用户名: 密码: 验证码:
不同基因型菊芋耐海水生理差异机制及海涂栽培技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开发利用可再生资源与能源,大力发展生物质能源及生物基化学品,减少经济发展对石油的依赖,具有十分重要的战略意义。菊芋作为生物质能源植物,其生态适宜性极强,可利用荒地及滩涂土地资源进行规模化种植。
     本论文主要就国内菊芋基因型资源进行筛选后,从田间试验和温室试验对适合沿海滩涂种植、高产优质的基因型菊芋进行系统筛选,揭示不同基因型菊芋在海水胁迫下生理生化特性差异,阐明典型基因型菊芋耐海水机理,探索典型基因型菊芋在海水胁迫下代谢变化及其特征,同时进行海涂海水灌溉菊芋需肥规律研究,阐述其机制,并对海涂种植菊芋的生态安全性进行评价,为菊芋的综合利用集成技术的产业化资源平台建设提供支撑。试验结果如下:
     1)随海水浓度的增加,各基因型菊芋的根和地上部干重的增长速率均降低,各基因型菊芋叶片MDA含量、膜透性及地上部和根Na~+和Cl~-含量均增高,但南芋1号和8号表现为更耐海水。菊芋幼苗地上部和根鲜重和干重与根部Na~+含量呈极显著负相关,地上部和根鲜重与地上部和根部Cl~-含量呈显著负相关,地上部和根干重与地上部和根部K~+含量呈显著正相关。应用幼苗叶片过氧化物酶同功酶电泳技术进行基因型亲缘关系检测表明,8个基因型菊芋过氧化物酶同功酶表现出明显的谱带差异。根据菊芋在海水处理下的表现分为3种类型:高耐海水型,中耐海水型和低耐海水型。在评价不同基因型菊芋对海水的响应时,地上部和根鲜重、干重及含水率的下降幅度及Na~+、K~+和Cl~-含量可作为主要的生理指标。
     2)在海涂以不同基因型菊芋(Helianthus tuberosus L.)为材料进行田间试验结果表明,南芋2号根和地上部生物量较其他基因型大,南芋5号和南芋3号株高在各浓度海水灌溉下均显著高于其他菊芋基因型,而茎粗在各处理下变化不一致,在30%海水灌溉下,南芋1号根和地上部物质积累未受到抑制作用,其他基因型菊芋的根和地上部物质积累受到了一定抑制。各基因型菊芋块茎产量差异较显著,在30%海水灌溉下,南芋2号产量显著高于其他基因型菊芋,各基因型菊芋块茎单重在各处理下差异也较显著,南芋1号和2号块茎单重最大,各基因型菊芋块茎总糖和菊糖含量差异较显著。随海水浓度的增加,各基因型菊芋根、茎和叶的Cl~-和Na~+含量均增加,但基因型间差异较显著,叶片的Na~+含量显著低于根和茎的Na~+含量。从生物积累量和块茎产量、总糖和菊糖含量及离子分布看,南芋1号和南芋2号较其他基因型更适合在海涂利用适当浓度海水进行灌溉种植。
     3)各基因型菊芋叶片SOD、POD、CAT活性及MDA含量在各浓度海水下处理下变化不一致,且随时间延长变化也不一致,从叶片MDA含量看,南芋1号在海水处理下膜脂过氧化程度较南芋7号和南芋6号小,受伤程度最低。随海水浓度的增加,各基因型菊芋叶片可溶性糖和脯氨酸含量变化不一致,且随时间延长变化也不一致。海水处理对各基因型菊芋幼苗生理代谢特征有影响,但对各基因型菊芋幼苗的影响不一致,南芋1号表现为更耐海水。
     4)采用X-射线微区分析技术研究了0%,15%和30%海水处理对较耐海水基因型南芋1号和低耐海水基因型南芋7号幼苗根系、茎杆、叶片横切面不同细胞离子分配的影响。结果表明,海水胁迫导致两基因型菊芋幼苗体内Na~+和Cl~-含量显著上升,但两基因型间有差异,南芋1号体内Na~+峰值较南芋7号高,占离子总量的百分比也比南芋7号高,在30%海水处理下,两基因型幼苗体内Na~+和Cl~-含量占总离子百分比50%以上,南芋1号茎中柱薄壁细胞高达80%以上。各处理下K~+、Ca~(2+)和Mg~(2+)峰值变化不明显,但在15%和30%海水处理下,其占离子总量百分比较0%海水处理均降低。
     5).透过透射电镜观察海水处理对较耐海水基因型南芋1号和低耐海水基因型南芋7号幼苗叶绿体超微结构的影响。海水胁迫导致两基因型菊芋幼苗叶绿体片层结构模糊、解体,边缘膜模糊,被膜破损,内部结构破坏,而南芋1号较南芋7号受损程度低。
     6)利用高效液色谱.电化学相(库仑电极)阵列检测技术检测海水处理下不同处理时间后菊芋体内绿原酸的变化情况及其他小分子物质的差异显示。随处理时间的延长,0%海水处理下氯原酸含量变化不显著,而15%和30%海水处理下氯原酸含量变化显著15%海水处理下,在1h时较2h和3h时高,而30%海水处理下在3h时较1h、2h和6h时高。海水处理后菊芋幼苗体内产生的其他一些未知的小分子物质尚有待定性和进一步考察其变化规律。
     7)在山东莱州海涂采用正交试验设计进行田间试验结果表明,各浓度海水浇灌下,随着施氮、磷量的增加菊芋主茎普遍增长和增粗。经过对海水与N肥及P肥的交互作用分析,可以看出W_2N_3和W_2P_3是优化组合;处理因子分析表明,影响菊芋产量的主要因素是不同浓度海水灌溉,N肥和P肥次之,其优化组合为W_2N_3P_3。
     8)增加磷、氮素浓度后,能显著缓解海水胁迫的抑制作用,显著增加菊芋幼苗叶片脯氨酸和可溶性糖含量,增强菊芋幼苗叶片SOD、POD和CAT活性;降低了MDA含量和膜透性;降低地上部和根Na~+和Cl~-含量,增加K~+、Ca~(2+)和Mg~(2+)含量。说明磷、氮素能够改善菊芋幼苗的营养状况,同时能够增强其抗盐性,且随海水浓度的增加其效应越明显。
     9)大田小区海水灌溉实验中,0-5cm土层盐分变化剧烈,在菊芋整个生育期降雨量为515 mm的情况下,至收获期时,各处理均能降至灌海水前的水平。75%海水灌溉,5-40 cm层土壤盐分呈积累趋势,次生盐溃化明显;50%海水灌溉后轻微积盐,若无充沛的雨水淋洗则须结合一定的农业措施以防造成次生盐害;25%海水浓度在灌溉定额为1600 m~3hm~(-2)时能保持土壤盐分的盈亏平衡。海水灌溉后,Na~+和Cl~-主要分布在5-20 cm土层,而Ca~(2+)和Mg~(2+)主要在20-40 cm土层。
It is significative to exploit regeneration resource and energy, such as biologic-energy and biologic-chemistry matter, to decrease the requirement of petroleum for economy development. Helianthus tuberosus adapts many kinds of environment, especially can be planted in badlands and mudflats along the coast.
     Genotype varieties of H. tuberosus were used to select systemicly high yield and quality one to plant in mudflats along the coast in field and greenhouse experiments in the study. The characteristics on physiology and biological-chemistry of H. tuberosus under seawater stress were investigated. The mechanisms of tolerance-seawater and metabolize of representative H. tuberosus were studied. The disciplinarian of fertilizer needed for H. tuberosus and zoology security for mudflats irrigated with seawater were also researched. The results were below:
     1) Compared with the control, the growth speed of fresh and dry weight of shoots and roots of eight H. tuberosus genotype seedlings treated with 15% and 30% seawater all decreased. The MDA content and electrolyte leakage in leaves and contents of Na~+ and Cl~- in the shoots and roots increased with seawater concentration increasing. The Nanyu No.1 and Nanyu No.8 were more seawater tolerant than other genotype. There was significantly negative correlation between the fresh and dry weight of shoots and roots and the contents of Na~+ in the roots. And there was significantly negative correlation between the fresh weight of shoots and roots and the contents of Cl~- in shoots and roots. There was significantly positive correlation between the dry weight of shoots and roots and the contents of K~+ in shoots and roots. Based on those, the H. tuberosus of eight genotypes tested could be divided into three groups, such as high seawater-tolerance, intermedia seawater-tolerance and low seawater-tolerance. The the katabatic scopes of fresh weight and dry weight and contents of Na~+, K~+ and Cl~- in the shoots and roots could be used as physiological indices for selecting different tolerant-seawater genotype H. tuberosus. There was intensity difference of isoperoxidase bands by the in polyacrylamide gel electrophoresis to check the descendiblity relation of genotypes.
     2) Field experiments were carried out to study effects of seawater irrigation on yield compositions and ion distribution of different genotypes of H. tuberosus growing in coastal mudflat along semiarid regions in 2005. Nanyu No.2 was higher than the others in biomass of the roots and aerial parts, and. Nanyu No.5 and Nanyu No.3 were taller than the others in all treatments, but the effect on diameter of the main stems of the plants varied sharply with treatment. In the treatment of irrigation with 30% seawater, Nanyu No.1 was not affected in biomass accumulation in roots and aerial parts, but the others to a varying extent. The plants differed sharply in yield between genotypes. Nanyu No.2 was the highest when irrigated with 30% seawater, and so did they in single tuber weight, total sugar and inulin content. Nanyu No.1 and Nanyu No.2 were the highest in unit tuber weight. Concentrations of Cl~- and Na~+ in roots, stems and leaves of all genotypes increased with the seawater concentration increasing, but significant differences did exist between genotypes. Na~+ content was lower in leaves than in roots and stems. Judging by biomass accumulation, yield of tubers, total sugar and inulin contents in tuber, and ion distribution, Nanyu No.1 and Nanyu No.2 were more adaptive to planting in coastal mudflat along semiarid regions with seawater irrigation than other genotypes.
     3) The changes of activities of SOD, POD and CAT and contents of MDA of three H. Tuberosus genotypes seedlings leaves of seawater-tolerance Nanyu No.l, intermedia seawater-tolerance Nanyu No.6 and low seawater-tolerance Nanyu No.7 were different under seawater treatments. Nanyu No.1 was injured less under seawater treatments than Nanyu No.7 and Nanyu No.6 judged by lipid peroxidation degree in leaves. The contents of proline and soluble sugar of H. Tuberosus genotypes seedlings leaves were different under seawater treatments. And the contents of proline and soluble sugar both changed with time lasting. There were different effects on the physiological and metabolize characteristics of H. Tuberosus genotypes seedlings under seawater treatments. Nanyu No.l was more seawater-tolerant than Nanyu No.7 and Nanyu No.6.
     4) The distributions of ions in the cells of roots, stems and leaves of seawater-tolerance Nanyu No.1 and low seawater-tolerance Nanyu No.7 were analyzed by X-ray microanalysis technique. The contents of Na~+ and Cl~- in the cells of roots, stems and leaves increased with seawater concentration increasing. But there was difference between the Nanyu No.1 and Nanyu No.7. The Na~+ peak value of Nanyu No.1 was higher than Nanyu No.7. And the Na~+ percent in the ions of Nanyu No.1 was also higher than Nanyu No.7. The Na~+ and Cl~- percents in the ions of the two genotypes were over 50%, even over 80% in the stelar parenchyma cell under 30% seawater treatment. The peak values of K~+, Ca~(2+) and Mg~(2+) did not change significantly under different treatments. But K~+, Ca~(2+) and Mg~(2+) percents in the ions under 15% and 30% seawater treatments all were lower than under 0% seawater treatment.
     5) Chloroplast ultrastructures of Nanyu No.l and Nanyu No.7 under 0%, 15% and 30% seawater treatments were observed by clairvoyant micrograph. The configuration of chloroplast was blurry and disaggregation under seawater treatment. And the membrane was dilapidated. The configuration was also wrecked. But the breakage of Nanyu No.l chloroplast was lower than Nanyu No.7.
     6)The concentrations of chlorogenicacid and low molecular weight compounds were determined by high performance liquid chromatography with a coulometric array detector (HPLC-CAD) . The concentrations of chlorogenicacid did not change significantly under 0% seawater treatment along the time lasting. While it changed significantly under 15% and 30% seawater treatment along the time lasting. It was higher after treatment for 1 hour than for 2 and 3 hours under 15% seawater treatment. While it was higher after treatment for 3 hour than for 1,2 and 6 hours under 30% seawater treatment. Some other compounds was observed as well during the treatment. They are believed to below molecular weight compounds and subject to further investigations.
     7)The field experiment was also carried out in seashore in Laizhou, Shandong Province to study the effect of salt and fertilizer application coupling under irrigation of different concentration seawater on H. tuberosus by orthogonal design. It was that W_2N_3 and W_2P_3 were the optimized combinations through the analysis of alternant effects of seawater, nitrogen and phosphorus. The main element that affected the yields was seawater, then fertilizers of N and P were subordinate. And the best combination was W_2N_3P_3.
     8) The fresh weights of roots and aerial parts increased with the concentration of phosphorus supplementation. The trends of dry weights of roots and aerial parts resembled the trends of fresh weights with the same treatments. The contents of proline and soluble-sugar increased with phosphorus supplementation. The activities of SOD, POD and CAT all significantly stimulated with phosphorus supplementation. The MDA content and ELP decreased with phosphorus supplementation. And the contents of Na~+ and Cl~- decreased with phosphorus supplementation. Compared with the control, the contents of K~+, Ca~(2+)and Mg~(2+)of the aerial part and root increased with phosphorus supplementation. Phosphorus enrichment of the seawater ameliorated the toxicity of seawater in H. tuberosus seedlings. Nitrogen supplementation of the seawater resulted in increasing fresh and dry weight of shoot and roots when compared with seawater treatment without N supplementation. Nitrogen supplementation of the seawater significantly enhanced the activities of antioxidant enzymes in leaves compared to the seawater treatments alone. Addition of N to seawater enhanced the contents of proline and soluble-sugars in the leaves, K~+ and total-N of aerial parts and roots. N supplementation resulted in a declined concentrations of Na~+ and Cl~- in aerial parts and roots of seawater-stressed plants. Nitrogen enrichment of the seawater ameliorated the toxicity of seawater in H. tuberosus by improving the antioxidative enzymes, accumulating of proline and soluble-sugars and altering the distribution of inorganic ions.
     9) Distribution and migration of Na~+, Cl~-, Ca~(2+), Mg~(2+), K~+ in 0-40cm soil irrigated by seawater were investigated. There was 515 mm rainfall in the whole postemergence. Though content of salinity in 0-5cm layer changed drastically, it reached the controlled level (no irrigation) when if. tuberosus were harvested. Salinity was accumulated conspicuous in 0-40cm soil layer and would brought on secondary salinization when the seawater irrigation concentration was 75%. Some agricultural measures must be afforded to stand off secondary salinization if no enough rainfall. There was a significant change of salinity in plough layer soil when irrigated by 25% seawater. Na~+ and Cl~- were primarily distributed in 5-20cm layer, and Ca~(2+) and Mg~(2+) in 20-40cm with seawater irrigation.
引文
Ahi SM, Powers WL. Salt tolerance of plants at various temperature. Plant Physiol., 1988,12:767-789.
    Anderson JA. Catalase activity, hydrogen peroxide content and thermotolerance of pepper leaves. Scientia Hort, 2002, 95: 277-284.
    Apse MP, Aharon GS, Snedden WA. Salt tolerance conferred by overexpression of a vacuolar Na~+/H~+ antiport in Arabidopsis. Sicence, 1999, 285.
    Asch F, Dingkuhn M, Wittstock C, et al. Sodium and potassium uptake of rice panicles as affected by salinity and season in relation to yield components. Plant Soil, 1999,207:133-145.
    Baldani JI, Baldani VLD, Seldin L, Dobereiner J. Characterization of Herbaspirillum seropedicae gen.nov.,sp.nov.,a rootassociated nitrogenfixing bacterium. Int J Syst Bacteriol, 1986,36: 86-93.
    Baldani VLD, Baldani JI, Olivares F, Dobereiner J. Identification and ecology of Herbaspirillum seropedicae and the closely related Pseudomonas rubrisubalbicans. Symbiosis, 1992,13: 65-73.
    Barbier-Brygoo H, Vinauger M, Colcombet J, Ephritikhine G, Frachisse JM, Maurel C. Anion channels in higher plants: functional characterization,molecular structure and physiological role. Biochemica et Biophysica Acta., 2000,1465: 199-184.
    Barkla BJ, Pantoja O. Physiology of ion transport across the tonoplast of higher plants. Annu Rev Plant Physiol Plant Mol. Biol., 1996, 47:159-184.
    Berecki G, Varga Z, Tren FV, Duijn BV. Anion channels in Chara corallina tonoplast membrane: calcium dependence and rectification. J. Membrane Biol., 1999,171:159-168.
    
    Bernserin L. Effect of salinity and sodicity on plant growth. Ann. Rev. Phytopathol, 1975,13: 295-312.
    
    Bertnstein L, Ayers AD. Salt tolerance of six varieties of green beans. Am.Soc.Hort. Sci. Proc., 1951, 57: 243-248.
    Bethke PC, Drew MC. Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity. Plant Physiol, 1992, 99: 219-226.
    Blochl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 ℃. Extremophiles, 1997,1:14-21.
    Blumwald E, Poole RJ. Na~+/H~+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgarius. Plant Physiol., 1985, 78: 163-167.
    Bohnert HJ, Jensen RG Strategies for engineering waterstress tolerance in plants. Trends in Biotechnology, 1996,14: 89-97.
    Bor M, Ozdemir F, Turkan I. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritime L. Plant Science, 2003,164 : 77-84.
    Boyer JS. Plant productivity and environment, Science, 1982, 218: 443-448.
    Breckle SW. Biology of salt tolerant plants. Michigan USA, 1995,199-213.
    Carda A, Bingham FT. Yield,mineral composition anf salt-tolerance of tomato and wheat as affected by NaCl and P nutrition. Agrochimia, 1978,12:140-149.
    
    Chance B, Maehly AC. Assay of catalases and peroxidases. Methods in Enzymology, 1955, 2: 746-755.
    Christy TC, Catherine MG, James AP, et al. Production and ion uptake of Celosia argentea irrigated with saline wastewaters. Scientia Horticulturae, 2005,106 (3) : 381-394
    Connell MGR. Carbon sequestration and biomass energy offset: theoretical, potential and achievable capacities globally, in Europe and the UK. Biomass and Bioenergy, 2003,24 (2) : 97-116.
    Cook J, Beyea J. Bioenergy in the United States: progress and possibilities. Biomass and Bioenergy, 2000,18 (6) :441.
    Cramer GR, Epstein E, Lauchli A. Effects of sodium, potassium and calcium on salt-stressed barley. II. Elemental analysis. Physiol. Plant, 1991, 81:197-202.
    Dai Lin. The development and prospective of bioenergy technology in China. Biomass and bioenergy, 1998,15 (2) : 181-186.
    Daniela DB, Flavia NI, Riccardo I. Seawater irrigation: antioxidant defence responses in leaves and roots of a sunflower (Helianthus annuus L.) ecotype. Journal of plant physiology, 2004,161( 12):1359-1356.
    David R, Sangita H, Bressan RA. Metabolic changes associated with adaptation of plant cells to water stress. Plant Physiol, 1986,82: 890-903.
    Davis BJ, Disc E. Method and application to human serum proteins. Ann. NY Acad. Sci., 1964, 121: 404-427.
    Delauney AJ, Hu CAA, Kishor PBK. Cloning of ornithine-aminotransferase cDNA from Vibna aconitifolia by transcomplementation in Escherichia coli and regulation of proline biosynthesis. J. Biol. Chem., 1993, 268:18673-18678.
    Demir Y, Kocacaliskan I. Effects of NaCl and proline on polyphenol oxidase activity in bean seedings. Bilogia Plantarum, 2001,44 (4) : 607-609.
    Demirbas A, Energy balance, energy sources, energy policy, future developments and energy investments in Turkey. Energy conversion and Management, 2001,42 (10) : 1239-1258.
    Dhindsa RS, Plumb-Dhindsa P, Thorpe TA. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 1981,32 (126) :93-101.
    Dionisio Ruiz, Vicente Martinez, Antonio Cerda. Demarcating specificion (NaCl, Cl~-, Na~+) and osmotic effects in the response of two citrus rootstocks to salinity. Scientia Horticulturae, 1999, 80: 213-224
    Elstner EF, Osswald W. Mechanisms of oxygen activation during plant stress. Proceedings of the Royal Society of Edinburgh, 1994,102: 131-154.
    Emig I. Elektronenmikroskopische untersuchungen der seitenansicht der tonoplasted-H~+-ATPase bei der C3-CAM intermediaren pflanze Mesembryanthemum crystallium L. Germany, Diplomarbeit, Technische Hochschule Darmstadt, 1995,414428.
    Ericson MC, Alfinito SH. Proteins produced during salt stress in tobacco cell culture. Plant Physiol., 1984,74:504-509.
    Fadzilla NM, Finch RP, Burdon RH. Salinity, oxidative stress and antioxidant responses in shoot cultures of rice. J. Exp. Bot., 1997, 48: 325-331.
    Fedina IS, GeoTgieva K, Grigoreva I. Light-dark changes in proline content of barley leaves under salt stress. Biologia Plantarum, 2002,45 (1) :59-63.
    Feigin A. Fertilization management of crops irrigated with saline water. Plant and Soil, 1985, 89: 285-299.
    Flowers TJ, Troke PF, Yeo AR. The mechanism of salt tolerance in halophytes. Ann. Rev. Plant Physiol., 1977, 28: 89-121.
    Garbarino J, Dupont FM. NaCl induces a Na~+/H~+ antiport in tonoplast vesicles from barely root. Plant Physiol., 1989, 86: 231-236.
    Ghadiri H, Dordipour I, Bybordi M, et al. Potential use of Caspian Sea water for supplementary irrigation in Northern Iran. Agriculture Water Management, 2005,73 (2) :71-78
    Giannopolitis CN, Ries SK. Superoxide dismutase in higher plants. Plant Physiol, 1977,59, 309-314.
    Gilbert GA, Gadush MV, Wilson C, et al. Amino acid accumulation in sink and source tissues of Coleus blumei Benth during salinity stress. J Exp Bot, 1998, 49:107-114.
    Grant I, Beversdorf WD, Peterson RL. A comparative light. and EM study of microspore and tapetal development in male. fertile and cytoplasmic male sterile oilseed rape. Can J Bot. 64:1055-1068.
    Greenway H, Munns R. Mechanism of salt tolerance in nonhalophytes. Ann. Rev. Plant Physiol., 1980, 31:149-190.
    Gross R, Leach M, Bauen A. Progress in renewable energy. Environment International, 2003, 29 (1) : 105-122.
    Gulen H, Arora R, Kuden A, Krebs SL, Postman J. Peroxidase isozyme profiles in compatible and incompatible pear-quince graft combinations. J. Am. Soc. Hort. Sci., 2002,127 :152-157.
    Harborne JB. Introduction to Ecological Biochemistry. London: Academic Press, 1988, 302
    
    Heath RL, Packer L. Photoperoxidation in isolated chloroplast I. Kinetics and stoichemistry of fatty acid peroxidation.Arch Biochem Biophys, 1968,5: 89-198.
    Herzog C, Fahimi H. A new sensitive colorimetric assay for peroxidase using 3,3'-diaminobenzid-ine as hydrogen donor. Anal. Biochem., 1973,55: 554-562.
    Hu Y, Schmidhalter U. Spatial distributions of inorganic ions and sugars contributing to osmotic adjustment in the elongating wheat leaf under saline soil conditions. Austr J Plant Physiol, 1998, 25: 591-597.
    Hunt J. Dilute hydrochloric acid extraction of plant material for routine cation anaslysis. Commun in Soil Sci. Plant Anal, 1982,13 (1) : 49-55.
    Hussain N, Ali A, Sarwar G. Mechanism of Salt Tolerance in Rice. Pedosphere, 2003,13 (3) : 233-238
    Irigoyen, JJ, Emerich DW, Sanchez-Diaz M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (M. sativa) plants. Physiol Plant, 1992, 84: 55-60.
    James CB, James ED. Evaluation of Lolium temulentum as a model grass species for the study of salinity stress by PCR-based subtractive suppression hybridization analysis. Plant Sci., 2006,171 : 459-469.
    Kalapos T, Mazsa K. Juniper shade enables terricolous lichens and mosses to maintain high photochemical efficiency in a semiarid temperate sand grassland. Photosynthetica, 2001, 39 (2) : 263-268.
    Kazem Kashefi and Derek R. Lovley. Extending the upper temperature limit for life. Science, 2003, 301 (5635) : 934-936.
    King GJ, Hussey CE, Turner VA. A protein induced by NaCl in suspension cultures of Nicotiana tabacum accumulates in whole plant roots. Plant Mol Biol, 1986, 7: 441-449.
     Krisztina RG, Laszlo E, Herman LS. The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources. Plant Science, 2002, 162 (6) : 923-930.
    
    Krol E, Trebacz K. Ways of ion channel gating in plant cells. Annals of Physiol., 2000, 86: 449-469.
    Lafitte HR, Edmeades GO. Temperature effects on radiation use and biomass partitioning in diverse tropical maize cultivars. Field Crops Research, 1997, 49,231-247.
    Legha PK, Giri Gajndra, Potegal M, et al. Influence of nitrogen and sulphur on growth , yield and oil content of sunflower grown in spring season. Indian Journal of Agronomy, 1999, (6) : 408-412.
    Leidi EO, Silberbush M, Scares MIM, Lips BH. Salinity and nitrogen nutrition studies on peanut and cotton plants. J. Plant Nutr., 1992,15: 591-604.
    
    Levitt J. Responses of plants to environmental stress (2ed.) . New York, London, Academic Press, 1980.
    Lewis OAM, Leidi E, Lips SH. Effect of nitrogen source on growth response to salinity stress in maize and wheat. New Phytol., 1989,3:155-160.
    Li WR, Feng JC, Jiang TR. Seasonal changes in photosynthetic characteristics of Ammopiptanthus mongolicus. ActaBotanica Sinica, 1999, 41 (2) : 190-193.
    Liu HX, Zeng SX., Wang YR, Li P, Chen DF, Quo JY. The effect of low temperature on superoxide dismutase in various organelles of cucumber seedling cotyledon with different cold tolerance. Acta Phytophysiol Sinica, 1985,1: 48-57.
    Low R, Rockel B, Kirch M. Early salt stress effects on the differential expression of vacuolar H~+-ATPase genes in roots and leaves of Mesembryanthemum crystallium L. Plant Physiol., 1996, 110: 259-265.
    Mandal KG, Saha KP, Ghosh PK. Bioenergy and economic analysis of soybean-based crop production
    
    ??systems in central India. Biomass and Bioenenergy, 2002, 23 (5) : 337-345.
    
    Manetas Y. A re-examination of NaCl effects on phosphoenol pyruvate carboylase at high(physiological) enzyme concentrations. Physiol. Plant, 1990,78: 225-229.
    
    McCue KF, Hanson AD. Drought and salt tolerance: towards understanding and application. TrendsBiotechnol, 1990, 8: 358-362.
    
    Messenger BJ, Merge JA, Amrhein C, Faber B. The effects of Calcium on avocado growth and roothealth. California Avocado Society Yearbook, 1997,81:69-79
    
    Michelet B, Boutry M. The plasma membrane H~+-ATPase. Plant Physiol, 1995,108 (1) : 1-6. Mittal R, Dubey RS. Behaviour of peroxidases in rice changes in enzyme activity and isoforms inrelation to salt tolerance. Plant Physiol Biochem, 1994,29: 34-40.
    
    Nuccio JM, Rhodes D, McNeil SD, Hanson AD. Metabolic engineering of plants for osmotic stressresistance. Curr. Opin. Plant Biol, 1999, 2:128-134.
    
    Munns R. Comparative physiology of salt and water stress. Plant Cell Environment, 2002, 25: 239-250 Munns R, Termaat A. Whole-plant responses to salinity. Aust J Plant Physiol., 1986,13:143-160.
    
    Murashige, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures.Physiol. Plant, 1962,15:473-497.
    
    Niu X, Damsz B, Kononowicz AK, Bressan RA, Hasegawa PM. NaCl-induced alternation in both cellstructure and tissue specific plasma membrane H~+-ATPase gene expression. Plant Physiol., 1996,111: 679-689.
    
    Niu X, Narasimhan ML, Salzman RA, Bressan RA, Hasegawa PM. NaCl regulation of plasmamembrane H~+-ATPase gene expression in a glycophyte and a halophyte. Plant Physiol., 1993, 103(3) : 713-718.
    
    Prisco JT, Oleay JW. The effects of humidity and cytokinin on growth and water relations of salt-stressedbean plants. Plant Soil, 1973,39: 263-276.
    
    Ramagopol S. Salinity stress induced Tissue-specific proteins in barley seedlings. Plant Physiol., 1987,84:94-98.
    
    Rayapati PJ, Stewart CR. Solubization of a proline dehydrogenase from maize mitochondria. PlantPhysiol., 1991, 95: 787-791.
    
    Rawson HM, Long MJ. Growth and development in NaCl-stress plant. Aust. J. Plant Physi., 1988, 15(4) : 519-540.
    
    Reisfeld RA, Lewis UJ, Williams DE. Disk electrophoresis of basic proteins and peptides onpolyacrylamide gels. Nature, 1962,195 : 281-283.
    
    Rentsch D, Hirner B, Schmelzer E. Salt stress induced proline accumulation in hydrated barley andwheat leaves. Plant Physiol., 1996,142: 355-359.
    
    Ruizd, Martinezv, Cerdaa. Demarcating specificion (NaCl, Cl~-, Na~+) and osmotic effects in the response of two citrus rootstocks to salinity. Scientia Horticulturae, 1999, 80: 213-224.
    Scandalios JG Oxygen stress and superoxide disrnutase. Plant Physiol, 1993,101: 7-12.
    Scandalios JG Response of plant antioxidant defense genes to environment stress. Adv Genet,1990, 28:1-41.
    Steinineer KW, Voraberger H. Exploiting the medium term biomass energy potentials in Austria. Environmental and Resource-Economics, 2003,24 (4) : 359-377.
    Swanton CJ, Cavers PB. Biomass and nutrient allocation patterns in Jerusalem artichoke (Helianthus tuberosus) . Can. J. Bot., 1989, 67: 2880-2887.
    Sze H. H~+-translocating ATPase: Advances using membrane vesicle. Annu. Rev. Plant Physiol., 1985, 36:175-208.
    
    Taiz L. The plant vaculoe. J. Exp. Biol., 1992,172:113-122.
    Tanaka Y, Hibino T, Hayashi Y, et al. Salt tolerance of transgenetic rice overpression yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci, 1998,148:131-138.
    Tiwari BS, Belenghi B, Levine A. Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mintochondrial permeability trensition and programmed cell death. Plant Physiol, 2002,128:1271-1281.
    Vigo C, Therios IN, Bosabalidis AM. Plant growth, nutrient concentration, and leaf anatomy of Oliveplants irrigated with diluted seawater. Journal of Plant Nutrition, 2005, 28:1001-1021.
     Voetberg GS, Sharp RS. Growth at the maize primary root at at low water potential. HI. Role of increased proline deposition in osmotic adjustment. Plant Physiol., 1991, 96:1125-1130.
    Wall DA, Kiehn FA, Friesen GE. Control of Jerusalem artichoke (Helianthus tuberosus) in barley (Hordeum vulgare) . Weed Sci., 1986, 34: 761-764.
    Wendel JF, Weeden NF. Visualization and interpretation of plant isozymes, in: D.E. Soltis, P.S. Soltis (Eds.) , Isozymes in Plant Biology, Dioscorides Press, Portland, Oregon, 1989,5-44.
    White P, Broadley M. Chloride in soils and its uptake and movement within the plant: a review. Annalsof Botany, 2001, 88: 967-988.
    Winter K, Gademann R. Daily changes in CO_2 and water vapour exchange,chlorophyll fluorescence,and leaf water relations in the halophyte M. crystallinum during the induction of crassulacesn acid metabolism in response to high NaCl-salinity. Plant Physiol, 1991, 95: 768 -776.
    Wissing F, Smith JAC. Vacuolar chloride transport in Mesembryanthemum crystallinum L. Measured using the fluorescent dye lucigenin. Membranes Biol., 2000,177: 66-71.
    Wu Y, Wang Q, Ma Y, Chu C. Isolation and expression analysis of salt up-regulated ESTs in upland rice using PCR-based subtractivesuppression hybridization method. Plant Sci., 2005,168 : 847-853.
    Wyse DL, Young FL, Jones RJ. Influence of Jerusalem artichoke (Helianthus tuberosus) density and duration of interference on soybean (Glycine max) growth and yield. Weed Sci., 1986, 34:
    
    ??243-247.
    
    Xia Y, Lin S, Zhang FS, et al. Effect of foliar leaching on growth and mineral nutrient contents of maizeunder NaCl stress.Acta Ecologica Sinica, 2001,21 (4) : 593-597.
    
    Xu LL, Ye MB. A measurement of peroxidase activity using continuous recording method. J NanjingAgricult Univ, 1989,12 (3) : 82-83.
    
    Yan XX, Zhao TE, Hu YJ. Effect of moderate salt stress on cells in root tips of barley. Acta Agriculter Boreall-Sinica (Supplement) ,1994,9:61-64.
    
    Yang MS, Li YH, Lian HY, et al. Ion distribution and comparison in seedlings of white poplarclonesunder salts tress. Acta Ecologica Sinica, 2003, 23 (2) : 271-277.
    
    Yokoyama SY, Ogi T, Nalampoon A. Biomass energy potential in Thailand. Biomass and Bioenergy,2000,18 (5) : 405-410.
    
    Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K. Regulation of levels ofproline as an osmolyte in plant under water stress. Plant Cell Physiol, 1997,38 (10) : 1095 -1102.
    
    Yoshida K, Kaothien P, Matsui T, Kawaoka A, Shinmyo A. Molecular biology and application of plantperoxidase genes. Appl. Microb. Biotech, 2002,60: 665-670.
    
    Zhang HY, Zhao KF. Effects of salt and water stresss on osmotic adjustment of suaeda salsa seedings.Acta Botanic Sinica, 1998,40 (1) : 56-51.
    
    Zhang YP, Lin XY, Zhang YS. Effects of nitrogen supply on nutritional quality and antioxdative enzymeactivities of spinach. Chinese journal of applied ecology, 2005,16 (3) : 519-523.
    
    陈德明,俞仁培.作物相对耐盐性的研究Ⅰ.大麦和小麦不同生育期的耐盐性.土壤学报, 1995,32 (4):414-422.
    
    陈迪华,常琪,斯建勇.天然多酚成分研究进展.植物药分册,1997,12(1):9-15.
    
    陈峰云,夏志华.中国能源可持续利用的战略选择.国土与自然资源研究.2003,2:73-74.
    
    陈沁.盐胁迫下大麦体内活性氧对液泡膜功能的伤害及其调控.南京农业大学博士论文,1999.
    
    储玲,刘登义,王友保.铜污染对三叶草幼苗生长及活性氧代谢影响的研究.应用生态学报,2004, 15(1):119-122.
    
    戴伟民,赵艳,蔡润,等.番茄耐盐愈伤组织的筛选及显微结构观察.上海交通大学学报(农业科 学版),2001,19(2):112-116.
    
    邓力群,刘兆普,陈铭达,等.不同盐分滨海盐土上油葵(G101-B)的氮磷肥效应研究.中国油料 作物学报,2002,24(4):61-64.
    
    丁海媛,张耕耘,郭岩.运用RAPD分析标记水稻耐盐突变系的耐盐主效基因.科学通报,1998, 43(2):418-421.
    
    杜昱光,李曙光,郭红莲.高效液相色谱-电化学(库仑电极)阵列检测技术用于植物内源激素等小??分子物质的差异显示.彦学2003,2l(5):507-509.
    
    樊润威,崔志祥.人工种草对盐碱荒地土壤性质的影响.中国草地,1992,2:50-54.
    
    冯立田,卢元芳.盐胁迫下灰绿藜叶片光合特性与叶绿体离子调节的研究.曲阜师范大学学报, 1998,3:57-61.
    
    龚继明,何平,钱前.水稻耐盐性QTL的定位.科学通报,1998,43(17):1847-1850.
    
    顾兴友,梅曼彤,严小龙.水稻耐盐性数量性状位点的初步检测.中国水稻科学,2000,14(2): 65-70.
    
    郭盛磊,阎秀峰,白冰,于爽.供氮水平对落叶松幼苗光合作用的影响.生态学报,2005,25(6): 1291-1298.
    
    贾庚祥,朱至清,李银心.甜菜碱与植物耐盐基因工程.植物学通报,2002,19(3):272-279.
    
    蒋剑春.生物质能源应用研究现状与发展前景.林产化学与工业,2002,22(2):76-80.
    
    柯玉琴,潘廷国.胁迫对甘薯叶片叶绿体超微结构及一些酶活性的影响.植物生理学报,1999,25 (3):229-233.
    
    蒯本科,顾红雅.渗透胁迫诱导的植物体内信号及相关基因克隆研究.资源科学,1999,21(5): 42-45.
    
    李加宏,俞仁培.矿化灌溉水-土壤系统中离子反应和交换.土壤学报,1997,34(4):434-443
    
    李品芳,白文波,杨志成.NaCl胁迫对苇状羊茅离子吸收与运输及其生长的影响.中国农业科学, 2005,38(7):1458-1565.
    
    李荣田,张忠明,张启发.RHL基因对粳稻的转化及转基因植株的耐盐性.科学通报,2002,47(8): 613-617.
    
    李扬汉.植物学.上海:上海科学出版社,1984.31-35.
    
    李永华,邹琦.植物体内甜菜碱合成相关酶的基因工程.植物生理学通讯,2002,38(5):500-504.
    
    李振国,倪君蒂,余叔文.乙烯削减盐渍胁迫对苜蓿种子萌发的抑制作用.植物生理学报,1995,21 (1):50-56.
    
    梁永超,丁瑞兴.硅对大麦根系中离子的微域分布的影响及其与大麦耐盐性的关系.中国科学 C 辑,2002,32(2):113-121.
    
    梁峥,骆爱玲.甜菜碱和甜菜碱合成酶.植物生理学通讯,1995,31(1):1-8.
    
    林鸿宣,柳原城司,庄杰云.应用分子标记检测水稻耐盐性的QTL.中国水稻科学,1998,12(2): 72-78.
    
    林鹏,王文卿.盐胁迫下红树植物秋茄(Kandelia candel)热值变化的研究.植物生态学报,1999,23 (5):466-470.
    
    刘春卿,杨劲松,陈德明,等.不同耐盐性作物对盐胁迫的响应研究.土壤学报,2005,42(6): 993-998.
    
    刘红.2005年国内外能源政策综述.国际石油经济,2006,(2):13-19.
    
    刘寄陵.土壤盐分与作物生长.土壤,1978,4:147-153.
    
    刘友良.汪良驹.植物对盐胁迫的反应和耐盐性.见:余叔文,汤章城主编.植物生理和分子生物 学.北京:科学出版社,1998,752-769.
    
    刘友良,章文华,丁念诚.大麦耐盐机理的研究.见:中国作物学会大麦专业委员会主编.中国大麦 文集.第三集,南昌:江西科技出版社,1993,209-214.
    
    刘兆普,邓力群,刘玲,等.莱州海涂海水灌溉下菊芋生理生态特性研究.植物生态学报,2005,29 (3):474-478.
    
    刘兆普,刘玲,陈铭达,等.利用海水资源直接农业灌溉的研究.自然资源学报,2003,18(4):423- 429.
    
    刘兆普,沈其荣,尹金来,严少华,徐一琴,周春霖.滨海盐土农业,北京:中国农业科技出版社, 1998.
    
    陆景陵.植物营养学.农业大学出版社,北京,32-33.
    
    罗英,李俊刚.菊芋的酶降解及其综合利用.四川师范大学学报(自然科学版).1999,22(6): 747-751.
    
    马翠兰,刘星辉,陈中海.果树对盐胁迫的反应及耐盐性鉴定的研究进展.福建农业大学学报, 2000,29(2):161-166.
    
    马凤山,蔡祖煌,杨明华.海水入侵灾害与区域农业持续发展的对策.科学对社会的影响,1998,4: 32-37。
    
    马家津,吕跃钢.以菊芋为原料利用固定化酶和细胞两步法发酵生产乙醇.北京工商大学学报 (自然科学版).2004,22(6):8-10.
    
    马玉明,马世威,马文元.菊芋的开发利用价值.林业实用技术,2002,3:17-18.
    
    任红旭,陈雄,王亚馥.抗旱性不同的小麦幼苗在水分和盐胁迫下抗氧化酶和多胺的变化.植物生 态学报,2001,25(6):709-715.
    
    潘晓华,刘水英,李锋.低磷胁迫对不同水稻品种幼苗光合作用的影响.作物学报,2003,29(5): 770-774.
    
    彭长连,林植芳,林桂珠.磷素利用效率不同小麦的光合作用和水分利用效率.作物学报,2000, 26(5):543-548.
    
    钦佩,周春霖,安树青,尹金来.海滨盐土农业生态工程.北京:化学工业出版社环境科学与工程 出版中心,2002.
    
    邱栋梁,林鹏.植物耐盐的分子机理研究进展.热带亚热带植物学报,2002,10(3):281-292.
    
    曲桂敏,沈向.不同品种苹果树水分利用效率及有关参数的日变化.果树科学,2000,17(1):7-11.
    
    邵晶,刘玲,刘兆普,郑青松.磷对海水抑制芦荟幼苗生长的缓解效应.中国农业科学,2005,38 (4):843-848.
    
    沈其荣.有机无机肥料配合施用对滨海盐土土壤生物量态氮及土壤供氮特征的影响.土壤学报, 1994,8(3):87-288.
    
    沈振国,沈其荣,管红英,等.NaCl胁迫下氮素营养与大麦幼苗生长和离子平衡的关系.南京农 业大学学报,1994,17(1):22-26.
    
    苏培玺,张立新,杜明武.胡杨不同叶形光合特性、水分利用效率及其对加富CO_2的响应.植物生 态学报,2003,27(1):34-40.
    
    孙永明,袁振宏,孙振钧.中国生物质能源与生物质利用现状与展望.可再生资源,2006,(126) 2:78-82.
    
    王宝山,赵可夫.小麦叶片中Na、K提取方法的比较.植物生理通讯,1995,31(1):50-52.
    
    王学泠,刘玉辉.希望之路-吉林燃料乙醇有限责任公司发展绿色新兴能源的实践与思考.求是. 2004,21:15-16.
    
    王尊亲,祝寿泉,俞仁培,等.中国盐渍土.北京:科学出版社,1993.
    
    夏朝晖,李晓薇,余和芬,陈珈.盐和干旱胁迫对燕子掌叶片液泡膜H~+-ATPase活性的影响.植物 生理学报,2000,26(5):433-436.
    
    徐云岭,余叔文.植物适应盐逆境过程中的能量消耗.植物生理学通讯,1990(6):119-122.
    
    徐质斌.海水灌溉农业的展望与对策.农业现代化研究,2002,23,(2):89-92.
    
    徐质斌.国内外海水灌溉技术的进展及对产业发展的建议.国际技术经济研究,2001,4(3):19-24.
    
    许祥明,叶和春,李国凤.植物抗盐机理的研究进展.应用与环境生物学报,2000,6(4):379-387.
    
    晏斌,戴秋杰.外界K~+水平对水稻幼苗耐盐性的影响.中国水稻科学,1994:8(2):119-122.
    
    严少华.滨海盐土覆盖栽培节水抑盐效果定量研究.土壤通报,1998,29(2):52-53.
    
    姚新生.天然药物化学.北京:人民卫生出版社,1988:14-15.
    
    於丙军,罗庆云,刘友良.盐胁迫对野生大豆生长和离子分布的影响.作物学报,2001,27(6):776-780.
    
    余叔文,汤章城.植物生理与分子生物学(第二版).北京:科学出版社,1998,752-769.
    
    张邦定.菊芋的开发与栽培.四川农业科技,1997,5:40-41.
    
    张福锁.植物营养生态生理学和遗传学.中国科学技术出版社.1993,206-230.
    
    张丽,张兴昌.植物生长过程中水分、氮素、光照的互作效应.干旱地区农业研究,2003,21(1): 43-46.
    
    张连富,李红.内切菊粉酶生产低聚果糖研究进展.中国食品添加剂,2001(1):20-24.
    
    张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,4:444-448.
    
    张宪政.植物叶绿素含量的测定方法.辽宁农业科学,1986,3:26-28.
    
    张宪政.作物生理研究法.北京,农业出版社,1992,117-205.
    
    章文华,刘友良.钙对大麦幼苗盐胁迫的缓解效应.植物生理学通讯,1993,3:176-178.
    
    赵福庚,刘友良.胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展.植物学通报,1999,16 (5):540-546.
    
    赵耕毛,刘兆普,陈铭达,等.海水灌溉滨海盐渍土的水盐运动模拟研究.中国农业科学,2003,36 (6):676-680
    
    赵可夫.植物抗盐生理.北京:中国科学技术出版社,1993,13-20.
    
    赵可夫,李法曾.中国盐生植物.北京:科学出版社,1999.
    
    赵可夫,张万均,范海,宋杰,江行玉.改良和开发利用盐渍化土壤的生物学措施.土壤通报,2001, 32(50):115-119.
    
    赵军,许庆利,孔海平,张永战.生物质能源产业化及研究现状.浙江化工,2006(3):13-15.
    
    赵利辉,刘友良.液泡膜H~+-PPase及其对逆境胁迫的反应.植物生理学通讯,1999,35(6):441-445.
    
    郑青松,王仁雷,刘友良.钙对盐胁迫下棉苗离子吸收分配的影响.植物生理学报,2001,27(4): 325-330.
    
    周总瑛,唐跃刚.从油气资源状况论我国未来能源发展战略.自然资源学报,2003,18(2):210-214.
    
    朱广濂,邓兴旺,左卫能.植物体内游离脯氨酸的测定.植物生理学通讯,1983,(11):35-44.
    
    朱清时.生物质洁净能源.北京:化学工业出版,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700