用户名: 密码: 验证码:
山莨菪碱对心脏骤停复苏中心肌氧含量与复苏成功因素影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心脏骤停的复苏是一个极其复杂的病理生理变化过程,其病理生理机制尚未完全清楚。心肺复苏实验研究的质量依赖于合理设计动物心脏骤停(cardiacarrest,CA)模型,制备CA动物模型是进行心肺复苏(cardiopulmonary resuscitation,CPR)动物实验研究的必要条件。理想的CA动物模型将尽可能反映出CA临床病理生理变化过程,即充分体现与临床状况的相似性,并具有良好的可操作性及可重复性,这对于保证CPR研究质量来讲有重要意义。
     目前所用的心脏骤停模型并不统一。在国内的CPR实验研究中,模型动物以大鼠、家兔等较多见,而家猪的实验研究少见报道。家猪心脏从解剖学、血流动力学、组织病理学及血管侧枝循环分布等方面来讲与人类极其相似,与人类心脏不同点较少。因此,家猪是制作CA模型比较理想的实验动物。利用电刺激法制作CA模型,近年来国外研究较多,国内尚不多见。本研究即拟应用交流电刺激诱发建立家猪CA模型,意图寻找一种具有良好的可操作性并接近CPR临床实际的动物模型。
     采用家猪9头,体质量(25.0±3.0)kg,麻醉后行气管插管,右侧颈外静脉插管(至右心房)及右侧股动脉插管(至胸主动脉)以备测压,经左侧颈外静脉插入临时起搏电极至右心室(接触心内膜)。另建立耳缘静脉通道以备静脉输液。将临时起搏电极与交流电调压变压器输出端相连,持续电刺激10s以诱发心室颤动。电压为20v,电流1mA,频率50Hz。达到心脏骤停标准后,维持9min未处理间期后开始常规心肺复苏。
     所有动物均在持续电刺激10s后成功出现心室颤动并达心脏骤停标准,诱导成功率为100%。9头建模的动物中5头在经历9min未处理间期后采用常规心肺复苏方法成功恢复自主循环并复苏成功。
     以交流电经心内膜刺激诱发家猪心室颤动模型,具有较好的可操作性、稳定性及与临床状况相似性,能够较好地满足心肺复苏实验研究的要求。
     早在1906年,Crile和Dolley就已经注意到在心脏骤停复苏中足够的主动脉舒张压的重要性,并认为不使用肾上腺素(Epinephrine,Epi)则通常不可能达到足够的主动脉舒张压。主动脉舒张压是冠状动脉灌注压(coronary perfusionpressures,CPP)的主要构成因素。尔后的事实证明,不管是人类还是动物,心肺复苏期间,冠状动脉灌注压大于15mmHg与自主循环恢复(return ofspontaneous circulation,ROSC)率及生存率的提高明显相关。在CA复苏期间,肾上腺素的确可明显提高CPP和脑灌注压。但值得注意的是,CPP仅仅是心肌组织及细胞血液供应的一个替代指标,真正与ROSC率、复苏成功率及生存率有关的显然是CA复苏期间心肌等组织细胞的血液供应,而不是CPP。实际上在使用肾上腺素的情况下,CPP的增加并不能代表心肌组织及细胞血液供应的增加。肾上腺素至今存在最大的问题是在CPR期间虽可使CPP增加,但是冠状动脉血流、心肌组织及细胞的血液供应实际上并未因此而增加,相反由于肾上腺素使微循环血流灌注的减少或停止而显著降低,这显然不利于复苏的成功。文献报道山莨菪碱(anisodamine, Ani)可增加冠状动脉血流量,改善微循环,减轻脑组织和心肌的缺血/再灌注损伤。因此设想在复苏过程中将山莨菪碱与肾上腺素联合使用以减轻肾上腺素上述的对心肺复苏的负面作用,从而达到提高复苏成功率的目的。
     本研究拟观察肾上腺素联合山莨菪碱对家猪血流动力学、呼气末二氧化碳分压(PETCO2)、电除颤次数、自主循环恢复率及复苏成功率的影响。
     采用23头健康家猪随机分成3组,即对照组(control组,n=5,假手术,不经历交流电刺激致颤、心脏骤停及心肺复苏过程)、肾上腺素组(简称A组,n=9,心肺复苏过程中使用肾上腺素静脉推注)和肾上腺素联合山莨菪碱组(简称B组,n=9,心肺复苏过程中使用肾上腺素联合山莨菪碱静脉推注)。家猪麻醉固定后行心电监测,通过右侧股动脉(至胸主动脉)和右颈外静脉(至右心房)置管连续监测主动脉压(aortic pressure,AOP)和右房压(right atrial pressure,RAP),采用经左侧颈外静脉放置临时起搏电极至右心室内膜以交流电刺激致颤,建立家猪心室颤动(ventricular fibrillation,VF)模型。经过9min未干预间期后,同时给予呼吸机控制通气,胸外心脏按压及药物,2min后给予电除颤1次(150J),若失败则继续胸外心脏按压,每按压1min后电除颤1次,每3次电除颤后给药1次,30min无效则放弃复苏。复苏成功后观察1h将动物送入动物实验中心观察室,24h后安乐处死动物,取标本送检。整个复苏过程中连续监测记录心电图,AOP,RAP。比较A、B两组CPP、PETCO2、电除颤次数、ROSC率及复苏成功率。
     A、B两组所有动物在持续电刺激10s后成功出现VF并达CA标准,模型建立成功率为100%。CPR期间,总除颤次数比较,A组较B组明显增多(p=0.007<0.01);首次除颤前A、B两组PETCO2值比较,A组(13.17±1.72mm Hg)明显小于B组(18.14±1.35mm Hg)(p<0.01);CPP的演变,A、B两组均呈现出先上升后下降的过程,在推药后5、20秒,B组均明显高于A组(p=0.033和0.012),但在55秒时,两组趋于相同无明显差别(p>0.05);两组首次除颤前平均CPP比较,A(13.93±9.98mm Hg)、B(12.65±5.50mm Hg)两组无明显差异(p=0.776>0.05)。自主循环恢复率、复苏成功率及24小时存活率, B组(77.80%)高于A组(55.60%),但差异无显著性(p>0.05)。
     心脏骤停复苏期间,肾上腺素联合山莨菪碱能一过性提高冠状动脉灌注压、呼气末二氧化碳分压,有利于电除颤的成功、自主循环恢复及复苏的成功。
     心肺复苏过程中的心肌血流灌注是否充分对于复苏成功与否起着至关重要的作用。微循环血流状况及其氧供是心脏骤停预后的终结决定因素。心脏骤停后微循环血流在0.5分钟内迅速下降到低于正常的1/4。心脏按压时,微循环血流部分恢复;而那些成功复苏的动物的微循环血流在心脏按压后1~5min内明显多于那些复苏失败的动物。早在1906年,Crile和Dolley就注意到在心脏复苏中足够的主动脉舒张压的重要性。肾上腺素可有效地提高主动脉舒张压,从而提高冠状动脉灌注压(CPP),这对于心肺复苏来讲至关重要。不管是人类还是动物,心肺复苏期间,CPP大于15mmHg与ROSC率及生存率的提高明显相关。但是,事实上,肾上腺素的最大的问题在于,CPR期间使用肾上腺素虽然可使CPP增加,但是心肌组织及细胞的血液供应并未因此而增加,反而由于肾上腺素导致微循环血流的减少或停止而显著降低。这种变化引起心肌毛细血管P02快速地降低,这显然不利于复苏。血流减少的直接后果和表现是局部组织尤其是心肌组织氧供的减少。为进一步证实这一论断和上述情况,本实验拟测定心室颤动(VF)前后心肌组织血氧饱和度(regional tissue oxygen saturation,rSO2)以及肾上腺素、山莨菪碱及肾上腺素联合山莨菪碱对rSO2的影响并探讨其机制。
     健康成年新西兰兔32只,随机分为四组,即空白对照组(control)、肾上腺素组(简称Epi组)、山莨菪碱组(简称Ani组)及肾上腺素联合山莨菪碱组(简称Epi+Ani组)。麻醉完成后,予气管切开并插管连接呼吸机。分离左侧颈外静脉切开并置管以备静脉推药,分离右侧颈总动脉切开并置管以备测压。开胸暴露心脏。分别于致颤前后测定心脏rSO2,并观察肾上腺素、山莨菪碱及肾上腺素联合山莨菪碱对心脏rSO2的影响。
     基础状态下测定心脏rSO2结果,各组间比较无明显差异(p>0.05)。未致颤情况下静推药物后1min测定心脏组织血氧饱和度,(1)control组,心脏rSO2围绕77%上下波动,与基础状态比较无明显改变;(2)Epi组,心脏rSO2明显快速降低至64.47±4.36,与基础状态及control组对比差异均有统计学意义(p<0.05),并持续于推药后0.5-2.5min,3.0min时才逐渐上升恢复到基础状态并与control组对比无明显差异(p>0.05);(3)Ani组,心脏rSO2先稍下降后明显回升;(4)Epi+Ani组,心脏rSO2先稍下降后明显回升,1.5min后明显高于基础状态及control组(p<0.05)。
     致颤前后各时间段测定心脏rSO2结果,致颤后各组心脏rSO2均快速下降,心脏按压后均部分恢复。心脏按压+静推药物后1min,各组表现不一,Epi组(33.73±7.13)明显较前单纯心脏按压未推药时(51.03±3.12)下降,差异有统计学意义(p<0.05);Epi+Ani组(66.79±8.43)却明显较前单纯心脏按压未推药时(50.81±1.97)上升,差异有统计学意义(p<0.05)。Epi组中的心脏rSO2推药后表现为先明显降低后逐渐上升最后接近control组水平;而Epi+Ani组推药后表现无明显降低,反逐渐上升最后超过control组水平。
     结论:1、自主循环存在(未致颤)和失去自主循环(心室颤动)情况下,肾上腺素的使用(静脉推注)均可使心脏组织血氧饱和度(氧含量)快速下降,反映了心肌局部血流灌注水平下降。2、肾上腺素联合山莨菪碱的使用(静脉推注)可提高心脏组织血氧饱和度,反映了心肌局部血流灌注水平的提高,肾上腺素和山莨菪碱对心脏组织血氧饱和度的提高有协同作用。
Cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) are extremelycomplex pathophysiological process which pathophysiological mechanism has notbeen clearly explained. Because of interference of many factors in the clinicalinvestigation, it is difficult to undertake a profound pathophysiologic study regardingCA and CPR. A variety of confounding factors can be strictly controlled in the animalexperiment, which makes the experimental results can be reproducible and providesan opportunity to testify different kinds of medications and treatments involved in CAand CPR. Experimental research about CPR depends on the use of animal models thatare designed to simulate cardiac arrest in humans. Such models are used to exploreimportant new treatments and to refne protocols used in standard interventions,including doses of drugs, chest compression techniques, defbrillation energies, andcerebral resuscitation, before they are applied to humans. The ideal CA animalmodels should reflect as far as possible the CPR clinical pathophysiological process,which fully embodies the "similarity" with the clinical status and has good operabilityto ensure the quality of CPR research. The heart of the domestic swine in anatomy,histopathology, hemodynamic and vascular collateral circulation distribution is verysimilar to human. Therefore, the domestic swine is ideal experimental animal for CA/CPR model. In this study, the domestic swine CA/CPR model was built by usingalternating current to stimulate the endocardium to find a CA/CPR model with agood operability and close to the clinical practice.
     9domestic swines weighing (25.0±3.0) kg were employed in this experiment. The swines were anesthetized with sodium pentobarbital and ketamine. Endotrachealintubation were performed in all swines after anesthesia. Blunt dissection of bilateralexternal jugular vein and right femoral artery were performed and thencatheterizations were respectively inserted into the right atrium and thoracic aorta. Apacing electrode was inserted into the right ventricle. Ventricular fibrillation wasinduced by intraventricular stimulation with alternating current (20v,1mA,50Hz).Then, cardiopulmonary resuscitation (CPR) was initiated at the end of9min intervalsafter the cardiac arrest was indentified.
     All swines were identified as cardiac arrest(ventricular fibrillation)after10sec byelectrical stimulation, and the success rate of model was100%.5swines returned thespontaneous circulation after CPR.
     In conclusion, the cardiac arrest model induced by electrical stimulation in swinehas satisfactory similarity with those of clinical status, manipuility and stability,which can meet fundamental study on cardiopulmonary resuscitation.
     As early as1906, Crile and Dolley noted the importance of an adequate aorticdiastolic pressure during attempted cardiac resuscitation. They stated that it often wasnot possible to achieve an adequate aortic diastolic pressure without the addition ofepinephrine. Coronary perfusion pressures (aortic diastolic minus right atrial diastolicpressure) above15mmHg during resuscitation are associated with improved return ofspontaneous circulation (ROSC) in both humans and animals and increased survivalin animals. During resuscitation from cardiac arrest, epinephrine improves coronary and cerebral perfusion. However, CPP is a surrogate for myocardial perfusion. In fact,microcirculatory blood fow is highly correlated with ROSC and survival.Administration of epinephrine resulted in a dramatic and signifcant decrease incapillary blood fow and might have compromised tissue blood fow and thereforeoxygenation and metabolism during CPR, although it increase CPP. The Anisodaminecan increase coronary blood flow and improve microcirculation myocardial perfusion.This study estimated whether the administration of anisodamine in combination withepinephrine during cardiopulmonary resuscitation would improve the hemodynamiclevel, the first defibrillation success rate, ROSC and resuscitation outcome in anestablished swine model of ventricular fibrillation.
     Twenty-three domestic swines were randomized to three groups: the control group(n=5), the group A (n=9, epinephrine administration during CPR) and group B (n=9,administration of epinephrine with anisodamine during CPR). Cardiac arrest wasinduced by the electrical stimulation of the right ventricle endomembrane in the18domestic swines in A and B groups. These animals in A and B groups underwentstandard manual CPR and defibrillation with medicine after the duration of untreatedcardiac arrest for9min. CPP was calculated as the gradient of (AOP-RAP)simultaneously. The total number of defibrillation shocks, level of PETCO2, return ofspontaneous circulation rate and resuscitation rate were compared between thesegroups.
     All swines in the A and B groups, were successfully induced into venturicularfibrillation by electrical stimulation for10s. The total number of defibrillation shocksdelivered to achieve successful defibrillation was less in the group B (p=0.007). Thelevel of PETCO2in the group B (n=9, anisodamine+epinephrine,18.14±1.35mm Hg)was higher than the group A (n=9, epinephrine alone,13.17±1.72mm Hg) beforefirst-shock defibrillation (after9minutes of untreated prolonged VF with1minute of CPR)(t=5.735, p<0.01) vs. epinephrine alone. Mean CPP (mean±SD)fluctuation for animals receiving1minutes of CPR after intravenous drugadministration in time in the two groups. p=0.033at5seconds after intravenous drugadministration; p=0.012at20seconds after intravenous drug administration; At55seconds, p>0.05; at60seconds, p>0.05. Mean CPP (mean±SD,12.65±5.50in thegroup B versus13.93±9.98mm Hg in the group A) at60sec after intravenous drugadministration (chest compression pause before first defibrillation) p=0.776vs.group A (epinephrine alone).
     In conclusion, adminstration of anisodamine in combination with epinephrine atthe beginning of cardiac arrest could improve CPP (transiently), level of PETCO2,contributing to decrease total number of defibrillation shocks to facilitatedefibrillation, ROSC rate and resuscitation.
     The microcirculation, and more specifcally, the capillary exchange bed is likely tobe the ultimate determinant of circulatory function. A study investigated thatmicrovascular blood fow during cardiopulmonary resuscitation was predictive ofoutcome. Microcirculatory blood fow decreased to less than one-fourth within0.5min after inducing ventricular fbrillation. Precordial compression partiallyrestored microvascular fow in each animal. In animals that were successfullyresuscitated, microvascular fow was signifcantly greater after1~5min of chestcompression than in animals with failed resuscitation attempts. Microvascular bloodfow was highly correlated with coronary perfusion pressure. Microvascular blood flow in the sublingual mucosa is therefore closely related to coronary perfusionpressure during cardiopulmonary resuscitation and both are predictive of outcome.
     As early as1906, Crile and Dolley noted the importance of an adequate aorticdiastolic pressure during attempted cardiac resuscitation. They stated that it often wasnot possible to achieve an adequate aortic diastolic pressure without the addition ofepinephrine. Coronary perfusion pressures (aortic diastolic minus right atrial diastolicpressure) above15mmHg during resuscitation are associated with improved return ofspontaneous circulation (ROSC) in both humans and animals and increased survivalin animals. During resuscitation from cardiac arrest, epinephrine improves coronaryand cerebral perfusion.
     However, CPP is a surrogate for myocardial perfusion. In fact, microcirculatoryblood fow is highly correlated with ROSC and survival. Administration ofepinephrine resulted in a dramatic and signifcant decrease in capillary blood fow andmight have compromised tissue blood fow and therefore oxygenation andmetabolism during CPR, although it increase CPP. The reduction of microcirculatoryblood flow reduces directly oxygen supply of the myocardial tissue. This studyestimated whether the administration of epinephrine during cardiopulmonaryresuscitation would reduce (regional tissue oxygen saturation, rSO2)and theadministration of anisodamine in combination with epinephrine duringcardiopulmonary resuscitation would improve rSO2in an established rabbit’s modelof ventricular fibrillation.
     32rabbits were randomized to four groups: the control, epinephrine, anisodamineand epinephrine plus anisodamine group. After the completion of anesthesia,tracheotomy and intubation were performed connecting a ventilator. The left externaljugular vein,left common carotid artery were surgically isolated. A catheter wasinserted into the left external jugular vein for medicine. Another catheter was inserted into the left common carotid artery in order to prepare manometry. Thoracotomy wasperformed to expose the heart. Cardiac arrest was induced by intravenous injectionof potassium chloride. Respectively, rSO2was measured before and after VF.
     There were no significant difference in the heart rSO2among the these groupsunder the baseline(p>0.05). However, there occurred different phenomenon in theheart rSO2among the these groups1min after administration of drugs. The heartrSO2in the control group was not significantly different compared with the baseline(p>0.05). In the group Epi, the heart rSO2decreased quickly and sustained from0.5to2.5min after administration of drug, and lower than the baseline and controlgroup(p<0.05). In the group Ani, the heart rSO2decreased and then increased. Inthe group Epi+Ani, the heart rSO2decreased and then increased to surpass thebaseline and control group(p<0.05).
     The heart rSO2in all the these groups was declining rapidly after ventricularfibrillation (VF) and recovered partly after cardiac compression. There occurreddifferent phenomenon in the heart rSO2among the these groups1min afteradministration of drugs. The heart rSO2in the control group was not significantlydifferent compared with the cardiac compression alone(p>0.05). In the group Epi(33.73±7.13), the heart rSO2was lower than the cardiac compression alone(p<0.05). In the group Epi+Ani(66.79±8.43), the heart rSO2was higher than thecardiac compression alone(50.81±1.97)(p<0.05)decreased and then increased tosurpass the baseline and control group(p<0.05).
     In conclusion, administration of epinephrine can decrease the heart rSO2withrelation to decrease of myocardialblood flow. Epinephrine with anisodamine canincrease the heart rSO2with relation to increase of myocardial blood flow.
引文
[1] Weaver ME, Pantely GA, Bristow JD, et al. A auantitative study of the anatomy anddistribution of coronary arteries in swine in comparison with other animals andman.Cardiovasc Res.1986;20(12):907-917.
    [2] Patterson RE, Dirk ES. Analysis of coronary collateral structure,function,and ischemicborder zones in pigs. Am J Physiol Heart Cric Physiol.1983;244(1):H23-H31.
    [3] Odrigues M, Silva AP, Agusa, Grande NR. The coronary circulation of the pig heart:comparison with the human heart. Eur J Anat.2005;9(2):67-87.
    [4]余明华,黄铁柱,周新华,等.人和猪胸主动脉、肺动脉干的形态学和生物力学特性的比较研究概况.解剖科学进展.2002;8(2):163-165.
    [5] Idris AH, Becker LB, Ornato JP, et al. Utstein Style Guidelines for uniform reporting oflaboratory CPR research. Circulation.1996;94(9):2324-2336.
    [6] White RD. External defibrillation: the need for uniformity in analyzing and reporting results
    [editorial]. Ann Emerg Med.1998;32:234–236.
    [7] Song L, Weil MH, Tang W, et al. Cardiopulmonary resuscitation in the mouse. J Appl Physiol.2002;93(4):1222-1226.
    [8] Fisher M, Hossmann KA.Volume expansion during cardiopulmonary resuscitation reducescerebral no flow. Resuscitation.1996;32(3):227-240.
    [9] Koichiro Yoshioka, Mari Amino, Kazutane Usui, et al. Nifekalant HydrochlorideAdministration During Cardiopulmonary Resuscitation Improves the Transmural Dispersionof Myocardial Repolarization-Experimental Study in a Canine Modelof CardiopulmonaryArrest. Circulation Journal.2006;70(9):1200-1207.
    [10] Yannopoulos D, Nadkarni VM, McKnite SH, et al. Intrathoracic pressure regulator duringcontinuous-chest-compression advanced cardiac resuscitation improves vital organ perfusionpressures in a porcine model of cardiac arrest. Circulation.2005;112(6):803-811.
    [11] Mizushima H, Banks WA, Dohi K, et al. Effect of cardiac arrest on brain Weight andthepermeability of the blood-brain and blooe-spinal cord barrier to albumin and tumornecorsis factor-a. Life Science.1999;65(20):2127-2134.
    [12] Von Planta I, Weil MH, von PM, et al. Cardiopulmonary resuscitation in the rat. J ApplPhysiol.1988;65:2641-2647.
    [13]余猛进,杨瑞和,秦永文等.一种简便的心脏骤停动物实验模型.第二军医大学学报.1996;17(6):527.
    [14]陈蒙华,谢露,宋凤卿,等.小鼠心脏骤停动物模型的建立.中国急救医学.2005,25(12):897-898.
    [15]何明丰,张英俭,黎练达等.气管夹闭窒息法家兔心脏骤停模型的研究.中华实验外科杂志.2004;21(3):375-376.
    [16]李正斌,王学廷,孙宗立,等.心肺复苏家兔血浆ET、CGRP含量变化的研究.中国急救医学.2000;20(12):701-702.
    [17] Liachenko S, Tang P, Xu Y. Deferoxanune improve early postresuscitation Reperfusion afterprolonged cardiac arrest in rats. J Cereb Blood Flow Metab.2003;23(5):574-581.
    [18] Mayr VD, Mitterschiffthaler L, Neurauter A, et al. A comparison of the combination ofepinephrine and vasopressin with lipid emulsion in a porcine model of asphyxial cardiacarrest after intravenous injection of bupivacaine.Anesth Analg.2008;106(5):1566-1571.
    [19] Xu X, Zhou Y, Ma Q, et al. Establishing a resuscitation model in rabbits with closed-thoraciccardiopulmonary bypass[J].Resuscitation.1994;27(1):61-66.
    [20] Palmaers T, Albrecht S, Leuthold C, et al. Post-resuscitation haemodynamics in a novel acutemyocardial infarction cardiac arrest model in the pig. Eur J Anaesthesiol.2007;24(7):580-588.
    [21] Fang X, Tang W, Sun S, et al. Cardiopulmonary resuscitation in a rat model of chronicmyocardial ischemia.J Appl Physiol.2006;101(4):1091-1096.
    [22] Henry R. Halperin, MA, Kichang Lee. Outcomes from low versus high-flowcardiopulmonary resuscitation in a swine model of cardiac arrest. American Journal ofEmergency Medicine.2010;28(2):195–202.
    [23] Noc M, Weil MH, Tang W, et al. Mechanical ventilation may not be essential for initialcardiopulmonary resuscitation. Chest.1995;108:821-827.
    [24] Idris A H, Becker LB, Fuerst RS, et al.Effect of ventilation on resuscitation in an animalmodel of cardiac arrest. Circulation.1994;90:3063-3069.
    [25] Gazmuri RJ, Well MH, Bisera J, et al. Myocardial dysfunction after successful resuscitationfrom cardiac arrest. Crit Care Med.1996;24:992-1000.
    [26] Vaagenes P, Canatadere R, Safar P, et al. Amelioration of brain damadge by lidoflazaineafter prolonged ventricular fibrillation cardiac arrest in dogs. Crit Care Med.1984;12:846.
    [27] Ferrari R., Ceconi C, Curello S., et al. Myocardial damage during ischemia and reperfusion.European Heart J ournal.1993;14(suppl G):25.
    [28] Kloner RA, Arimie RB, Kay GL, et al. Evidence for stunned myocardium in humans: a2001update[J]. Coron Artery Dis.2001;12(5):349-56.
    [29] CardenDL, NeilGrangerD. Pathophysiology of ischemia-reperfusion injury. J Pathol.2000;190(3):255-266.
    [30] Piper HM, García-Dorado D, Ovize M. A fresh look at reperfusion injury. Cardiovasc Res.1998;38(2):291-300.
    [31] Standards for cardiopulmonary resuscitation(CPR) and emergency cardiac care (ECC).I.Introduction. JAMA.1974;227(7Suppl.):837–840.
    [32] Standards and guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiaccare (ECC). JAMA.1980;244(5):453–509.
    [33] Montgomery WH, Donegan J, McIntyre K. Standards and guidelines for cardiopulmonaryresuscitation and emergency cardiac care. Circulation.1986;74(6Pt2), IV1–IV3.
    [34] Guidelines for cardiopulmonary resuscitation and emergency cardiac care. EmergencyCardiac Care Committee and Subcommittees, American Heart Association. Part IX. Ensuringeffectiveness of communitywide emergency cardiac care. JAMA.1992;268(16):2289–2295.
    [35] Kloeck W, Cummins RO, Chamberlain D et al. The universal advanced life supportalgorithm: an advisory statement from the Advanced Life Support Working Group of theInternational Liaison Committee on Resuscitation. Circulation.1997;95(8):2180–2182.
    [36] Deakin CD, Morrison LJ, Morley PT, et al. Part8: Advanced life support2010InternationalConsensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Sciencewith Treatment Recommendations. Resuscitation.81S (2010): e93–e174.
    [37] Pellacani P: Arch. Sci. Med. III (1874).
    [38] Oliver G, Schafer A. The physiological effects of extracts of the suprarenal capsules. JPhysiol.1895;18:230–276
    [39]Gottlieb R: Ueber die Wirkung der Nebennierenextracte auf herz und blutdruk.Naunyn-Schmiedeberg’sArch. Pharmacol.1896;38:99–112.
    [40] Bennett MR. One hundred years of adrenaline: the discovery of autoreceptors. Clin AutonRes.1999;9(3):145-159.
    [41] Crile G,Dolley DH: An experimental research into the resuscitation of dogs killed byanesthetics and asphyxia. J. Exp. Med.1906;8(6):713–725.
    [42] Pearson JW, Redding JS. Epinephrine in cardiac resuscitation. Am. Heart J.1963;66:210–214.
    [43] Pearson JW, Redding JS. The role of epinephrine in cardiac resuscitation. Anesth. Analg.1963;42:599–606.
    [44] Pearson JW, Redding JS. Cardiac arrest and adrenaline. Lancet.1964;283,935
    [45] Yakaitis RW, Otto CW, Blitt CD. Relative importance of α and β adrenergic receptorsduring resuscitation. Crit Care Med.1979;7(7):293–296.
    [46] Ahlquist RP. A study of the adrenotropic receptors. Am. J. Physiol.1948;153(3):586–600.
    [47] Lands AM, Howard JW. A comparative study of the effects of1-arterenol, epinephrine andisopropylarterenol on the heart. J Pharmacol ExpTher.1952;106(1):65–76.
    [48]Ahlquist RP. Development of the concept of α and β adrenotropic receptors.Ann. NY Acad. Sci.1967;139(3):549–552.
    [49]Garb S, Penna M, Ganz A. Effects of epinephrine, norepinephrine and isopropylarterenol onthe isolated auricles of four mammalian species.Am. J. Physiol.1956;185(2):332–336.
    [50]Moran NC. Adrenergic receptors within the cardiovascular system. Circulation.1963;28:987–993.
    [51]Hirche H. The effect of isoproterenol, adrenalin, noradrenalin and adenosine on thecirculation and O2consumption of heart muscle before and after blocking of β-receptors.Pflugers Arch Gesamte Physiol Menschen Tiere.1966;288(2):163–185.
    [52]Shanks RG. The effect of propranolol on the cardiovascular responses to isoprenaline,adrenaline and noradrenaline in the anaesthetized dog. Br J Pharmacol. Chemother.1966;26(2):322–333.
    [53]Berecek KH, Brody MJ. Evidence for a neurotransmitter role for epinephrine derived fromthe adrenal medulla. Am. J. Physiol.1982;242(4): H593–H601.
    [54]Penson PE, Ford WR, Broadley KJ. Vasopressors for cardiopulmonary resuscitation. Doespharmacological evidence support clinical practice? Pharmacol. Ther.2007;115(1):37–55.
    [55]Paradis NA, Martin GB, Rivers EP et al. Coronary perfusion pressure and the return ofspontaneous circulation in human cardiopulmonary resuscitation. JAMA.1990;263(8):1106–1113.
    [56]Kern KB, Ewy GA, Voorhees WD, Babbs CF, Tacker WA. Myocardial perfusion pressure: apredictor of24-hour survival during prolonged cardiac arrest in dogs. Resuscitation.1988;16(4):241–250.
    [57]Michael JR, Guerci AD, Koehler RC et al. Mechanisms by which epinephrine augmentscerebral and myocardial perfusion during cardiopulmonary resuscitation in dogs. Circulation.1984;69(4):822–835.
    [58]Brown CG, Werman HA, Davis EA, Hamlin R, Hobson J, Ashton JA. Comparative effect ofgraded doses of epinephrine on regional brain blood flow during CPR in a swinemodel.Ann. Emerg. Med.1986;15(10):1138–1144.
    [59]Koehler RC, Michael JR, Guerci AD et al. Beneficial effect of epinephrine infusion oncerebral and myocardial blood flows during CPR. Ann. Emerg. Med.1985;14(8):744–749.
    [60]Hoekstra JW, Van Ligten P, Neumar R, Werman HA, Anderson J, Brown CG. Effect of highdose norepinephrine versus epinephrine on cerebral and myocardial blood flow during CPR.Resuscitation.1990;19(3):227–240.
    [61]Wegria R, Frank CW, Wang HH, Misrahy G, Miller R, Kornfeld P. A study of theusefulness and limitations of electrical countershock, cardiac massage, epinephrine andprocaine in cardiac resuscitation from ventricular fibrillation. Circulation.1953;8(1):1–14.
    [62]Ditchey RV,Lindenfeld J. Failure of epinephrine to improve the balance between myocardialoxygen supply and demand during closed-chest resuscitation in dogs. Circulation.1988;78(2):382–389.
    [63]Tang W,Weil MH,Sun S,Noc M,Yang L,Gazmuri RJ. Epinephrine increases the severityof postresuscitation myocardial dysfunction. Circulation.1995;92(10):3089–3093.
    [64]Tovar OH,Jones JL. Epinephrine facilitates cardiac fibrillation by shortening action potentialrefractoriness. J. Mol. Cell. Cardiol.1997;29(5):1447–1455.
    [65]Ristagno G, Tang W, Huang L et al. Epinephrine reduces cerebral perfusion duringcardiopulmonary resuscitation. Crit Care Med.2009;37(4):1408–1415.
    [66]Lindberg L,Liao Q,Steen S. The effects of epinephrine/norepinephrine on end-tidal carbondioxide concentration, coronary perfusion pressure and pulmonary arterial blood flow duringcardiopulmonary resuscitation. Resuscitation.2000;43(2):129–140.
    [67]Gaussorgues P,Gueugniaud PY,Vedrinne JM,Salord F,Mercatello A,Robert D. Bacteremiafollowing cardiac arrest and cardiopulmonary resuscitation. Intensive Care Med.1988;14(5):575–577.
    [68]Adrie C, Adib-Conquy M,Laurent I et al. Successful cardiopulmonary resuscitation aftercardiac arrest as a ‘sepsis-like’syndrome. Circulation.2002;106(5):562–568.
    [69]Roffey P,Thangathurai D,Mikhail M,Shoemaker W. Implication of epinephrine-inducedhypokalemia during cardiac arrest. Resuscitation.2003;58(2):231.
    [70]Poullis DM. Repeated administration of vasopressin but not epinephrine maintains coronaryperfusion pressure after early and late administration during prolonged cardiopulmonaryresuscitation in pigs. Circulation.2000;101(16):E174–E175.
    [71]Bindoli A,Rigobello MP,Deeble DJ. Biochemical and toxicological properties of theoxidation products of catecholamines. Free Radic. Biol. Med.1992;13(4):391–405.
    [72]Behonick GS,Novak MJ,Nealley EW, Baskin SI. Toxicology update: the cardiotoxicity ofthe oxidative stress metabolites of catecholamines (aminochromes). J. Appl. Toxicol.2001;21(Suppl.1):S15–S22.
    [73]Thrush DN,Downs JB, Smith RA: Is epinephrine contraindicated during cardiopulmonaryresuscitation? Circulation.1997;96(8):2709–2714.
    [74]McCaul CL,McNamara PJ, Engelberts D et al. Epinephrine increases mortality after briefasphyxial cardiac arrest in an in vivo rat model. Anesth. Analg.2006;102(2):542–548.
    [75] Fries M, Tang W, Chang YT, Wang J, Castillo C, Weil MH. Microvascular blood flow duringcardiopulmonary resuscitation is predictive of outcome.Resuscitation.2006;71(2):248-253.
    [76] Neumar R, Bircher N, Radovsky M et al. Myocardial necrosis after high-dose epinephrineduring CPR. Ann. Emerg. Med.1993;22:892–893.
    [77]Berg RA, Otto CW, Kern KB et al. A randomized, blinded trial of high-dose epinephrineversus standard-dose epinephrine in a swine model of pediatric asphyxial cardiac arrest.Crit. Care Med.1996;24(10):1695–1700.
    [78]Perondi MBM, Reis AG, Paiva EF, Nadkarni VM, Berg RA. A comparison of high-dose andstandard-dose epinephrine in children with cardiac arrest. N. Engl. J. Med.2004;350(17):1722–1730.
    [79]Woodhouse SP, Cox S, Boyd P, Case C, Weber M. High dose and standard dose adrenaline donot alter survival, compared with placebo, in cardiac arrest. Resuscitation.1995;30(3):243–249.
    [80]Otto CW, Yakaitis RW, Redding JS, Blitt CD. Comparison of dopamine, dobutamine, andepinephrine in CPR. Crit. Care Med.1981;9(9):640–643.
    [81]Huang L, Weil MH, Cammarata G, Sun S, Tang W: Nonselective b-blocking agent improvesthe outcome of cardiopulmonary resuscitation in a rat model. Crit. Care Med.2004;32(9Suppl.):S378–S380.
    [82]Huang L, Weil MH, Sun S, Tang W, Fang X: Carvedilol mitigates adverse effects ofepinephrine during cardiopulmonary resuscitation. J. Cardiovasc. Pharmacol. Ther.2005;10(2):113–120.
    [83]Hilwig RW, Kern KB, Berg RA, Sanders AB, Otto CW, Ewy GA. Catecholamines in cardiacarrest: role of a agonists, b-adrenergic blockers and high-dose epinephrine. Resuscitation.2000;47(2):203–208.
    [84]Meybohm P, Cavus E, D rges V et al. Revised resuscitation guidelines: adrenaline versusadrenaline/vasopressin in a pig model of cardiopulmonary resuscitation–a randomised,controlled trial. Resuscitation.2007;75(2):380–388.
    [85]Wenzel V, Lindner KH, Krismer AC, Miller EA, Voelckel WG, Lingnau W. Repeatedadministration of vasopressin but not epinephrine maintains coronary perfusion pressure afterearly and late administration during prolonged cardiopulmonary resuscitation in pigs.Circulation.1999;99(10):1379–1384.
    [86]Lindner KH, Brinkmann A, Pfenninger EG, Lurie KG, Goertz A, Lindner IM. Effect ofvasopressin on hemodynamic variables, organ blood flow, and acid-base status in a pig modelof cardiopulmonary resuscitation. Anesth. Analg.1993;77(3):427–435.
    [87]Lindner KH, Prengel AW, Pfenninger EG et al. Vasopressin improves vital organ blood flowduring closed-chest cardiopulmonary resuscitation in pigs. Circulation.1995;91(1):215–221.
    [88]Babar SI, Berg RA, Hilwig RW, Kern KB, EwyGA. Vasopressin versus epinephrine duringcardiopulmonary resuscitation: a randomized swine outcome study. Resuscitation.1999;41(2):185–192.
    [89]Gueugniaud P, David J, Chanzy E et al. Vasopressin and epinephrine vs. epinephrine alone incardiopulmonary resuscitation. N. Engl. J. Med.2008;359(1):21–30.
    [90]Stiell IG, Hebert PC, Weitzman BN et al. High-dose epinephrine in adult cardiac arrest.N. Engl. J. Med.1992;327(15):1045–1050.
    [91]Ong MEH, Tan EH, Ng FSP et al. Survival outcomes with the introduction of intravenousepinephrine in the management of out-of-hospital cardiac arrest. Ann. Emerg. Med.2007;50(6):635–642.
    [92]Ohshige K, Shimazaki S, Hirasawa H et al.: Evaluation of out-of-hospital cardiopulmonaryresuscitation with resuscitative drugs: a prospective comparative study in Japan. Resuscitation.2005;66(1):53–61.
    [93]Van Walraven C, Stiell IG, Wells GA, Hébert PC, Vandemheen K. Do advanced cardiac lifesupport drugs increase resuscitation rates from in-hospital cardiac arrest? The OTAC StudyGroup. Ann. Emerg. Med.1998;32(5):544–553.
    [94]Olasveengen TM, Sunde K, Brunborg C, Thowsen J, Steen PA, Wik L. Intravenous drugadministration during out-of-hospital cardiac arrest: a randomized trial. JAMA.2009;302(20):2222–2229.
    [95] Sasson C, Rogers MAM, Dahl J, Kellermann AL. Predictors of survival from out-of-hospitalcardiac arrest:a systematic review and meta-analysis. Circ. Cardiovasc. Qual.Outcomes.2010;3(1):63–81.
    [96]Rittenberger JC, Bost JE, Menegazzi JJ. Time to give the first medication during resuscitationin out-of-hospital cardiac arrest. Resuscitation.2006;70(2):201–206.
    [97]Niemann JT, Cairns CB, Sharma J, Lewis RJ. Treatment of prolonged ventricular fibrillation.Immediate countershock versus high-dose epinephrine and CPR preceding countershock.Circulation.1992;85(1):281–287.
    [98]Menegazzi JJ, Davis EA, Yealy DM et al. An experimental algorithm versus standardadvanced cardiac life support in a swine model of out-of-hospital cardiac arrest.Ann. Emerg. Med.1993;22(2):235–239.
    [99]SeabergDC, Menegazzi JJ, Check B, MacLeod BA, Yealy DM. Use of acardiocerebral-protective drug cocktail prior to countershock in a porcine model of prolongedventricular fibrillation. Resuscitation.2001;51(3):301–308.
    [100]Reynolds JC, Rittenberger JC, Menegazzi JJ. Drug administration in animal studies ofcardiac arrest does not reflect human clinical experience. Resuscitation.2007;74(1):13–26.
    [101]Kellum MJ, Kennedy KW, Barney R et al. Cardiocerebral resuscitation improvesneurologically intact survival of patients with out-of-hospital cardiac arrest. Ann. Emerg. Med.2008;52(3):244–252.
    [102]Nademanee K, Taylor R, Bailey WE, RiedersDE, Kosar EM. Treating electrical storm:sympathetic blockade versus advanced cardiac life support-guided therapy. Circulation.2000;102(7):742–747.
    [103]SOS-KANTO study group. Cardiopulmonary resuscitation by bystanders with chestcompression only (SOS-KANTO): an observational study. Lancet.2007;369(9565):920–926.
    [104]Ewy GA. Cardiocerebral resuscitation: the new cardiopulmonary resuscitation. Circulation.2005;111(16):2134–2142.
    [105]Kellum MJ, Kennedy KW, EwyGA. Cardiocerebral resuscitation improves survival ofpatients with out-of-hospital cardiac arrest. Am. J. Med.2006;119(4):335–340.
    [106]Mader TJ, KelloggAR, Walterscheid JK, Lodding CC, Sherman LD. A randomizedcomparison of cardiocerebral and cardiopulmonary resuscitation using a swine model ofprolonged ventricular fibrillation. Resuscitation.2010;81(5):596–602.
    [107]Sanna T, La Torre G, de Waure C et al. Cardiopulmonary resuscitation alone vs.cardiopulmonary resuscitation plus automated external defibrillator use by non-healthcareprofessionals: a meta-analysis on1583cases of out-of-hospital cardiac arrest. Resuscitation.2008;76(2):226–232.
    [108]Hase M, Tsuchihashi K, Fujii N et al. Early defibrillation and circulatory support canprovide better long-term outcomes through favorable neurological recovery in patients without-of-hospital cardiac arrest of cardiac origin. Circ. J.2005;69(11):1302–1307.
    [109]Pytte M, Kramer-Johansen J, Eilevstj nn J et al. Haemodynamic effects of adrenaline(epinephrine) depend on chest compression quality during cardiopulmonary resuscitation inpigs. Resuscitation.2006;71(3):369–378.
    [110]Neumar RW, Nolan JP, Adrie C et al. Post-cardiac arrest syndrome: epidemiology,pathophysiology, treatment, and prognostication. A consensus statement from theInternational Liaison Committee on Resuscitation (American Heart Association, Australianand New Zealand Council on Resuscitation, European Resuscitation Council, Heart andStroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council ofAsia, and the Resuscitation Council of Southern Africa); the American Heart AssociationEmergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery andAnesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Councilon Clinical Cardiology; and the Stroke Council. Circulation.2008;118(23):2452–2483.
    [111]Bendz B, Eritsland J, NakstadAR et al. Long-term prognosis after out-of-hospital cardiacarrest and primary percutaneous coronary intervention. Resuscitation.2004;63(1):49–53.
    [112]Keelan PC, Bunch TJ, White RD, Packer DL, Holmes DR. Early direct coronary angioplastyin survivors of out-of-hospital cardiac arrest. Am. J. Cardiol.2003;91(12):1461–1463, A6.
    [113]Quintero-Moran B, Moreno R, Villarreal S et al. Percutaneous coronary intervention forcardiac arrest secondary to ST-elevation acute myocardial infarction. Influence of immediateparamedical/medical assistance on clinical outcome. J. Invasive Cardiol.2006;18(6):269–272.
    [114]Garot P, Lefevre T, Eltchaninoff H et al. Six-month outcome of emergency percutaneouscoronary intervention in resuscitated patients after cardiac arrest complicating ST-elevationmyocardial infarction. Circulation.2007;115(11):1354–1362.
    [115]Meybohm P, Gruenewald M, Albrecht M et al.: Hypothermia and postconditioning aftercardiopulmonary resuscitation reduce cardiac dysfunction by modulating inflammation,apoptosis and remodeling. PLoS One.2009;4(10): E7588.
    [116]Nagao K, Hayashi N, Kanmatsuse K et al.: Cardiopulmonary cerebral resuscitation usingemergency cardiopulmonary bypass, coronary reperfusion therapy and mild hypothermia inpatients with cardiac arrest outside the hospital. J. Am. Coll. Cardiol.2000;36(3):776–783.
    [117]Knafelj R, Radsel P, Ploj T, Noc M. Primary percutaneous coronary intervention and mildinduced hypothermia in comatose survivors of ventricular fibrillation with ST-elevation acutemyocardial infarction. Resuscitation.2007;74(2):227–234.
    [118]Kentala E et al.1992.Intramuscular atropine in healthy volunteers:a pharmacokinetic andpharmacodynamic study.Int.J.Clin.Pharmacol.Ther. Toxicol.28:399–404.
    [119]俞长兴,肖蓬,苏志红,等.山莨菪碱类药物临床应用评价.中国医院用药评价与分析.2002;2(4):208-210.
    [120]许翔,鲍颖霞,李庆平.山莨菪碱对大鼠肠系膜微循环及产时宫颈水肿微循环的影响.中国现代医学杂志.2002;12(24):5-7.
    [121]占成业,邓普珍.山莨菪碱对家兔急性全脑缺血-再灌注损伤期间兴奋性氨基酸释放及生存状况的影响.中国急救医学.1999;19(3):133-135.
    [122]沈成兴,梁春,陈良龙,等.山莨菪碱改善大鼠冠状动脉微循环及其机制的研究.东南大学学报(医学版).2003;22(6):369-372.
    [123]侯建平,刘跃春,陆洪英,等.山莨菪碱对离体兔心脏冠状动脉流量和室颤阈的影响.潍坊医学院学报.1997;19(1):27-28.
    [124]Esberg L,Ren J. The oxygen radical generator pyrogallol impairs cardiomyocyte contractilefunction via a superoxide and p38MAP kinase-dependent pathway. Cardiovasc. Tox.2004;4:375–384.
    [125]丁东红,柳燕,周巧华.山莨菪碱临床应用进展.中国药业.2005;14:80-81.
    [126]周代星,邓普珍.山莨菪碱对急性完全性脑缺血再灌注后脑组织Ca2+、SOD活性及超微结构的影响.急诊医学.1998;7:1.
    [127] Yang P et al.1991. Anti-arrhythmia and nervous system effects of anisodamine. ZhongguoYao Li Xue Bao.12:173–176.
    [128] Chen JM,Gu SL.1988.Anti-arrhythmic effects of anisodamine. Yao Xue Xue Bao.23:857–859.
    [129] Pang Y-H et al.2004. Anisodamine causes the changes of structure and function in thetransmembrane domain of the Ca2+-ATPase from sarcoplasmic reticulum. Biosci.Biotechnol. Biochem.68:126–131.
    [130] Xiu R-J et al. Anisodamine inhibits thromboxane synthesis, granulocyte aggregation andplatelet aggregation. JAMA.1982;247:1458–1460.
    [131] Stiell IG,Hebert PC,Weitzman BN,et a1. High—dose epinephrine in adult cardiacarrest[J].N Eng J Med.1992;327(15):1045-1050.
    [132]丁超,傅向华,李俊峡,等.山莨菪碱对兔急性心肌梗死再灌注后梗死面积的影响.华北国防医药,2008,20(6):12-14.
    [133] ECC Committee, Subcommittees and Task Forces of the American Heart Association.2005American Heart Association Guidelines for Cardiopulmonary Resuscitation and EmergencyCardiovascular Care. Circulation.2005;112(24Suppl):IV1-203.
    [134]孙菁,沈洪.山莨菪碱对心搏骤停大鼠复苏的影响.中国危重病急救医学.2008;20(12):721—723.
    [135]贾立静,陈威等.山莨菪碱对心肺复苏大鼠及心肌超微结构的影响[J].军医进修学院学报.2011;32(11):1147-1149.
    [136]尚祥光,汤彦等.心肺脑复苏中联合应用肾上腺素、山莨菪碱及纳洛酮疗效观察[J].湖北医药学院学报.2010,29(6):529-530.
    [137]蒋崇慧,杨光田,汤彦,等.山莨菪碱在大鼠脑缺血再灌注时对神经元凋亡的影响.中国急救医学.2001;21:103-105.
    [138]占成业,邓善珍.山莨菪碱对家兔急性全脑缺血再灌注期间兴奋性氨基酸释放及生存状况的影响.中国急救医学.1999;19(3):133-135.
    [139]王苓,肖妩,陈喜凤.山莨菪碱与纳洛酮合用在CPR成功后脑复苏中的价值.中国实用神经疾病杂志.2006;9(6):142.
    [140]林惠文,王宏娟.山莨菪碱联合纳洛酮对心肺复苏成功后脑复苏的疗效观察.岭南急诊医学杂志.2008;13(2):87-88.
    [141]谢钢,蒋崇慧,郑伟华等.大剂量山莨菪碱对脑复苏效果的影响.中国急救医学.2002;22[7]:381-382.
    [142]蒋崇慧,邓普珍,谢钢等.心肺脑复苏后患者的生活质量评估及山莨菪碱的干预治疗.中华急诊医学杂志.2003;12(7):444-445.
    [143]逢利,吴扬,臧秀贤等.山莨菪碱对心肺复苏后患者血清NSE和Sl00蛋白水平及神经功能的影响.中国急救医学.2010;30(1):16-18.
    [144]孟凡山.山莨菪碱对心脏骤停大鼠及缺氧/复氧心肌细胞影响的研究[D].北京:军医进修学院,2009.
    [145]贾立静,沈洪,陈威等.山莨菪碱对心肺复苏大鼠心脏结构和心肌微血管血流量变化的影响[J/CD].中华临床医师杂志:电子版.2011;5(10):2896-2899.
    [146] Yin XL,Shen H,Zhang W et al. Inhibition of endoplasm reticulum stress by anisodamineprotects against myocardial injury after cardiac arrest and resuscitation in rats. Am J ChinMed.2011;39(5):853-866.
    [147] Pantazopoulos IN, Xanthos TT, Vlachos I, et al. Use of the impedance threshold deviceimproves survival rate and neurological outcome in a swine model of asphyxial cardiacarrest. Crit Care Med.2012;40(3):861-868.
    [148]高维谊,盛志勇,郭振荣.烧伤早期山莨菪碱对胃肠保护作用的实验研究.解放军医学杂志[J].1995,(2):88-91.
    [149] Kern KB. Coronary perfusion pressure during cardiopulmonary resuscitation. Bailli‘ere’sClin Anaesthesiol.2000;14:591–609.
    [150] Fisher J, Vaghaiwalla F, Tsitlik J, Levin H, Brinker J, Weisfeldt M, Yin F.Determinants and clinical significance of jugular venous valve competence. Circulation,1982,65(1):188-96.
    [151]唐万春、孙士杰主编.心肺脑复苏及心脑血管急诊—从基础科学到临床实践[M].北京科学技术出版社.2008;113-114.
    [152] Werner JA, Greene HL, Janko CL, Cobb LA. Visualization of cardiac valve motion inman during external chest compression using two-dimensional echocardiography.Implications regarding the mechanism of blood flow. Circulation.1981;63(6):1417-1421.
    [153] Higano ST, Oh JK, Ewy GA, Seward JB. The mechanism of blood flow during closedchest cardiac massage in humans: transesophageal echocardiographic observations.MayoClin Proc.1990;65(11):1432-40.
    [154] Porter TR,Ornato JP,Guard CS,Roy VG,Burns CA,Nixon JV. Transesophagealechocardiography to assess mitral valve function and flow during cardiopulmonaryresuscitation. Am J Cardiol.1992;15;70(11):1056-60.
    [155] Paradis NA,Martin GB,Rivers EP,Goetting MG,Appleton TJ,Feingold M,NowakRM. Coronary perfusion pressure and the return of spontaneous circulation in humancardiopulmonary resuscitation. JAMA.1990;263:1106–1113.
    [156] Mair P, Kornberger E, Schwarz B, Baubin M, Hoermann C. Forward blood flowduring cardiopulmonary resuscitation in patients with severe accidental hypothermia. Anechocardiographic study. Acta Anaesthesiol Scand.1998;42(10):1139-44.
    [157] Fagrell B. The relationship between macro-and microcirculation: Clinical aspects. ActaPharmacol Toxicol (Copenh).1986;58(Suppl2):67–72.
    [158] Ditchey RV, Rubio-Perez A, Slinker BK. Beta-adrenergic blockade reduces myocardialinjury during experimental cardiopulmonary resuscitation. J Am Coll Cardiol.1994,24(3):804-812.
    [159] Fries M, Weil MH, ChangYT et al. Microcirculation during cardiac arrest and resuscitation.Crit Care Med.2006;34(12Suppl):S454-457.
    [160] Kouwenhoven WB, Jude JR, Knickerbocker GG. Closed-chest cardiac massage. JAMA.1960;173:1064–1067.
    [161]Crile GW, Dolley DH. An experimental research into the resuscitation of dogs killed byanesthetics and asphyxia. J Exp Med.1906;8:713–724.
    [162]Paradis NA, Martin GB, Rivers EP, et al. Coronary perfusion pressure and the return ofspontaneous circulation in human cardiopulmonary resuscitation. JAMA.1990;263:1106–1113.
    [163]Fagrell B. The relationship between macro-and microcirculation: Clinical aspects. ActaPharmacol Toxicol (Copenh).1986;58(Suppl2):67–72.
    [164]Groner W, Winkelman JW, Harris AG, et al: Orthogonal polarization spectral imaging: Anew method for study of the microcirculation. Nat Med.1999;5:1209–1212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700