用户名: 密码: 验证码:
钛酸钡基抗还原介质的组成改性及基础工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多层陶瓷电容器(MLCC)是表面组装电路中最重要的电子元件之一。使用贱金属(Ni或Cu)代替昂贵的贵金属Pd或Ag/Pd合金作为内电极,可以极大地降低MLCC的生产成本。为防止Ni(或Cu)金属在空气中烧结时发生氧化,这类使用贱金属内电极的MLCC(BME-MLCC)必须在还原气氛下烧结,从而对MLCC介质材料的性能和应用特性提出了更高的要求。BaTiO_3基抗还原介质陶瓷,作为可以与贱金属内电极共烧的MLCC材料,因而在工业应用和基础研究上都是最具吸引力的发展方向之一。
     为满足某些车载用电子系统的对工作温度的苛刻要求,近来满足EIA X8R特性(-55℃~150℃,ΔC/C≤±15%,tanδ_(25℃)≤0.025)的MLCC材料受到了广泛关注。但BaTiO_3本身的居里温度在125℃左右,在此温度以上,材料要满足B特性(ΔC/C≤±15%)非常困难,如何提高BaTiO_3的居里温度以制备X8R材料已经成为目前的研究难点。另一方面,采用亚微米级的超细原料已成为大容量MLCC的工艺基础,而亚微米级的超细原料的使用又对改性掺杂剂的粒径、纯度及掺杂的均匀性提出了更高的要求。为此国内外研究者发展了多种技术以达到在瓷料制备中掺杂剂的粒径控制和均匀分布;然而这些制备超细瓷料的方法都不同程度的存在着设备和操作复杂,原料和辅助材料昂贵等缺陷,导致其在生产实践中受到种种限制。
     本论文正是针对上述问题,以BaTiO_3基抗还原陶瓷材料为主要的研究对象,在深入分析BaTiO_3陶瓷的改性机理的基础上,对材料和工艺问题作了创新性和探索性研究。主要内容为:
     1.详细研究了稀土元素对BaTiO_3-Mg-R(R=稀土元素La、Pr、Ce、Nd、Sm、Gd、Dy、Ho、Er、Yb)体系的微观结构和介电性能的影响。研究发现,陶瓷晶粒尺寸的变化、壳—芯结构的形成均与稀土元素的固溶度有关。首次发现过量稀土形成的焦绿石相R_2Ti_2O_7可对壳—芯结构的形成起辅助作用。在Dy~(3+)、Ho~(3+)、Er~(3+)和Yb~(3+)掺杂并形成壳—芯结构的样品中,发现居里点随稀土离子的半径减小而升高,首次提出了如下的居里点移动机理:稀土离子取代BaTiO_3的B位将使晶粒壳的BaTiO_3晶胞体积增大,并导致晶粒壳发生相对于晶粒芯的体积膨胀,对晶粒芯产生张应力作用,使晶粒芯的居里点升高;反之,稀土离子的A位取代将使晶粒芯受到压应力作用,导致居里点降低。
     2.详细研究了各种掺杂离子对壳—芯结构的BaTiO_3-Mg-R(R=Yb、Ho)系统的介电性能的影响及其改性机理。首次发现,Mg/Yb共掺杂的BaTiO_3陶瓷
Ceramic multilayer capacitors (MLCC) are one of the most important electronic components at the surface mounting of electronic circuits. A substantial cost saving can be achieved by utilizing base metal (Ni or Cu) electrode as internal metallization in MLCC over the more expensive precious metals such as Pd or Ag/Pd. The base-metal-electrode capacitors (BME-MLCC) need to be fired in reducing atmosphere, since the Ni (or Cu) metal is subjective to oxidation during sintering in air. This inevitably results in requirements for high performance non-reducible dielectrics for BME-MLCC. As a result, BaTiO_3-based non-reducible dielectrics, which can be co-fired with BME, have become one of the most attracting fields in both industry and academia.
    Nowadays, much attention has been paid to MLCC satisfying EIA X8R specification (-55 to 150℃,ΔC=±15% or less, tan δ_(25℃)≤0.025) for automotive applications, which work under harsh conditions. However, it is very difficult for BaTiO_3-based dielectrics to satisfy the R characteristic (ΔC/C=± 15% or less) when the temperature is higher than 130℃, since the Curie point (T_C) of pure BaTiO_3 is about 125℃. Accordingly, how to shift T_C to higher temperatures has become a key issue in research of BaTiO_3-based X8R materials. Besides, ultrafine starting materials have become the basis of the mass production of MLCC, which inevitably leads to high requirements for particle size, purity, and uniformity of additives. Some technologies have been developed in order to achieve downsizing and uniform distribution of additives. However, most of these techniques suffer from complex equipments, complicated processing procedures and expensive raw materials.
    In this thesis, the basic modification mechanisms of BaTiO_3 have been analyzed. Then novel materials and process are explored and investigated for non-reducible dielectrics.
    The main results are as follows:
    1. The effects of rare earth elements on the microstructure and dielectric properties of BaTiO_3-Mg-R (R=rare earth elementals La, Pr, Ce, Nd, Sm, Gd, Dy, Ho, Er, Yb) system are investigated in detail. The mechanisms governing average grain size and the formation of core-shell structure are discussed in terms of the solubilities of the rare earth elements. Pyrochlore-type R_2Ti_2O_7 is found to be helpful to form core-shell structure. In the cases of Dy~(3+), Ho~(3+), Er~(3+), Yb~(3+)-substituted samples with
引文
[1] Mamada N. Performance advantages of multilayer ceramic capacitor (MLCC) arrays. Wireless Design & Development, 2003, 11(1): 8.
    [2] Hennings D. Dielectric materials for sintering in reducing atmospheres. J. Eur. Ceram. Soc., 2001, 21: 1637~1642.
    [3] Kishi H, Mizuno Y, Chazono H. Base-metal-electrode multilayer ceramic capacitors: Past, present and future perspectives. Jpn. J. Appl. Phys., 2003, 42(1): 1~15.
    [4] 李艳霞,姚熹,张良莹.贱金属电极陶瓷电容器(BME-MLCCs)研究进展.材料导报,2003,17(10):41~43.
    [5] Nishino A. Capacitors: operating principles, current market and technical trends. J. Power Sources, 1996, 60: 137~147.
    [6] Sarjeant W J, Zirnheld J, Macdougall F W. Capacitors. IEEE Transactions On Plasma Science, 1998, 26: 1368~1392.
    [7] 蒋渝,陈家钊,刘颖,等.多层片式陶瓷电容器MLC研发进展.功能材料与器件学报,2003,9(1):100~104.
    [8] 曲喜新.电子元件材料手册,北京:电子工业出版社,1989.
    [9] Chen, G - F, Fu S -L. Low firing Y5V relaxor multilayer ceramic capacitors. IEEE Transactions on Components, Hybrids and Manufacturing Technology, 1989, 12(1): 91~95.
    [10] Natarajan R, Dougherty J P. Influence of Li addition on the sintering and dielectric properties of PNN-PMW-PT relaxor ferroelectrics. Materials Research Society Symposium - Proceedings, v 453, Solid-State Chemistry of Inorganic Materials, 1997: 473~481.
    [11] Maher, G H, Prokopowicz T I, Bheemineni Y. High volumetric capacitance low fired X7R MLC capacitor. Proceedings - Electronic Components and Technology Conference, 1993, 280~284.
    [12] 张树人.半导体陶瓷和M L c陶瓷的研究进展.电子科技大学学报,1994,23:172~175.
    [13] 王文生.多层陶瓷电容器Ni内电极研究进展.电子元件与材料,1994,13(1):7~10.
    [14] Roos G. MLCCs sport copper electrodes. Electronic Buyers'News. 1996, 1011: 36.
    [15] Bernard J, Houivet D, El F J, et al. MgTiO_3 for Cu base metal multilayer ceramic capacitors, J. Eur. Ceram. Soc., 2004, 24(6): 1877~1881.
    [16] Park H D, Nance J D, Chu M, et al. Multilayer ceramic chip capacitor with high reliability compatible with nickel electrodes. US Patent, 6185087B1, 2001-02-06.
    [17] Iwanaga D, Nakano Y, Miyauchi M, et al. Effect of dielectric layer thickness reduction on insulation resistance of Ni-MLCCs. Proceedings of the Fourth International Conference on Materials Engineering for Resources, 2001, 77~81.
    [18] Takeshima Y, Shiratsuyu K, Takagi H, et al. Preparation and dielectric properties of the multilayer capacitor with (Ba, Sr)TiO_3 thin layers by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys., 1997,36(9B): 5870~5873.
    [19] Yamashita K, Matsuda M, Inda Y, et al. Dielectric depression and dispersion in electrophoretically fabricated BaTiO_3 ceramic films J. Am. Ceram. Soc., 1997, 80(7): 1907~1909.
    [20] Zhang J, Lee B I. Electrophoretic deposition and characterization of micrometer-scale BaTiO_3 based XTR dielectric thick films. J. Am. Ceram. Soc., 2000, 83: 2417~2422_
    [21] 司留启、欧明、刘会冲,等.低频高介抗还原多层陶瓷电容器瓷料及其制备方法.中国专利,02134818,2003-03-12.
    [22] Maher G H. New PLZT dielectric for use in characteristic X7R multilayer ceramic capacitors. IEEE Trans. on CHMT, 1983, 6(4):372~376.
    [23] Maher G H. Effect of Silver Doping on the Physical and Electrical Properties of PLZT Ceramics. J. Am. Ceram. Soc., 1983,66(6):408~413.
    [24] Gui Z, Wang Y, Li L. Lead-based relaxor ferroelectric ceramics for high performance low firing MLCs. IEEE International Symposium on Applications of Ferroelectrics, 1996,1:409~412.
    [25] 刁雷,齐建全,桂治轮,等.BT-PMN共烧陶瓷的新的介温特性.无机材料学报,2001,16(2):381~384.
    [26] 岳振星,王晓莉,张良莹,等.复相弛豫铁电陶瓷的相组成与介电性能.无机材料学报,1997,12(5):710~713.
    [27] Haussonne J M, Desgardin G, Herve A. et al. Dielectric ceramics with relaxors and a tetragonal tungsten bronze. J. Eur. Ceram. Soc., 1992,10(6):437~452.
    [28] Tribotte B, Desgardin G. Reaction between the tetragonal tungsten bronze niobate K_2Sr_4Nb_(10)O_(30) and the perovskite Pb(Mg_(1/3)Nb_(2/3))O_3. Mater. Sci. Eng. B, 1996, B40(2&3): 127~139.
    [29] Tribotte B, Haussonne J M, Desgardin G. K_2Sr_4Nb_(10)O_(30)-based dielectric ceramics having the tetragonal tungsten bronze structure and temperature-stable high permittivity, J. Eur. Ceram. Soc., 1999, 19(6&7):1105~1109.
    [30] Herbert, J. M., High permittivity ceramics sintered in hydrogen. Trans. Br. Ceram. Soc., 1963, 62(8):645-658.
    
    [31] Hagemann H J, Hennings D. Reversible weight change of acceptor doped barium titanate. J. Am. Ceram. Soc, 1981,64(10) :590-594.
    
    [32] Sakabe Y. Dielectric materials for base-metal multilayer ceramic capacitors. Ceram. Bull., 1987,66:1338-1341.
    
    [33] Zhang X. W, Han Y H, Lal M, et al. Defect chemistry of BaTiO3 with additions of CaTiO3. J. Am. Ceram. Soc, 1987(1), 70:100-103.
    
    [34] Seuter A. Defect chemistry and electrical transport properties of barium titanate. Philips Res. Rep. (Suppl. 3), 1974.
    
    [35] Daniels J. Defect equilibria in acceptor-doped barium titanate. Philips Res. Rep., 1976, 31:505-515.
    
    [36] Loh E. A model of dc leakage in ceramic capacitors. J. Appl. Phys., 1982, 53(9): 6229-6235.
    
    [37] Neumann H, Arlt G. Maxwell-wagner relaxation and degradation of SrTiO3 and BaTiO3 ceramics. Ferroelectrics, 1986,69:179-186.
    
    [38] Lehovec K, Shirn G A. Conductivity injection and extraction in polycrystalline barium titanate. J. Appl. Phys., 1962,33(6): 2036-2044.
    
    [39] Macchesney J B, Gallagher P K, Dimarcello F V. Stabilized barium titanate ceramics for capacitor dielectrics. J. Am. Ceram. Soc, 1963,46(5): 197-202.
    
    [40] Okazaki K, Igarashi H. Processing-property relations in ceramic dielectric capacitors. Ferroelectrics, 1980,27:263-268.
    
    [41] Rodel J, Tomandl G. Degradation of Mn-doped BaTiO3 ceramic under a high d. c. electric field. J. Mater. Sci., 1984,19:3515-3523.
    
    [42] Baiatu T, Waser R, Hardtl K-H. Dc electrical degradation of perovskite-type titanates:III, a model of the mechanism. J. Am. Ceram. Soc, 1990, 73(6): 1663-1672.
    
    [43]Sheng J, Fukami T, Karasawa J. Anomalous current rise and electrochemical reduction in Fe2O3-TiO2 ceramics. J. Electrochem. Soc, 1998,145(5): 1592-1598.
    
    [44] Fukami T, Agawa D, Bamba N. Generation and dynamic behavior of oxygen vacancies in barium titanate ceramics. Jpn. J. Appl. Phys., 2001, 40 (9B): 5634-5637.
    
    [45] Chazono H, Kishi H. Dc-electrical degradation of the BT-based material for multilayer ceramic capacitor with Ni internal electrode: impedance analysis and microstructure. Jpn. J. Appl. Phys., 2001, 40 (9B): 5624-5629.
    
    [46] Yang G Y, Dickey E C, Randall C A, et al. Oxygen nonstoichiometry and dielectric
    evolution of BaTiO3. Part 1-improment of insulation resistance with re-oxidation. J. Appl. Phys., 2004, 96(12): 7492-7499.
    
    [47] Yang G Y, Dickey E C, Randall C A. Oxygen nonstoichiometry and dielectric evolution of BaTiO3. Part 2- insulation resistance degradation under applied de bias. J. Appl. Phys., 2004,96(12): 7500-7508.
    
    [48] Woodward D, Reaney I M. Yang G Y, et al. Vacancy ordering in reducing barium titanate. Appl. Phys. Lett., 2004, 84(23): 4650-4652.
    
    [49] Yang G Y, Dickey E C, Randall C A. Modulated and ordered defect structures in electrically degraded Ni-BaTiO3 multilayer ceramic capacitors. J. Appl. Phys., 2003, 94(9): 5990-5996.
    
    [50] Opitz M R, Albertsen K, Beeson J J, et al. Kinetic process of reoxidation of base metal technology BaTiO3-based multilayer capacitors. J. Am. Ceram. Soc., 2003, 86(11): 1879-1884.
    
    [51] Makovec D, Drofenik M. Microstructure changes during the reduction/reoxidation process in donor-doped BaTiO3 ceramics. J. Am. Ceram. Soc, 2000, 83(10): 2593-2599.
    
    [52] Albertsen K. Re-oxidation of Ni-MLCs. J. Eur. Ceram. Soc, 2004,24 (6): 1883-1887
    
    [53] Hennings D. Donor-acceptor charge complex formation in BaTiO3 ceramics. Ceram. Trans., 1999, 91:141-151.
    
    [54] Albertsen K, Hennings D, Steigelmann O. Donor/acceptor charge complex formation: the role of firing atmospheres. J. Electroceram., 1998, 2&3:193-198.
    
    [55] Saito H, Chazono H, Kishi H. X7R multilayer ceramic capacitors with Nickel electrodes. Jpn. J. Appl. Phys., 1991, 30(9B):2307-2310.
    
    [56] Okino Y, Shizuno H, Kusumi S, et al. Dielectric Properties of are-earth-oxide-doped BaTiO3 ceramics fired in reducing atmosphere. Jpn. J. Appl. Phys., 1994, 33 (9B): 5393-5396.
    
    [57] Nomura T, Kawano N, Yamamatsu J, et al. Aging behavior of Ni-electrode mulitlayer ceramic capacitor with X7R characteristics. 1995, 32(9B):5389-5395.
    
    [58] Sato S, Nakano Y, Sato A, et al. Mechanism of improvement of resistance degradation in Y-doped BaTiO3 based MLCCs with Ni electrodes under highly accelerated life testing. J. Eur. Ceram. Soc, 1999,19:1061-1065.
    
    [59] Sakabe Y, Hamaji Y, Sano H, et al. Effects of rare-earth oxides on the reliability of X7R dielectrics. Jpn. J. Appl. Phys., 2002, 41(9):5668-5673.
    
    [60] Kishi H, Kohzu N, Mizuno Y, et al. Effect of occupational sites of rare-earth elements on the microstructure in BaTiO_3. Jpn. J. Appl. Phys., 1999, 38(9B): 5452~5456.
    [61] Kishi H, Kohzu N, Iguchi Y, et al. Occupational sites and dielectric properties of rare-earth and Mn substituted BaTiO_3. J. Eur. Ceram. Soc., 2001, 21: 1643~1647.
    [62] Kirianov A, Hagiwara T, Kishi H, et al. Effect of Ho/Mg ratio on formation of core-shell structure in BaTiO_3 and on dielectric properties of BaTiO_3 ceramics. Jpn. J. Appl. Phys., 2002, 41(11B): 6934~6937.
    [63] Watanabe K, Ohsato H, Kishi H, et al. Solubility of La-Mg and La-Al in BaTiO_3. Solid State Ionics, 1998, 108: 129~135.
    [64] Kishi H, Kohzu N, Sugino J, et al. The effect of rare-earth (La, Sm, Dy, Ho and Er) and Mg on the microstructure in BaTiO_3. J. Eur. Ceram. Soc., 1999, 19: 1043~1046.
    [65] Hishi H, Kohzu N, Iguchi Y, et al. Study of occupational sites and dielectric properties of Ho-Mg and Ho-Mn substituted BaTiO_3. Jpn. J. Appl. Phys., 2000, 39(9B): 5533~5537.
    [66] Takada K, Chang E, Smyth D M. Rare earth additions to BaTiO_3. In: Blum J B, Cannon W R. eds. Advances in Ceramics vol. 19, multilayer devices. Westervile OH: Am. Ceram. Soc., 1987. 147~151.
    [67] Lewis G V, Catlow C R A. Befect study of doped and undoped barium titanate using computer simulation technology. J. Phys. Chem. Solids, 1986, 47: 89~97.
    [68] Lee W - H, Ogoen W A, Schreinemacher H, et al. Dysprosium doped dielectric materials for sintering in reducing atmospheres. J. Electroceram., 2000, 5(1): 31~36.
    [69] Chazono H, Inomata Y, Kohzu N, et al. Relationship between the microstructure and electrical properties for a multilayer ceramic capacitor with a Ni internal electrode. Key Eng. Mater., 1999, 169&170: 31~34.
    [70] Tsurumi T, Adachi H, Kakemoto S, et al. Dielectric Properties of BaTiO_3-Based Ceramics under high electric field. Jpn. J. Appl. Phys., 2002, 41(11B): 6929~6933.
    [71] Nakano Y, Nomura T, Takenaka T. Residual stress of multilayer ceramic capacitors with Ni-electrodes (Ni-MLCCs). Jpn. J. Appl. Phys., 2003, 42(9B): 6041~6044.
    [72] 李玲霞.亚微米BaTiO_3 X7R MLC细晶陶瓷介质材料的介电性能研究:[博士学位论文].天津:天津大学电子信息工程学院,2003.
    [73] Her Y -S, Matijevic E. Controlled double-jet precipitation of uniform colloidal crystalline particles of Zr- and Sr-doped barium titanates. J. Mater. Res., 1996,11(12) :3132~3127.
    
    [74] Wada S, Chikamori H, Noma T, et al. Effect of chelating agent on crystal structure of nm-sized barium titanate crystalline prepared using a LTDS method. J. Mater. Sci. Lett., 2000,19:935~938.
    
    [75] Wada S, Chikamori H, Noma T, et al. Synthesis of nm-sized barium titanate crystalline using a new LTDS method and their characterization. J. Mater. Sci., 2000, 35:4857-4863.
    
    [76] Peng Z, Chen Y. Preparation of BaTiO3 nanoparticles in aqueous solutions. Microelectronic Engineering, 2003, 66:102~106.
    
    [77] Luo S, Tang Z, Yao W, et al. Low temperature combustion synthesis and characterization of nanosized tetragonal barium titanate powders. Microelectronic Engineering, 2003, 66:147~152.
    
    [78] Potdar H S, Deshpande S B, Date S K. Chemical coprecipitation of mixed (Ba+Ti) oxalates precursor leading to BaTiO3 powders. Mater. Chem. Phys., 1999, 58:121~127.
    
    [79] Beck C, Hartl W, Hempelmann R. Size-controlled synthesis of nanocrystalline BaTiO3 by a sol-gel type hydolysis in microemulsion-provided nanoreactors. J. Mater. Res., 1998,13(11) :3174~3180.
    
    [80] Chen D, Jiao X. Solvothermal synthesis and characterization of barium titanate powders. J. Am. Ceram. Soc., 2000, 83(10) :2637~2639.
    
    [81] Hennings D, Schreinemacher H. Characterization of hydrothermal barium titanate. J. Eur. Ceram. Soc, 1992,9(1) :41~46.
    
    [82] Wada S, Suzuki T, Noma T. The effect of the particle size and the correlation sizes of the dipoles introduced by the lattice defects on the crystal structure of barium titanate fine particles. Jpn. J. Appl. Phys., 1995,34(9B) :5368~5379.
    
    [83] Abicht H - P, Voltzke D, Schneider R. et al. Defect chemistry of the shell region of water-milled BaTiO3 powders, Mater. Chem. Phys., 1998,55:188-192.
    
    [84] Sato S, Nomura T, Sato A. Dielectric ceramic composition and electronic device. US Patent, 6226172B1, 2001-05-01.
    
    [85] Shrout T R, Agrawal D, Vaidhyanathan B. Microwave sintering of multilayer dielectrics with base metal electrodes. US Patent, 6610241, 2003-08-26.
    
    [86] Choi G J, Woo K, Cho Y S. Process for preparing crystalline barium titanate powder. US Patent, 6409983, 2002-06-25.
    
    [87] 张道礼,贺明曹,周东祥.微波场中烧结BaTiO3系半导体陶瓷的研究.压电与声光, 2000,22(2):107~110.
    [88] 曹明贺,刘翰星,欧阳世翕,等.微波烧结钛酸钡陶瓷与常规烧结钛酸钡陶瓷界面偏析研究.硅酸盐学报,2000,28(1):47~50.
    [89] Grannan D M, Garland J C, Tanner D B. Critical behavior of the dielectric constant of a random composite near the percolation threshold. Phys. Rev. Lett., 1981, 46(5): 375~378.
    [90] Tuan W -H, Chen W -R. Mechanism properties of alumina-zirconia-silver composites, J. Am. Ceram. Soc., 1995, 78(2): 465~469.
    [91] Pecharroman C, Esteban-Betegon F, Bartolome J F, et al. New percolative BaTiO_3-Ni composite with a high and frequency-independence dielectric constant(ε_r≈80000). Adv. Mater., 2001, 13(20): 1541~1544.
    [92] Chen R, Wang X, Wen H, et al. Enhancement of dielectric properties by additions of Ni nano-particles to a XTR-type barium titanate ceramic matrix. Ceram. Int., 2004, 30(7): 1271~1274.
    [93] Z. -M. Dang, Shen Y, Nan C-W. Dielectric behavior of three-phase percolative Ni-BaTiO_3/polyvinylidene fluoride composites. Appl. Phys. Lett., 2002, 81(25): 4814~4816.
    [94] Lee Y C, Lee W S, Shieu F S. Development of composite dielectrics with high specific capacitance and stable temperature characteristics. J. Mater. Sci., 2002, 37: 2669-2705.
    [95] Zuo R, Li L, Ji C, et al. A new type of dielectric composite with XTR characteristic and high dielectric constant. Mater. Lett., 2001, 48(1): 26~30.
    [96] 程媛.宽温高稳定性(X8R)介质材料研究:[硕士学位论文].成都:电子科技大学微电子与固体电子学院,2003.
    [97] Moulson A J, Herbert J M. Electroceramics: Materials, Properties and Applications. London: Chapman-Hall, 1990.
    [98] 钟维烈.铁电物理学.北京:科学出版社,1996.
    [99] Arlt G, Hennings D, de With G, Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys., 1985, 58 (4): 1619~1625.
    [100] Keipkamp H, Heywang W. Depolarisation effects in polycrystalline BaTiO_3. Zeit. Angew. Phys., 1954, 6: 385~390
    [101] Leonard M R, Safara A. Crystallite and grain size effects in BaTiO_3. Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics, 1996. ISAF'96. 1996, 2: 1003~1005.
    [102] Frey M H, Payne D A, Grain-size effect on structures and phase transitions for barium titanate. Phys. Rev. B, 1996,54(5): 3158-3168.
    
    [103] Bussem WR, Cross L E, Goswarai A K. Phenomenological Theory of High Permitivity in Fine-Grained Barium Titanate. J. Am. Ceram. Soc., 1966, 49(1) :33~36.
    
    [104] Bell A J, Moulson A J, Cross L E. The effect of grain size on the permittivity of BaTiO3. Ferroelectrics, 1984,54:147-150.
    
    [105] Arlt G. The influence of microstructure on the properties of ferroelectric ceramics. Ferroelectrics, 1990,104:217-227.
    
    [106] Arlt G. Twinning in ferroelectric and ferroelastic ceramics: stress relif. J. Mater. Sci., 1990,25:2655-2670.
    
    [107] Stewart GH. Science of ceramics (vol.1). New York: Academic Press, 1962. 255-260.
    
    [108] Shaikh A S, Vest R W, Vest G W. Dielectric properties of ultrafine grained BaTiO3. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency contronl, 1989, 36:407-410.
    
    [109] Arlt G, Pertsev N A. Force constant and effective mass of 90° domains wall in ferroelectric ceramics. J. Appl. Phys., 1991,70:2283-2288.
    
    [110] Merz W J. The effect of hydrostatic pressure on the curie point of barium titanate single crystals. Phys. Rev., 1950,77:52-54.
    
    [111] Samara G A. Pressure and temperature dependence of the dielectric properties of the perovskite BaTiO3 and SrTiO3. Phys. Rev., 1966,151:378-386.
    
    [112] Park Y, Kim H -G, Internal stress Effect on the temperature Dependence of the Dielectric and Lattice Constants in Sm-Doped BaTiO3 Ceramics, Jpn. J. Appl. Phys., 1997. 36 (6A): 3558-3563.
    
    [113] Morrison F D, Sinclair D C, West A R. Electrical structural characteristics of lanthanum-doped barium titanate ceramics. J. Appl. Phy., 1999,86(11):6355-6366.
    
    [114] Molokhia N M, Issa M A A, Nasser S A. Dielectric and X-ray diffraction studies of barium titanate doped with ytterbium. J. Am. Ceram. Soc, 1984, 67(4) 289-291.
    
    [115] Hennings D, Schreinemacher H. Ca-acceptors in dielectric ceramics sintered in reducing atmospheres. J. Eur. Ceram. Soc, 1995,15:795-800.
    
    [116] Wang Y, Li L, Qi J. Ferroelectric characteristics of ytterbium-doped barium zirconium titanate ceramics. Ceram. Int., 2002,28:657-661.
    
    [117] Hardtl K H, Wernicke R, Lowing the curie point in reduced BaTiO3. Solid State Commun. ,1972,10:153-157.
    [118] Siegel E, Maller K A. Local position of Fe~(3+) in ferroelectric BaTiO_3. Phy. Rev., 1979, 20(9): 3587~3595.
    [119] Hennings D, Schnell A, Simon G. Diffuse ferroelectric phase transition in Ba(Ti_(1-y)Z_y)O_3 ceramics. J. Am. Ceram. Soc., 1982, 65 (11): 539~544.
    [120] West A R, Adams T B, Morrison F D, et al. Novel high capacitance materials: -BaTiO_3.: La and CaCu_3Ti_4O_(12). J. Eur. Ceram. Soc., 2004, 24: 1439~1448.
    [121] Kahn M. Effect of sintering and grain growth on the distribution of niobium addition in barium titanate ceramics: [Ph.D. Thesis]. PA: Pennsylvania State University, University Park. 1969.
    [122] Chazono H, Fujimoto M. Sintering characteristics and formation mechanisms of "core-shell" structure in BaTiO_3-Nb_2O_5-Co_3O_4 ternary system. Jpn. J. Appl. Phys., 1995, 34(9B): 5354~5359.
    [123] Hishi H, Okino Y, Honda M, et al. The effect of MgO and rare-earth oxide on formation behavior of core-shell structure in BaTiO_3. Jpn. J. Appl. Phys., 1997, 36(9B): 5954~5957.
    [124] Park Y, Kim H G. Dielectric temperature characteristics of cerium-modified barium titanate based ceramics with core-shell structure. J. Am. Ceram. Soc., 1997, 80(1): 106~112.
    [125] Buscaglia M T, Buscaglia V, Yiviani M, et al. Influence of foreign ions on the crystal structure of BaTiO_3. J. Eur. Ceram. Soc., 2000, 20: 1997~2007.
    [126] Park Y, Kim H G. Pressure and temperature dependence of the dielectric properties in the perovskite solution of Gd-doped barium titanate. J. Mater. Sci. Lett., 1998, 17: 157~158.
    [127] 杨永旺.制程对于X7R陶瓷电容器的介电性质及微结构的影响:[硕士学位论文].台湾:成功大学材料科学与工程学系,2000.
    [128] Mizuno Y, Okino Y, Kohzu N, et al. Influence of the microstructure evolution on electrical properties of multilayer capacitor with Ni electrode. Jpn. J. Appl. Phys., 1998, 37(9B): 5227~5231.
    [129] Park Y, Kim Y H, Kim H G. The effect of grain size on dielectric behavior of BaTiO_3 based X7R materials. Mater. Lett., 1996, 28: 101~106.
    [130] Park Y, Kim H G. Effect of external pressure on the dielectric temperature characteristics of cerium-modified barium titanate based ceramics. Mater. Res. Bull., 1996, 31(12): 1479~1489.
    [131] Armstrong T R, Buchanan R C. Influence of core-shell structure grains on the internal state and permittivity response of zirconia-modified barium titanate. J. Am. Ceram. Soc., 1990, 73(5): 1268~1273.
    [132] Henning D, Rosenstein G. Temperature-stable dielectrics based on chemical inhomogeneous BaTiO_3. J. Am. Ceram. Soc., 1984, 67(4): 249~254.
    [133] Yoon S -H, Lee J -H, Kim D -Y. Core-shell structure of acceptor-rich, coarse barium titanate grains. J. Am. Ceram. Soc., 2002, 85: 3111~3113
    [134] Sakabe Y, Wada N, Hiramatsu T, et al. Dielectric properties of fine-grained BaTiO_3 ceramics with CaO. Jpn. 5. Appl. Phys., 2002, 41(11B): 6922~6925.
    [135] Lin J N, Wu T B. Wetting reaction between lithium fluoride and barium titanate. J. Am. Ceram. Soc., 1989, 72(9): 1709~1712.
    [136] Jung Y -S, Na E -S, Paik U, et al. A study on the phase transition and characteristics of rare earth elements doped BaTiO_3. Mater. Res. Bull., 2002, 37: 1633~1640.
    [137] Song Y H, Hwang J H, Man Y H. Effect of Y_2O_3 on temperature stability of acceptor-doped BaTiO_3. Jpn. J. Appl. Phys., 2005, 44(3): 1310~1313.
    [138] Forsbergh P W. Effect of a Two-dimensional pressure on the Curie point of Barium titanate. Phys. Rev., 1954, 93(4): 686~692.
    [139] Jaffe H, Berlincourt D, Mckee J M. Effect of pressure on the Curie temperature of polycryalline ceramic barium titanate. Phys. Rev., 1957, 105(1): 57~58.
    [140] Samara G A. Free energy of displacive ferroelectrics. Phys. Rev., 1966, 151(2): 378~386.
    [141] 李标荣,王筱珍,张绪礼.无机电介质.武汉:华中理工大学出版社,1995.80~81.
    [142] 朱文奕.镍内电极抗还原多层陶瓷电容器(MLC)的研究:[硕士学位论文].成都:电子科技大学电子信息材料学院,1998.
    [143] 罗金玲,周志刚.亚纳米铁电陶瓷介电性能的粒度效应.无机材料学报,1995,10(2):209~213.
    [144] Makovec D, Kolar D. Internal oxidation of Ce~(3+)-BaTiO_3 solid solutions. J. Am. Ceram. Soc., 1997, 80(1): 45~52.
    [145] Tsur Y, Dunber T D, Randall C A. Crystal and defect chemistry of rare-earth cations in BaTiO_3. J. Electroceram., 2001, 7: 25~34.
    [146] Tennery V J, Cook R L. Investigation of rare-earth doped barium titanate. J. Am. Ceram. Soc., 1961, 44(4): 187~193.
    [147] Chart N -H, Smyth D M. Defect chemistry of donor-doped BaTiO_3. J. Am. Ceram. Soc., 1984, 67(4): 285~288.
    [148] Daniels J, Hardtl K H. Part I . Electrical conductivity at high temperatures in donor-doped barium titanate ceramics. Philips Res. Rep., 1976,31:489-504.
    
    [149] Nasrallah M M, Anderson H U, Agarwall A K, et al. Oxygen activity dependent of the defect structure of La-doped BaTiO3. J. Mater. Sci., 1984,19(8) :3159-3165.
    
    [150] Hwang J H, Han Y H, Electrical properties of Cerium-doped BaTiO3. J. Am. Ceram. Soc., 2001, 84(8): 1750-1754.
    
    [151] Shaikh A S, Vest R W. Defect chemistry and dielectric properties of Nd2O3-modified BaTiO3. J. Am. Ceram. Soc., 1986, 69(9): 689-694.
    
    [152] Makovec D, Samardzija Z, Delalut U, et al. Defect structure and phase relations of highly lanthanum-doped barium titanate. J. Am. Ceram. Soc, 1995,78(8): 2193-2197.
    
    [153] Makovec D, Samardzija Z, Kolar D. Solid solubility of Cerium in BaTiO3. J. Solid. State. Chem., 1996,123:30-33.
    
    [154] Morrison F D, Sinclair D C, West A R. An alternative explanation for the origin of the resistivity anomaly in La-doped BaTiO3. J. Am. Ceram. Soc, 2001, 84(2): 474-476.
    
    [155] Hwang J H, Han Y H. Dielectric properties of (Ba1-xCex)TiO3. Jpn. J. Appl. Phys., 2000,39:2701-2704.
    
    [156] Chen A, Zhi Y, Zhi J, et al. Synthesis and characterization of Ba(Ti1-xCex)O3 ceramics. J. Eur. Ceram. Soc, 1997,17:1217-1221.
    
    [157] Hirose N, SkakleJMS, WestAR. Doping mechanism and permittivity correlations in Nd-doped BaTiO3. J. Electroceram., 1999, 3(3): 233-238.
    
    [158] Zhi J, Chen A, Zhi Y. Incorporation of yttrium in barium titanate ceramics. J. Am. Ceram. Soc, 1999, 82(5): 1345-1348.
    
    [159] Nanni P, Teresa M, Viviani M. Incorporation of Er3+ into BaTiO3 J. Am. Ceram. Soc, 2002, 85 (6): 1569-1575.
    
    [160] Hwang J H, Han Y H. Dielectric properties of Erbium doped barium titanate. Jpn. J. Appl. Phys., 2001,40:676-679.
    
    [161] Takeuchi T, Ado K, Asai T, et al. Thickness of cubic surface phase on barium titanate single-crystalline grains. J. Am. Ceram. Soc, 1994, 77(6): 1669-1668.
    
    [162] Qi J Q, Chen W P, Wang Y, et al. Dielectric properties of barium titanate ceramics doped by B2O3 vapor. J. Appl. Phys., 2004,96(11): 6937-3639.
    
    [163] 赵世玺,刘韩星.Bi2O3和Fe2O3掺杂对BaTiO3陶瓷显微结构的影响.武汉理工大学学报,2001,23(4):1~4.
    [164] Rotenberg B A, Danilyuk Y L, Gindin E I, et al. Electrical and radiospectroscopic investigations of barium titanate with admixtures of oxides of trivalent elements. J. Sov. Phys.-Solid State, 1966,7:2465~2469.
    
    [165] Xue L A, Chen Y, Brook R J. The influence of ionic radii on the incorporation of trivalent dopants into BaTiO3. Mater. Sci. Eng. B, 1988, B1 (2) :193~201.
    
    [166] Buscaglia M T, Buscaglia V, Viviani M. Atomistic simulation of dopant incorporation in barium titanate. J. Am. Ceram. Soc., 2001,84(2) :376~384.
    
    [167] Hitomi A, Tsur Y, Randall C A, et al. Site occupancy of rare-earth cations in BaTiO3. Jpn. J. Appl. Phys., 2001,40:255-258.
    
    [168] Murakami T, Nakahara M, Miyashita T, et al. Electrical conduction of rare-earth-doped BaTiO3 single crystals. J. Am. Ceram. Soc, 1973,56:291~293.
    
    [169] Qi J, Gui Z, Wang Y. The PTCR effect in BaTiO3 ceramics modified by donor dopant. Ceram. Int., 2002, 28:141~143.
    
    [170] Crank J. The mathematics of diffusion. New York: Oxford University Press, 1956.
    
    [171] Freer R. Bibliography self-diffusion and impurity diffusion in oxides. J. Mater. Sci., 1980,15:803-824
    
    [172] Gopalan S. Virkar A V. Interdiffusion and Kirkendall effect in doped barium titanate-strontium titanate diffusion couples. J. Am. Ceram. Soc, 1995,78:993-998.
    
    [173] Butler E P, Jain H, Smyth D M. Interdiffusion of alkaline earth cations in their titanates. Defect Diffusion Forum, 1989,66-69:1519-1524
    
    [174] Hansen Peter, Hennings D, Schreinmacher H. High-K dielectric ceramics from donor/acceptor-doped (Ba1-xCax) (Ti1-yZry)O3. J. Am. Ceram. Soc, 1998,81(5): 1369 -1373.
    
    [175] Nagai T, Iijima K, Hwang H J, et al. Effect of MgO doping on the phase transitions of BaTiOs. J. Am. Ceram. Soc, 2000, 83(1): 107-112.
    
    [176] Kikuchi N, Ogasawara T, Iwaya S. Development of dielectric material with X8R characteristic, Ceram. Trans., 1993,32:191-200.
    
    [177] Satoh M, Tanaka H. High dielectric-constant dielectric ceramic composition, and its fabrication process. US Patent, 5990029, 1999-11-23.
    
    [178] Wada N, Ikeda J, Hiramatsu T, et al. Laminated ceramic capacitor, US Patent, 6411495B2, 2002-06-25.
    
    [179] Sato S, Fujikawa Y, Terada Y. Dielectric ceramic composition and electronic device. US Patent, 6403513B1, 2002-06-11.
    [180] Li Y, Yao X, Zhang L. High permittivity neodymium-doped barium titanate sintered in pure nitrogen. Ceram. Int., 2004, 30:1325-1328.
    
    [181] Chazono H, Kishi H. Sintering characteristics in BaTiO3-Nb2O3-Co3O4 ternary systems: Ⅰ, electrical properties and microstructure. J. Am. Ceram. Soc., 1999, 82(10): 1689-1697.
    
    [182] Chazono H, Kishi H. Sintering characteristics in BaTiO3-Nb2O3-Co3O4 ternary systems: Ⅱ, stability of so-called "core-shell" structure. J. Am. Ceram. Soc, 2000, 83(1): 101-106.
    
    [183] Yang W - C, Hu C -T, Lin I - N. Effect of Y2O3/MgO co-doping on the electrical properties of base-metal-electrode BaTiO3 materials. J. Eur. Ceram. Soc., 2004,24:1479-1483.
    
    [184] Hwang J H, Choi S K, Han Y H. Dielectric properties of BaTiO3 codoped with Er2O3 and MgO. Jpn. J. Appl. Phys., 2001,40(8) :4952~4955.
    
    [185] Armstrong T R, Morgens L E, Maurice A K, et al. Effect of zirconia on microstructure and dielectric properties of barium titanate ceramics. J. Am. Ceram. Soc, 1989, 72(4): 605-611.
    
    [186] Sakabe Y, Takagi H. Nonreducible Mechanism of {(Ba1-xCax)O}(?)TiO2 (m>1) ceramics. Jpn. J. Appl. Phys., 2002,41 (11A) :6461-6465.
    
    [187] Hillert M. On the theory of normal and abnormal grain growth. Acta Metall, 1965,13(3): 227-238.
    
    [188] Hennings D F K, Janssen R, Reynen P J L. Control of liquid-phase-enhanced discontinuous grain growth in barium titanate, J. Am. Ceram. Soc, 1987,70(1): 23-27.
    
    [189] Yoo Y -S, Kim H, Kim D -Y. Effect of SiO2. and TiO2 addition on the exaggerated grain growth, J. Eur. Ceram. Soc, 1997,17:805-511.
    
    [190] Chiang Y -M, Bimie D, Kingery W D, Physical ceramics-principles for ceramic science and engineering. New York: John Wiley & Sons, 1997.
    
    [191] Spang D I, Safari A, Burn I. Properties of donor doped BaTi (Mn)O3+SiO2 sintered in reducing atmospheres. Proceedings of the Eleventh IEEE International Symposium on Applications of Ferroelectrics, 1998. ISAF 98. 1998,525-528.
    
    [192] Spang D I, Safari A, Burn I. Properties of doped BaTi(Mn)O3 + SiO2 sintered in reducing atmospheres. Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics, 2000. ISAF 2000. 2000,2:817-820.
    
    [193] Yan M F. Microstructural control in the processing of electronic ceramics. Mater. Sci. Eng., 1981, 48(1): 53~72.
    [194] 吴大鹏.镍电极X7R抗还原瓷料的研制:[硕士学位论文].成都:电子科技大学微电子与固体电子学院,2002.
    [195] Bheemineni V, Chang E K, Lal M, et al. Suppression of acceptor solubilities in BaTiO_3 densified in highly reducing atmospheres. J. Am. Ceram. Soc., 1994, 77(12): 3173~3176.
    [196] Hansen P, Hennings D, Schreinemacher H. Dielectric properties of acceptor-doped (Ba, Ca)(Ti, Zr)O_3 ceramics. J. Electroceram., 1998, 2(2): 85~94.
    [197] Li T, Li L, Zhao J, et al. Modulation effect of Mn~(2+) on dielectric properties of BaTiO_3-based X7R materials. Mater. Lett., 2000, 44(1): 1~5.
    [198] Hagemann M-J, Ihrig H. Valence change and phase stablitiy of 3d-doped BaTiO_3 annealed in oxygen and hydrogen. Phys. Rev. B, 1979,20(9):3871~3878.
    [199] Derling S, Mailer T, Abicht H -P, et al. Copper oxide as a sintering agent for barium titanate based ceramics. J. Mater. Sci., 2001,36:1425~1431.
    [200] Kuwabara M, Matsuda M, Kurata N, et al. Shift of the Curie point of barium titanate ceramics with sintering temperature. J. Am. Ceram. Soc., 1997,80(10):2590~2596.
    [201] Chen Y—C, Lo G-M, Su M-Y. Influence of Manganese on the room-temperature resistivity of Lanthanum-doped BaTiO_3, Jpn. J. Appl. Phys., 1996,35:2745~2748.
    [202] Ihrig H. The phase stability of BaTiO_3 as a function of doped 3d elements: an experimental study, J. Phys. C: Solid State Phys., 1978, 11:819~827.
    [203] Nomura T. Effect of firing atmospheres on the degradation of Ni-electrode multilayer ceramic capacitors, Funtai Oyobi Funmatsu Yakin, 1992, 39(8):618~623.
    [204] Kim J-Y, Song C-R, Yoo H I. Mn-doped BaTiO_3: Electrical transport properties in equilibrium state. J. Electroceram., 1997, 1: 27~39.
    [205] Tzing W H, Tuan W H. Effect of NiO addition on the sintering and grain growth behavior of BaTiO_3, Ceram. Int., 1999, 25:69~75.
    [206] Roth R S, Rawn C J, Lindsay C G, et al. Phase equilibria and crystal chemistry of the binary and ternary barium polytitanates and crystallography of the barium zinc polytitanates. J. Solid State Chem., 1993, 104: 99~118.
    [207] Caballero A C, Fernandez J F, Moure C, et al. Grain growth control and dopant distribution in ZnO-doped BaTiO_3. J. Am. Ceram. Soc., 1998, 81(4):939~944.
    [208] K. Kowalski, M. Ijjaali, T. Bak, et al. Electrical properties of Nb-doped BaTiO_3. J. Phys. Chem. Solids, 2001, 62(3): 543~551.
    [209] Tzing W H, Tuan W H, Lin H L. The effect of microstructure on the electrical properties of NiO-doped BaTiO_3. Ceram. Int., 1999, 25: 425~430.
    [210] Hennings D, Hansen P. Ceramic multilayer capacitor. US Patent, 6072688, 2000-06-06.
    [211] Bergna H E, Bruno S A, Burn I. Ceramic dielectric composition and method for preparation. US Patent, 5082810, 1992-01-21.
    [212] Selmi F A, Amarakoon V R W. Sol-gel coating of powders for processing electronic ceramics. J. Am. Ceram. Soc., 1988, 71(11): 934~937.
    [213] Bruno S A, Swanson D K. High-performance multilayer capacitor dielectrics from chemically prepared powders. J. Am. Ceram. Soc., 1993, 76(5): 1233~1241.
    [214] 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2002.137~138.
    [215] 吴人洁.复合材料.天津:天津大学出版社,2000.278~279.
    [216] 宋秀芹,陈汝芬,马建峰.Li_3Zn_(0.5)SiO_2水基溶胶—凝胶法合成及其离子导电性.硅酸盐学报,1999,27(5):605~609.
    [217] Guo L, Li H. Fabrication and characterization of thin nano-hydroxyapatite coatings on titanate. Surf. Coat. Technol., 2004, 185: 268~274.
    [218] 胡恒亮,穆祥琪.X射线衍射技术.北京:纺织工业出版社,1988.211~214.
    [219] Lee W -H, Tseng T Y, Hennings D. Effects of calcinations temperature and A/B ratio on the dielectric properties of (Ba, Ca)(Ti, Zr, Mn)O_3 for multilayer ceramic capacitors with nickel electrodes. J. Am. Ceram. Soc., 2000, 83(6): 1402~1406.
    [220] 许顺生.X射线衍射学进展.北京:科学出版社,1986.244~246.
    [221] Klug H P, Alexander L E. X-ray diffraction procedure for polycrystalline and amorphous materials. New York: John Wiley & Sons, 1974.
    [222] Caballero A C, Fernandez J F, Moure C. ZnO-doped BaTiO_3: microstructure and electrical properties, J. Eur. Ceram. Soc., 1997, 17: 513~523.
    [223] 熊兆贤.无机材料研究方法.厦门:厦门大学出版社,2000.92~94.
    [224] Maher G H, Bheemineni V. Method for making a BaTiO_3 powder mixture the powder mixture and method for making a Y5V ceramic body therefrom. US Patent, 5672378, 1997-09-30.
    [225] Mizuno Y, Hagiwara T, Chazono H, et al. Effect of milling process on core-shell microstructure and electrical properties for BaTiO_3-based Ni-MLCC, J. Eur. Ceram. Soc., 2001, 21: 1549~1652.
    [226] Chen C-S, Chou C-C, Yang W-C, et al. Transmission electron microscopic microstructure of base-metal-electroded BaTiO_3 capacitor materials with duplex structures. Jpn. J. Appl. Phys., 2004,43(1): 226-231.
    
    [227] Lin I - N, Yang W -C, Hu C - T. Base-metal-electroded BaTiO3 capacitor materials with duplex microstructures. J. Am. Ceram. Soc., 2004, 87(5):851-858.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700