973,243:290-293.
    6 Hoffmann FM, Fresco LD, Hoffman-Falk H et al. Nucleotide saquences of the Drosophila src and abl homologs: conservation and variability in the src family oncogenes. Cell, 1983,35:393-401.
    7 Minot GR, Buckman TE and Isaacs R. Chronic myelogenous leukaemia: age incidence, duration, and benefit derived from irradiation. JAMA, 1924,82:1489-1494.
    8 C.L. Sawyers, A. Hochhaus,Feldman,E,et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood, 2002,99(10):3530-3539.
    9 M. Talpaz, R.T. Silver, Druker BJ. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood, 2002,99(6):1928-1937.
    10 Zhang X, Rong R, Hao SX, Pear WS, et al. The SH2 domain of Bcr-Abl is not requiredto induce a murine myeloproliferative disease; however, SH2 signaling influences disease latency and phenotype. Blood,2001. 277―287.
    11 Underhill-Day N, Pierce A, Thompson SE, et al. Role of the C-terminal actin binding domain in Bcr/Abl-mediated survival and drug resistance. Br J. Haematol, 2006,132(6):774-83.
    12 Richard A. Van Etten, Peter K. Jackson,et al. The COOH Terminus of the c-Abl Tyrosine Kinase Contains Distinct F- and G-Actin Binding Domains with Bundling Activity. The Journal of Cell Biology, 1994,124(3):325-340.
    13 J R McWhirter,J Y Wang. An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. EMBO J, 1003,12(4):1533-1546.
    14 .Georege Q, Daley,Richard A,Van Etten, et al. Induction of Chronic Myelogenous Leukemia in Mice by the P210bcr/abl Gene of the Philadelphia Chromosome. Science, 1990,247(4944):824-830.
    15 Louis J, Limarzi LR,Best WR. Treatment of chronicgranulocytic leukaemia with Myleran. Arch Intern Med, 1956,97:299-308.
    16 Carella AM, Podesta M, Frassone F et al. Collection of normal blood repopulating cells during early hematopoeietic recovery after intensive conventional chemotherapy in chronic myelohenous leukemia. Bone Marrow Transplatat, 1993,12:267-271.
    17 Ulla Axdorph, Leif Stenke, Gunnar Grimfors et al. Intensive chemotherapy in patients with chronic myelogenous leukaemia (CML) in accelerated or blastic phase - a report from the Swedish CML Group. British Journal of Haematology, 2002,118:1048-1054.
    18 Talpaz M, Kantarjian H, McCredie et al. Hematologic remission and cytogenetic improvement induced by recombinant human interferon alpha in chronic myelogenous leukemia. N Engl J Med, 1986,314:1065.
    19 M Beksac1,H Celebi,D Sargin et al. Role of pretransplant interferon-a (IFN) treatment in the outcome of stemcell transplantation (SCT) from related donors in chronic myelogenous leukemia (CML):results from three Turkish transplant centers. Bone Marrow Transplantation,2003. 897-904.
    20 Sokal JE, Cox EB, Baccarani M et al. Prognostic discrimination in good-risk chronic guanulocytic leukemia. Blood, 1984,63:789.
    21 Goldman JM, Apperley JF, Jones L et al. Bone marrow transplantation for patients with chronic myeloid leukemia. N Engl J Med, 1986,314:202.
    22 Degliantoni G, Mangoni N, Rizzoli V et al. In vitro restoration of polyclinal hematopoiesis in a chronic myelogenous lekumia after in vitro treatment with 4-hydroperoxycyclo-phofamide. Blood, 1985,65:753.
    23 .McGlave P, Miller J, Miller W et al. Autologous marrow transplant therapy for CML using marrow treated ex vivo with human recombinant interferon gammar. Blook, 1994,84(10 suppl 1):537.
    24 Kaur G, Gazit A, Leuitzki A et al. Tyrphoatin induced growth inhibition: correlation wigh effect on p210bcr-abl autokinase zctivity in K562 chronic myelogenous leukemia. Anticancer Drugs, 1994,5:213-222.
    25 Bhatia R, Munthe HA, Verfaillie CM. Tyrphostin AG957k, a tyrosine kinase inhibitor with anti-BCR/ABL tyrosine kinase abtivity restoresbetal integrin-mediated adhesion and inhitory signaling in chronic myelogenos leukemia hematopoietic progenitors. Leukemia, 1998,12:1708-1717.
    26 Druker BJ, Lydon NB. Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J. Clin Invest, 2000,105:3-7.
    27 Micheal J,Mauro,Brian J. STI571:Targeting BCR-ABL as therapy for CML. The Oncologist, 2001,6:233-238.
    28 ANNA S, MARINA C, MIGUEL DM. Imatinib mesylate as treatment for blastictransformation of Philadelphiachromosome positive chronic myelogenous leukemia. Journal of hematology, 2003,88(11):1213-1220.
    29 Jana M, Václava Z, Hana K. Differences and similarities in kinetics of BCR-ABLtranscript levels in CML patients treated with imatinibmesylate for chronic or accelerateddisease phase. Leukemia Research, 2004,28:415-419.
    30 Szczylic C, Skorski T, Nicolaides NC et al. Selective inhibition of leukemia cell proliferation bby bcr-abl antisense of oligodeoxynucleotides. Science, 1991,253:562-571.
    31 Wright LA, Milliken S, BIggs JC et al. Ex vivo effects associated with the expression of a bcr-abl-specific ribozyme in a CML cell line. Antisenece Nucleic Acid Drug Dev, 1998,8:15-23.
    32 Snyder DS, Wu Y, McMahon R et al. Ribozyme-mediated inhibition of a Philadelphia chromosome-positive acute lymphoblastic leukemia cell line expression the p190 bcr-abl oncogen. Bio Blood Marrow Transplant, 1997,3:179.
    33 James H, Mills K, Gibson I. Investigating and improving the specificity of ribozymes directed against the bcr-abl translocation. Leukemia, 1996,10:1054-1064.
    34 Salesse S, Moreau Gaudry F, Pigeonnier Lagarde V et al. Retroviral vector-mediated transfer of the interferon-alpha gene in chronic myeloid leukemia cells. Cancer Gene Ther, 1998,5:390-400.
    35 Soddu S, Blandino G, Citro G et al. Wild-type p53 gene expression induces granulocytic differentiation of HL-60 cells. Blood, 1994,83:2230-2237.
    36 Bordignon C, Bonini C, Verzeletti S et al. Transfer of the HSV-tk gene into donor peripheral blood lymphocytes for in vivo modulation of donor anti-tumor immunity after ALLo-BMT. Human Gene Thera, 1995,6:813-819.
    37 Baum C, Hegewisch BS, Eckert HG et al. Novel retroviral vectors for efficient expression of the multidrug resistance(mdr-1) gene in early hematopoietic cells.J Virol, 1995,69:7541.
    38 Ercikan AEA, Mineishi S, Tong Y et al. Active sitedirected double mutants of dihydrofolate reductase. Cancer Res, 1996,56:4142.
    39 David J, Barnes, Junia V. Management of Chronic Myeloid Leukemia: Targets for Molecular Therapy. Seminars in Hematology, 2003,40(1):34-49.
    40熊树民胡翊群.《白血病MICM分型诊断》.第一版.上海第二医科大学附属瑞金医院,2002年6月.
    41 Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature, 1973,243:290-293.
    42 Groffen J, Stephenson NH, de Klein A et al. Philadelphia chromosomal breakpoints are clustered within a limited region,bcr,on chromosome 22. Cell, 1984,36:93-99.
    43 Hariharan IK, Adams JM. cDNA sequence for human bcr, the gene that translocates to the abl oncogene in chronic myeloid leukemia. EMBO J, 1987,(115).
    44 Chen SJ,Chen Zh, Hillion J et al. Ph,-positive, bcr-nagative acute leukemias: Clustering of breakpoints on chromosome 22 in the3,end of the BCR gene first intron. Blood, 1989,73:1312-1315.
    45 Shtivelman E, Lifshitz B, Gale RP et al. Alternative splicing of RNA transcribed from the hummmman abl gene and from the bcr-abl fused geng. Cell, 1986,47:277-284.
    46 Lugo TQ, Pendergast AM, Mulller AJ et al. Tyrosin kinase activity and transfrmation potency of bcr-abl oncogene products. Science, 1990,247:1079-1084.
    47 Pendergast AM, Quilliam LA, Cripe LD et al. BCR-ABL induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell, 1993,75:175-185.
    48 Arlinghaus, R. B. Bcr: a negative regulator of the Bcr-Abl oncoprotein in leukemia. Oncogene, 2002,21(56):8560-8567.
    49 Xun zhao,Saghi Ghaffari,Harvey Lodish. Structure of BCR - ABL oncoprotein oligomerization domain. Nature structural biology, 2002,9(2):117-120.
    50 Puil L, Liu J, Gish G et al. Bcr-abl oncoproteins bind directly to activators of the Ras signalling patheray. EMBO J, 1994,13:764-773.
    51 Million RP, Van Etten RA. The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood, 2000,96:664-670.
    52 Sattler M, Mohi MG, Pride YB, et al. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell, 2002,1:479-492.
    53 McWhirter JR, Wang JY. Effect of BCR sequences on the cellular function of the BCR-ABL oncoprotein. Oncogen, 1997,15:1625-1634.
    54 Van Etten RA, Jackson PK, Baltimore D et al. The COOH terminus of the c-abl tyrosine kinase contains distinct F- and G- actin binding domains with bundling activity. J Cell Biol, 1994,124:325-340.
    55 Stefan Faderl,Moshe Talpaz,Zeev Estrov. The biology of chronic myeloid leukemia. The New England Journal of Medicine, 1999,165(3):165-172.
    56 Saouaf SJ, Burkhardt AL, Bolen JB. Nonreceptor protein tyrosine kinase involvement in signal transduction and immunodeficiency disease. Clinical Immunol Immunopathology, 1995,(76):151-157.
    57 ZouX,CalameK. Signaling pathways activated by oncogenic forms of Abl tyrosine kinase. J Biol Chem, 1999,274(26):18141-18144.
    58 Carroll M, Ohno-Jones S, Tamura Sh et al. CGP57148, a tyrosine kinase inhibitor,inhibits the growh of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood, 1997,90:4947-4952.
    59 Skorski T, Nieborowska-Skorska M, Wlodarski P et al. The SH3 domain contributes to BCR-ABL-dependent leukemogenesis in bibo:role in adhesion, inbasion, and homing.Blood, 1998,91:406-418.
    60 Jackson PK, Paskind M, Baltimore D. Mutation of a phenyl-alanine conserved in SH3-containing tyrosine kinases activates the transforming ability of c-Abl. Oncogene, 1993,8:1943-1956.
    61梁英民,蒋姗姗,韩骅. TAT PTD-BCR/ABL-SH3融合蛋白对白血病细胞系K562凋亡诱导作用.第四军医大学学报, 2002年9月.
    62 Schindler T, Bornmann W, Pellicena P, et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science, 2000,289:1938-1942.
    63 Ren R, Ye ZS, Baltimore D. Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites. Genes Dev, 1994,8:783-795.
    64 Oda T, Heaney C, Hagopian JR et al. Crko is the major tyrosine-phosphorylated protein in nertrophils from patients with chronic myelogenous leukemia. J Biol Chem, 1994,269:2925-2928.
    65 McWhirter JR, Wang JYJ. Effect of BCR sequences on the cellular function of the BCR-ABL oncoprotein. Oncogen, 1997,15:1625-1634.
    66 Sattler M, Salgia R. Role of the adapter protein CRKL in signal transduction of normal hematopoietic and BCR/ABL-transformed cells. Leukemia, 1998,12:637-644.
    67 McWhirter J, Wang J. Activation of tyrosine kinase and microfilament-binding functions of c-Abl by Bcr sequences in Bcr/Abl fusion proteins. Mol Cell Biol, 1991,11:1553-1565.
    68 Salgia R, Brunkhorst B, Pisick E, et al. Increased tyrosine phosphorylation of focal adhesion proteins in myeloid cell lines expressing p210BCR/ABL. Oncogene, 1995,11:1149-1155.
    69 Wen ST, Jackson PK, Van Etten RA. The cytostatic function of c-Abl is controlled by multiple nuclear localization signals and requires the p53 and Rb tumor suppressor gene products. EMBOJ, 1996,15:1583-1595.
    70 By K. Okuda, A. D'Andrea, R.A. Van Etten, and J.D. Griffin. The C-Terminus of c-Abl Is Required for Proliferation and Viability Signaling in a c-Abl/Erythropoietin Receptor Fusion Protein. Blood, 1998,92(10):3848-3856.
    71 Nora Heisterkamp, Jan Willem Voncken, Dinithi Senadheera. Reduced oncogenicity of p190 Bcr-Abl F-actin-binding domain mutants. Blood, 2000,96:2226-2232.
    72 Oliver Hantschel,Silke Wiesner,Thomas Güttler. Structural Basis for the Cytoskeletal Association of Bcr-Abl/c-Abl. Molecular Cell,2005. 461-473.
    73 Wong S,Witte O N. Modeling Philadelphia chromosome positive leukemias. Oncogene, 2001,20(40):5644-5659.
    74 Daley GQ,van Etten Ra,Baltimore D. Induction of chronic myelogenous leukaemia in mice by the P210 bcr-abl gene of Philadelphia chromosome. Science, 1990,247:824.
    75 Vaux KL, Strasser A. The molecular biology of apoptosis. Proc Natl Acad Sci USA, 1996,93:2239-2244.
    76 Hale AJ, Smith CA, Sutherland LC et al. Apoptosis: Mocular regulation of cell death. Eur J Biochem, 1996,236:1-26.
    77 Hoffman B, Liebermann DA, Selvakumaran M et al. Role of c-myc in myeloid differentiation, growth arrest and apoptosis. Curr Topics Microbiol Immunol, 1996,211:17-27.
    78 Sanchez GI, Grutz G. Tumorigenic activity of the BCR-ABL oncogene id mediated by BCL-2. Proc Natl Acad Sci USA, 1995,92:5287-5291.
    79 Kabarowski JHS, Allen PB, Wiedemann LM. A temperature sensitive p210 BCR-ABL mutant defines the primary consequences of BCR-ABL tyrosine kinase expression in growth factor dependent cells. EMBO J, 1994,13:5887-5895.
    80 Skorski T, Karakaraj P,Kr DH et al. Negative regulation of p210GTPase promotin g activity by p210/bcr-abl:Implication for Ras-dependent ph(+) cell growth. J Exp Med, 1994,179:1855-1865.
    81 Stefan Faderl,Moshe Talpaz,Zeev Estrov.T. the biology of chronic myeloid leukemia. The New England Journal of Medicine, 1999,165(3):165-172.
    82 Simmons PJ, Levesque JP, Zannnettion AC. Adhesion molecules in haemopoiesis. Baillieres Clin Haematol, 1997,10:485-505.
    83 Clark BR, Gallagher JT, Dexter TM. Cell adhesion in the stromal regulation of haemopoiesis. Maillieres Clin Haematoly, 1992,5:619-652.
    84 Gotoh A, Miyazawa K, Ohyashiki K et al. Tyrosin phosphorylation and activation of focal adhesion kinase by bcr-abl onxoprotein. Exp Hematol, 1995,23:1153-1159.
    85 Verfaillie CM, Hurley R, Zhao,RC et al. Pathophysiology of CML:do defects in integrin function contribute to the premature circulation and massive expansion of the bcr/abl positive clone. J Lab Clin Med, 1997,129:584-591.
    86 Gordon MY, Dowding CR, Riley GP et al. Adhesive defects in chromic myeloid leukemia. Curr Top Microbilo Immunol, 1989,149:151-155.
    87 Salgia R, Li JL, Ewaniuk DS et al. BCR/ABL induces multiple abnomalities of cytoskeletal funcion. J Clin Invest, 1997,100:46-57.
    88 Maru Y, Afau KEH, Wirre ON et al. The dimerization property of glutathione S-transferase partially teactivates bcr-abl lacking the oigomerization domain. J Biol Chem, 1996,271:15353-15357.
    89 Coulombel L, Auffray I, Gaugler MH et al. Expression and function of integrins on hematopoietic progenitor cells. Acta Haematol, 1997,97:13-21.
    90 Hurley RW, McCarthy JB, Wayner EA et al. Monoclonal antibody crosslinking of the alpha 4 or beta 1 integrin inhibits committed clonogenic hematopoietic progenitor proliferation. Exp Hematol, 1997,25:321-328.
    91 Bhatia R, Verfaillie CM. The effect of interferon-alpha on beta-1 integrin mediated adhesion and growth regulation in chronic myelogenous leukemia. Leuk Lymphoma, 1998,28:241-254.
    92 McWhirter JR, Wang JYJ. An actin-binding function contributed to transformation by thr BCR-ABL oncoprotin of Philadelphia chromosome-positive humn leukemias. EMBO J, 1993,12:1533-1546.
    93 Salgia R, Sattler M, Pisick E et al. P210BCR/ABL induces formation of complexes containing focal adhesion proteins and the protooncogene product p120c-Cbl. Exp Hematol, 1996,24:310-313.
    94 Barbacid M. Ras genes. Annu Rev Biochem, 1987,56:779-827.
    95 Matais R, Light Y, Paterson HF et al. Ras recruits Raf-1 to the plasma membrane for activation bbby tyrosine phosphorylation. EMBO J, 1995,14:3136-3145.
    96 Matsuguchi T, Salgia R, Hallek M et al. Shc phosphorylation in myeloid cells is regulated by granulocyte macrophage colony-stimulating factor, interleukin-3, and steel factor and is constitutively increased by p210bcr/abl. J Biol Chem, 1994,7:5016-5021.
    97 Dichens M, Rogers JS, Cavanagh J et al. A cytoplasmic inhibitorof the JNK siganal transduction pathway. Science, 1997,277:693-696.
    98 Fukui Y, hanafusa H. Phosphatidylinositol kinase activity associates with viral p60src protein. Mol Cell Biol, 1989,9:1651-1658.
    99 McGlade CJ, Ellis C, Reedijk M et al. Sh2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors. Mol Cell Biol, 1992,12:991-997.
    100 Wang J, Arger KR, Jarvis L et al. Kirect association of Grb2 with the p85 subunit of phosphatidylinositol 3-kinase. J Biol Chem, 1995,270:12774-12780.
    101 Vanhaesebroeck B, Stein RC, Waterfield MD. The study of phosphoinositide 3-kinase function. In: Parker P, Pawson T. Cell signalling. Cold Spring Harbor, 1996:249-270.
    102 Skoski T, Kanakaraj P, Nieborowska-Skorska M et al. Phosphatidylinositol-3,-kinase activity is regulated by BCR-ABL and is required for the growth of philadelphiachromosome positive cells. Blood, 1995,86:726-736.
    103 Varticovski L, Daley GQ, Jackson P et al. Activation of phosphatidylinositol 3-kinase in cells expressin gabl oncogene variants. Mol Cell Biol, 1991,11:1107-1113.
    104 Skorski T, Nieborowska-Skorska M, Wlodarski P et al. The SH3 domain contributes to BCR-ABL-dependent leukemogenesis in bibo: role in adhesion, inbasion, and homing. Blood, 1998,91:406-418.
    105 de Jong R, ten Hoeve J, Heisterkamp N et al. CRKL is complexed with tyrosine-phosphorylated Cb1in Ph-positive leukemia. J Biol Chem, 1995,270:1468-1471.
    106 Ten Hoeve J, Kaartinen V, Fioretos T et al. Cellular interactions of CRKL, and SH2-SH3 adaptor protein. Cancer Res, 1994,54:2563-2566.
    107 Greulich H, Hanafusa H. A role for Ras in v-Crk transformation. Cell Growth Differ, 1996,7:1443-1451.
    108 Nojima Y, Morino N, Mimura T et al. Integrin-mediated cell adhesion promotes tyrosine phosphorylation of p130Cas, a Src homology 3-containing molecule having multiple Src homology 2-binding motifs. J Biol Chem, 1995,270:5398-5402.
    109 Carlesso N, Frank DA, Griffin JD. Tyrosyl phosphorylation and DNA binding activity of sigmal transducers and activators of transcriprion(STAT) proteins in hematopoietic cell lines transformed by bcr/abl. J Exp Med, 1996,183:811-820.
    110 Ilaria RLJ, Van Etten RA. P210 and p190 (BCR/ABL)induce the tyrosine phosphorylation and DNA cinding activity of multiple specific STAT family members. J Biol Chem, 1996,271:1704-1710.
    111 Shuai K, Haopern J, ten Hoeve J et al. Constitutive activation of STAT5 by the BC-ABL oncogene in chronic myelogenous leukemia. Oncogene, 1996,13:247-254.
    112 Danhauser-Riedl S, Warmuth M, Durker BJ et al. Activation of Src kinases p53/56lyn and p59hck by p210bcr/abl in myeloid cells. Cancer Res, 1996,56:3589-3596.
    113 Warmuth M, Bergmann M, Priess A et al. The Src family kinase Hck interacts with bcr-abl by a kinase-independent mechanism and phosphorylates the Grb-2-binding site of bcr. J Biol Chem, 1997,272:3260-3270.
    114 Barone MV, Courtneidge SA. Myc but not Fos rescue of PDGF signalin gblock caused by kinase-inactive Src. Nature, 1995,378:509-512.
    115 Frankel, A.D, Pabo, C.O. Cellular uptake of the Tat protein from human immunodeficiency virus. Cell, 1988,55:1189-1193.
    116 Green, M, Loewenstein, P.M. Autonomous functional domains of chemically synthesized human immunodeficiency virus Tat trans-activator protein. Cell, 1988,55:1179-1188.
    117 Vives, E, Brodin, P, Lebleu, B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem, 1997,272:16010-16017.
    118 Fawell, S, Seery, J, Daikh. Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci, 1994,91:664-668.
    119 Derossi, D, Joliot, A.H, Chassaing, G, Prochiantz, A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem, 1994,269:10444-10450.
    120 Elliott, G, O'Hare, P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell, 1997,88:223-233.
    121 Prochiantz, A. Messenger proteins: homeoproteins. Tat and others. Curr. Opin. Cell Biol, 2000,12:400-406.
    122 Schwarze, S.R, Hruska, K.A, Dowdy, S.F. Protein transduction: unrestricted delivery into all cells?. Trends Cell Biol, 2000,10:290-295.
    123 Becker-Hapak, M, McAllister, S.S, Dowdy, S.F. Tat-mediated protein transduction into mammalian cells. Methods, 2001,24:247-256.
    124 Persson, D, Thoren, P.E, Herner, M, Lincoln, P. Norde?n, B, Application of a novelanalysis to measure the binding of the membranetranslocating peptide penetratin to negatively charged liposomes. Biochemistry, 2003,42:421-429.
    125 Koppelhus, U, Awasthi, S.K, Zachar, V. Cell-dependent differential cellular uptake of PNA, peptides, and PNA-peptide conjugates. Antisense Nucleic Acid Drug Dev, 2002,12:51-63.
    126 Thoren, P.E, Persson, D, Karlsson, M, Norde. The antennapedia peptide penetratin translocates across lipid bilayers-The first direct observation. FEBS Lett, 2000,482:265-268.
    127 Rusnati, M, Coltrini, D, Oreste, P. Interaction of HIV-1 Tat protein with heparin. Role of the backbone structure, sulfation, and size. J. Biol. Chem, 1997,272:11313-11320.
    128 Mann, D.A, Frankel, A.D. Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO J, 1991,10:1733-1739.
    129 Rusnati, M, Tulipano, G, Urbinati, C. The basic domain in HIV-1 Tat protein as a target for polysulfonated heparin-mimicking extracellular Tat antagonists. J. Biol. Chem, 1998,273:16027-16037.
    130 Hakansson, S, Jacobs, A, Caffrey, M. Heparin binding by the HIV-1 Tat protein transduction domain. Protein Sci, 2001,10:2138-2139.
    131 Tyagi, M, Rusnati, M, Presta, M, Giacca, M. Internalization of HIV-1 Tat requires cell surface heparan sulfate proteoglycans. J. Biol. Chem, 2001,276:3254-3261.
    132 [3Mai, J.C, Shen, H, Watkins, S.C, Cheng, T, Robbins, P.D. Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate. J. Biol. Chem, 2002,277:30208-30218.
    133 Console, S, Marty, C, Garcia-Echeverria, C, Schwendener, R. Antennapedia and HIV transactivator of transcription (Tat) "protein transduction domains" promote endocytosis of high molecular weight cargo upon binding to cell surfaceglycosaminoglycans. J. Biol. Chem, 2003,278:35109-35114.
    134 Ziegler A , Seelig J. Interaction of the protein transduction domain of HIV-1 Tat with heparan sulfate : binding mechanism and thermodynamic parameters. Biophys J, 2004,86:254-263.
    135 Silhol, M, Tyagi, M, Giacca, M, Lebleu, B, Vives, E. Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat. Eur. J. Biochem, 2002,269:494-501.
    136 Silhol M, Tyagi M, Giacca M, et al. Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat. Eur J Biochem, 2002,269:494-501.
    137 Fawell, S, Seery, J, Daikh, Y, Moore, C. Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci U. S. A, 1994,91:664-668.
    138 A. Vocero-Akbani, N.A. Lissy, S.F. Dowdy. Transduction of full-length Tat fusion proteins directly into mammalian cells: analysis of T cell receptor activation-induced cell death. Methods Enzymol, 2000,322:508-521.
    139 Nagahara, H, Vocero-Akbani, A.M, Snyder, E.L, Ho, A. Transduction of full-length Tat fusion proteins into mammalian cells: Tat-p27Kip1 induces cell migration. Nat. Med, 1998,4:1449-1452.
    140 P. Moy, Y. Daikh, B. Pepinsky, D. Thomas, S. Fawell, J. Barsoum. Tat-mediated protein delivery can faciliTate MHC class I presenTation of antigens. Mol. Biotechnol, 1996,6:105-113.
    141 D.T. Kim, D.J. Mitchell, D.G. Brockstedt, L. Fong, G.P. Nolan. Introduction of soluble proteins into the MHC class I pathway by conjugation to an HIV Tat peptide. J. Immunol, 1997,159:1666-1668.
    142 N. Shibagaki, M.C. Udey. Dendritic cells transduced with protein antigens induce cytotoxic lymphocytes and elicit antitumor immunity. J. Immunol,2002,168:2393-2401.
    143 P.S. Kabouridis, M. Hasan, J. Newson, D.W. Gilroy, T. Lawrence. Inhibition of NF-kappa B activity by a membranetransducing mutant of I kappa B alpha. J. Immunol, 2002,169:2587-2593.
    144 J. Embury, D. Klein, A. Pileggi, M. Ribeiro, S. Jayaraman. Proteins linked to a protein transduction domain efficiently transduce pancreatic islets. Diabetes, 2001,50:1706-1713.
    145 Vocero-Akbani, A.M, Heyden, N.V, Lissy, N.A. Killing HIV-infected cells by transduction with an HIV proteaseactivated caspase-3 protein. Nat. Med, 1999,5:29-33.
    146梁英民,蒋姗姗,韩骅,等. Tat蛋白转导结构域介导BCR/ABL融合蛋白通过小鼠血脑屏障的作用.细胞与分子免疫学杂志, 2002,18(3):244-247.
    147梁英民,蒋姗姗,韩骅,等. Tat PTD-BCR/ABL SH3融合蛋白对白血病细胞系K562凋亡的诱导作用.第四军医大学学报, 2002,23(9):821-824.
    148阴继凯,马庆久,梁英民,等. PTD-BCR/ABL SH3融合蛋白对肝癌细胞系HHCC的体外杀伤活性的研究.肝胆外科杂志, 2004,12(1):53-55.
    149梁英民,蒋姗姗,韩骅等. Tat PTD-BCR/ABL SH3融合蛋白对白血病细胞系K562凋亡.中华血液学, 2003.
    150阴继凯,马庆久,梁英民,等. PTD-BCR/ABL SH3融合蛋白对肝癌细胞株SMMC-7721的杀伤作用.外科理论与实践, 2003,8(6):475-478.
    151刘强,梁英民,等.蛋白转导结构域介导BCR/ABL对慢性粒细胞白血病患者T细胞的活化作用.中华血液学杂志, 2003,24(12):644-647.
    152 Kowalska A, Pruchnik-Wolinska D, Florczak J, et al. Genetic study of familial cases of Alzheimer's disease. Acta Biochim Pol, 2004,51(1):245-252.
    153 Dewji NN, Valdez D, Singer SJ. The presenilins turned inside out: implication for their structures and functions. Proc Natl Acad Sci USA, 2004,101(4):1057-1062.
    154 Rey FE, Cifuentes ME, Kiarash A, et al. Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O2 and systolic blood pressure in mice. Circ Res, 2001,89:408-414.
    155 Bruyninckx WJ, Comerford KM, Lawrence DW, et al. PHospHoinositide 3-kinase modulation ofβ3-integrin represents an endogenous 'braking' mechanism during neutropHil transmatrix migration. Blood, 2001,97:3251-3258.
    156 Kanovsky M, Raffo A, Drew L, et al. Peptides from the amino terminal mdm-2-binding domain of p53, designed from conformational analysis, are selectively cytotoxic to transformed cells. Proc Natl Acad Sci USA, 2001,98:12438-12443.
    157 Dostmann WR, Taylor MS, Nickl CK, et al. Highly specific, membrane-permeant peptide blockers of cGMP-dependent protein kinase I alpHa inhibit NO-induced cerebral dilation. Proc Natl Acad Sci USA, 2000,97:14772-14777.
    158 Friedler A, Friedler D, Luedtke NW, et al. Development of a functional backbone cyclic mimetic of the HIV-1 Tat arginine-rich motif. J Biol Chem, 2000,275:23783-23789.
    159 Uemura S, Fathman CG, Rothbard JB, et al. Rapid and efficient vascular transport of arginine polymers inhibits myointimal hyperplasia. Circulation, 2000,102:2629-2635.
    160 R. Chakrabarti, D.E. Wylie, S.M. Schuster. Transfer of monoclonal antibodies into mammalian cells by electroporation. J. Biol. Chem, 1989,264:15494-15500.
    161 H. Arnheiter, O. Haller. Antiviral sTate against influenza virus neutralized by microinjection of antibodies to interferon- induced Mx proteins. EMBO J, 1988,7:1315-1320.
    162 Schwarze, S.R, Ho, A, Vocero-Akbani, A, Dowdy, S.F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science, 1999,285:1569-1572.
    163 R. Bhorade, R. Weissleder, T. Nakakoshi, A. Moore, C.H. Tung. Macrocyclic chelatorswith paramagnetic cations are internalized into mammalian cells via a HIV-Tat derived membrane translocation peptide, Bioconjug. Chem, 2000,11:301-305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700