用户名: 密码: 验证码:
Petri网的优化协调控制理论及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Petri网作为一种形式建模和系统分析工具,既有直观的图形表示,又可以引入许多数学方法对其性质进行分析,被广泛应用于离散事件系统,如柔性生产制造、交通运输控制、计算机网络等系统中,取得了很好的效果。然而,Petri网在系统性能建模、优化协调等方面的理论还不太成熟,限制了它在事件驱动型调度系统更深、更广层次的应用。本文针对Petri网的优化协调控制理论及其在矿井机车调度系统中的应用进行研究,主要研究工作摘要如下:
     (1)阐释了基于经典排队论和随机Petri网的性能评价方法的局限性,提出基于层次颜色Petri网仿真的性能评价方法,给出经典排队系统向层次颜色Petri模型转换的步骤和规则。通过CPN Tools的Data Collector工具采集系统仿真时的动态模拟数据,并在此基础上形式化定义一些主要性能指标的数值解计算公式,利用一些经典的排队系统和休假排队系统案例进行案例分析,仿真结果表明了所提出的性能评价方法是有效的和准确的。
     (2)根据资源分配Petri网系统的RT-回路理论,分析系统运行中死锁与潜在死锁的行为特点,研究在两类相关资源约束下的无死锁调度条件,提出被控系统满足无死锁调度的充分条件和充要条件,并进行形式化的证明。另外,在无死锁调度的基础上,提出系统无死锁标识的最大设置边界集求解算法,并证明了调度策略在最大标识边界设置下的无死锁性。进一步,设计遗传优化算法,给出具体的编码方案和算法步骤。最后,以三种调度策略下的矿井机车调度系统为例,研究其无死锁优化调度方案,并进行算法仿真,实验结果表明基于Petri网的无死锁优化调度方法是实际可行的。
     (3)通过拓展变迁(组)公平性定义,对混杂Petri网系统中变迁(变迁组)之间公平关系和同步距离的概念进行定义;利用修剪的IB演化图,给出了混杂Petri网中同步距离的计算算法,证明了变迁公平关系判定的充要条件,同时证明了变迁公平关系、同步距离和修剪的IB演化图之间的联系。针对事件驱动型调度系统中不同对象和行为之间协调控制问题,提出基于同步距离的同步协调控制器设计步骤,并进行举例说明。
     (4)针对已有的部分可观系统中故障诊断算法的不足,考虑满足故障诊断条件且仅有部分库所可见的系统设计问题,提出故障定位表和监控库所集的确定算法FLT&MPD,并证明该算法解的存在性条件和正确性,同时指出该算法是多项式复杂度的。进而,给出系统运行状态判别的诊断算法SOSD,通过算法SOSD可以对系统状态进行诊断,若有故障发生则可以准确定位发生的故障类型。给出一个复杂的柔性生产系统的部分可观系统设计,以及相关的故障诊断条件,结果表明了提出的部分可观系统设计方法拓展了已有研究结论。
     (5)将研究的Petri网优化控制协调理论应用于矿井机车调度系统,着重分析了系统的层次颜色Petri网性能建模方法,并通过仿真实验说明了该性能评价模型的有效性;根据基于同步距离的同步协调控制方法设计步骤,给出事件驱动型调度系统中同步协调控制器的定义,并以矿井机车调度系统为例,设计了两类同步协调控制器,实现了机车调度系统中机车运输行为与开采行为的协调,以及保证各类机车发车次数公平性的协调控制;针对矿井机车调度系统中两类典型的故障,通过层次颜色Petri网建立形式化的故障检测与诊断模型,利用在线无二义性的故障诊断算法,给出各种故障进行无二义性诊断的判别条件,从而保障了机车调度系统运行的安全性和可靠性。
Petri Nets, as a formal modeling and analysis tool, not only has visual graphical descriptionability, but also easy to adapt profound mathematical method for properities analysis. It had beenwidely applied in discrete event systems, such as flexible manufacturing systems, transportationcontrol systems, computer networks, etc, and its theory has made a good effect. However, the Petrinets theory in system performance modeling, optimization and coordination still has many immatureaspects, which prevent it from applying to deeper and wider area in the event based dispatchingsystems. In this dissertation, the research works are carried out to resolve some important problemsof optimization and coordination theory based on Petri nets, and their applications in locomotivedispatching system of coal mine. The main works are summarized as follows:
     (1) As the beginning of studies, the dissertation interprets the limitations of the performanceevaluation studies by classical queue theory and stochastic Petri nets, and presents the performanceevaluation methods based on hierarchical colored Petri nets (HCPN) simulation, furthermore theconverting steps and rules from queue systems to HCPN models are given. By using the DataCollector kit in CPN Tools, the dynamic simulation data is collected, and then the performanceindices calculation formulas are defined. Based on the metioned above, several examples of classicalqueue system and queue system with vacations are analyzed, and the simulation results show that theperformance evaluation methods based on HCPN simulation are effective and correct.
     (2) According to the RT-circuit theory of the constructed resource allocation Petri net models,the deadlock and impending deadlock states are analyzed, and then the deadlock-free dispatchingconditions are studied under two correlated resources, the sufficient condition with the necessary andthe sufficient condition are presented and proved. Furthermore, based on deadlock-free dispatching,the maximal makings boundary setting algorithm is proposed, and the deadlock-free property ofdispatching under maximal marking boundary setting is proved. Then, a genetic optimizationalgorithm frame is constructed, and the coding method and algorithm procedures are elaborated indetail. Lastly, based on the mentioned above, the locomotive dispatching system of coal mine underthree control strategies is studied and simulated actually, the exprimental results show that thedeadlock-free optimization method based on Petri nets is feasible.
     (3) By extending the definitions of transitions (transition sets) fair relationships, the concepts offair relationship between transitions (or transition sets) and synchronic distance in hybrid Petri netsare defined, by using pruned IB evlution graph, the synchronic distance determination algorithm isfirst put forward. Then, the sufficient and the necessary conditions for fairness determination areproved, and the relationships among fairness, synchronic distance and the pruned IB evolution graphare certified. As for the coordination control problems occurring in the situations that differentdispatching objects or behaviors synchronize control, the design procedures of synchronizationcoordination controller are given, and some cases are exampled for interpretation for the proposedtheory.
     (4) As for the immature aspects of fault diagnosis algorithms in partially observed systems, thepartially oberseved system design method is considered, which satisfying fault diagnosis conditionsand has only some places can be observed, then the fault location table and monitoring placesdetermination (FLT&MPD) algorithm is constructed, whose correctness and solution existence areproved formally. In the meanwhile, it is pointed that the complexity of the proposed algorithm ispolynomial. Furthermore, the system operating state diagnosis (SOSD) algorithm is presented. Through the SOSD algorithm, the system’s state can be judged, and the occurred fault can belocated correctly. A partially observed system design is exampled for a complex flexiblemanufacture system, and a series of faults diagnosis conditions are listed, the example shows that theproposed partially observed system design method extends the existed studied results.
     (5) By applying the optimization and coordination theory of Petri nets studied in dissertation inthe locomotive dispatching system of coal mine, the performance modeling method is emphaticallyanalyzed firstly. Through actually simulation, the experimental results show that the proposedperformance evaluation method is effective. Secondly, according to the synchronization coordinationcontroller design procedures based on synchronic distance, the definitions of synchronizationcoordination controller in event based dispatching system are formulated, and exampled two kinds ofsynchronization coordination controller in locomotive dispatching system of coal mine, whichrealizes the coordination between locomotive transporting behavior and mining behavior, and thecoordination between different locomotive transport frequency to ensure fair property. Lastly, as fortwo typical faults, the fault detection model is constructed using HCPN, and each fault unambiguousdiagnosis condition is calculated by algorithm proposed, which can ensure the safety and reliabilityof locomotive dispatching system of coal mine.
引文
[1] C. A. Petri. Concepts of Net Theory. Mathematical Foundations of Computer Science:Proceedings of Symposium and Summer School, High Tatras, Sep.3–8,1973:137–146.
    [2]吴哲辉. Petri网导论[M].北京:机械工业出版社,2006.
    [3]袁崇义. Petri网原理与应用[M].北京:电子工业出版社,2005.
    [4]蒋昌俊.离散事件动态系统的PN机理论[M].北京:科学出版社,2000.
    [5] J. Lygeros., C.Tomlin, S. Sastry. Hybrid Systems: Modeling, Analysis and Control[M].Stanford University Press,2008.
    [6] M. Ceska, V. Janousek, T. Vojnar. Object-oriented Petri nets, their simulation and analysis[C].IEEE International Conference on System, Man, and Cybernetics,1998:262-167.
    [7] K. Jensen. Colored Petri Nets. Basic Concepts, Analysis Methods and Practical Use, Volume1,Basic Concepts [M] Monographs in Theoretical Computer Science. Berlin, Heidelberg, NewYork: Springer-Verlag,2nd corrected printing1997.
    [8]林闯.随机Petri网和系统性能评价[M].北京:清华大学出版社,2005.
    [9] R. David, H. Alla. Discrete, Continuous, and hybrid Petri nets(Second edition)[M]. Springer-Verlag Beilin Heidelberg,2010.
    [10] P. Peter, M. Gero, F. Ludger. Distributed Event-Based Systems: An Emerging Community[J].IEEE Distributed Systems Online,2007,8(2):1-3.
    [11] S. Kounev, S. Kai, B. Jean, A.Buchmann. A methodology for performance modeling ofdistributed event-based systems[C]//11th IEEE Symposium on Object Oriented Real-TimeDistributed Computing (ISORC), Orlando, Florida, USA,2010:13-22.
    [12] M. Guido, N. David. A genetic approach for adaptive multiagent control in heterarchicalmanufacturing systems [J]. IEEE Transactions on System, Man and Cybernetics, A,2003,33(5):573-588.
    [13] S. B. Jiang, R. Kumar. Supervisory control of nondeterministic discrete-event systems withdriven events via masked prioritized synchronization[J]. IEEE Transactions on AutomaticControl,2002,47(9):1438-1449.
    [14] Y. J. Zhao, Q. C. Zhao, Q. S. Jia, X. H. Guan, X. R. Cao. Event-based optimization fordispatching policies in material handling systems of general assembly lines[C]//47th IEEEconference on Decision and Control, Cancun, Mexico,2008:2173-2178.
    [15] Q. S. Jia. On solving optimal policies for finite-stage event-based optimization[J]. IEEETransaction on Automatic Control,2011,56(9):2195-2200.
    [16] P. Alex, H. Alex, J. Karel. Modeling and logic control design for production system: a matrixbased approach[C]//3rd IEEE International Conference on Industrial Informatics (INDIN),Perth, Australia,2005:468-473.
    [17] R. O. Baldwin, N. J. Davis, M. F. Scott, E. K. John. Queueing network analysis: concepts,terminology and methods [J]. The Journal of Systems and Software,2003,66(2):99-117.
    [18] L. Brenner, F. Paulo, A. Sales. MQNA-Markovian Queueing Networks Analyser [C]//IEEE11th International Symposium on Modeling, Analysis and Simulation of Computer andTelecommunications Systems (MASCOTS`03), USA,2003:194-199.
    [19] K. Samuel, A. Buchmann. SimQPN—A tool and methodology for analyzing queueing Petrinet models by means of simulation [J]. Performance Evaluation,2006,63:364-394.
    [20]林闯,李雅娟,王忠民.性能评价形式化方法的现状和发展[J].电子学报,2002,30(12A):1917-1922.
    [21]林闯.计算机网络和计算机系统的性能评价[M].北京:清华大学出版社,2001:130-147.
    [22]林闯,魏丫丫.随机进程代数与随机Petri网[J].软件学报,2002,13(2):203-213.
    [23] C. Tobla, D. Lefebvra, P. Thomas, A. El Moudni. Continuous and timed Petri nets for themacroscopic and microscopic traffic flow modeling [J]. Simulation Modeling Practice andTheory,2005,(13):407-436.
    [24] F. Kaakai, S. Hayat, A. El Moudni. A hybrid Petri net-based simulation model for evaluatingthe design of railway transitstations [J]. Simulation Modeling Practice and Theory,2007,(15):935-969.
    [25] G. J. Tsinarakis, N. C. Tsourveloudis, K. P. Valavanis. Modelling, analysis, synthesis, andperformance evaluation of multioperational production systems with hybrid timed Petri nets[J]. IEEE Transactions on Automation Science and Engineering,2006,3(1):29-46.
    [26] L. Wells. Performance Analysis using CPN tools [C]//Proceedings of the1st InternationalConference on Performance Evaluation Methodologies and Tools, USA,2006:1-150.
    [27] H. Cho, T. K. Kumaran, R. A. Wysk. Graph-theoretic deadlock detection and resolution forflexible manufacturing systems [J]. IEEE Transactions on Robotics and Automation,1995,11(3):413-421.
    [28] N. Q. Wu. Necessary and sufficient conditions for deadlock-free operation in flexiblemanufacturing systems using a colored Petri net model[J]. IEEE Transaction on Systems, Manand Cybernetics, C,1999,29(2):192-204.
    [29] N. Q. Wu, M. C. Zhou. Avioding deadlock and reducing starvation and blocking in automatedmanufacturing systems[J]. IEEE Transactions on Robotics and Automation,2001,17(5):658-669.
    [30] M. P. Fanti, M. C. Zhou. Deadlock control methods in automated manufacturing system[J].IEEE Transactions on System, Man and Cybernetic, A,2004,34(1):5-22.
    [31] P. Jonghun, S. A. Receliotis. Deadlock avoidance in sequential resource allocation systemswith multiple resource acquisitions and flexible routings[J]. IEEE Transaction on AutomaticControl,2001,46(10):1572-1583.
    [32] K. Y. XING, M. C. Zhou, H. X. Liu, F. Tian. Optimal Petri-net based polynomial-complexitydeadlock-aviodance policies for automated manufacturing systems[J]. IEEE Transactions onSystems, Man and Cybernetics, A,2009,39(1):188-199.
    [33] H. R. Golmakani, K. M. James, B. Beno. Deadlock-free scheduling and control of flexiblemanufacturing cells using automata theory[J]. IEEE Transaction on Systems, Man andCybernetics, A,2006,36(2):327-337.
    [34] G. Xu, Z. M. Wu. Deadlock-free scheduling strategy for automated production cell[J]. IEEETransactions on Systems, Man and Cybernetics, A,2004,34(1):113-122.
    [35]任磊,王峰,刑科义.基于Petri网的柔性制造系统无死锁遗传调度算法[J].控制理论与应用,2010,27(1):13-18.
    [36]曹政才,余红霞,乔非.基于Petri网与遗传算法的半导体生产线的建模与优化调度[J].电子学报,2010,38(2):340-344.
    [37] A. Yalcin, T. O. Boucher. Deadlock avoidance in flexible manufacturing systems using finiteautomata [J]. IEEE Transaction on Robotics and Automation,2000,16(4):424-429.
    [38]赵振元,肖田元.柔性制造单元的无死锁监控方法[J].计算机集成制造系统,2001,7(5):14-18.
    [39]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2004:1-300.
    [40] M. Dorigo, V. Maniezzo, Colorni. The ant system: optimization by a colony of cooperatingagents [J]. IEEE Transactions on Systems, Man, and Cybernetics, B,1996,26(1):29-24.
    [41] M. Dorigo, L. M. Gambardella. Ant colony system: a cooperative learning approach to thetraveling salesman problem [J]. IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
    [42] J. Kennedy, R. C. Eberhart. Particle Swarm Optimization[C]//IEEE International Conferenceon Neural Networks, Perth, Australia,1995:1942-1948.
    [43] D. W. Wang. Colony location algorithm for combinatorial optimization[C]//IEEE Conferenceon Systems, Man and Cybernetics, Piscataway NJ, IEEE Service Center,2004:1903-1909.
    [44] Q. Z. Zhang, X. S. Ge, Y. Z. Liu. A genetic algorithm for optimal control stretching process ofsolar arrays on spacecraft based on wavelet approximation[J]. Control Theory andApplications,1999,16(6):842-847.
    [45] G. P. Liu, V. Kadirkarmanathan. Multi-objective criteria for neural network structures electionand identification of nonlinear systems using genetic algorithm[J]. IEEE Proceedings ofControl Theory and Applications.1999,146(5):373-382.
    [46] W. Lin, J. G. Frias, D. C. Gause. Hybrid newton-raphson genetic algorithm for the travelingsalesman problem [J]. Cybernetics and System,1995,26(4):387-412.
    [47] C. Y. Lu, J. G. Delgada-frias, W. Lin. A clustering and genetic scheme for large TSPoptimization problems [J]. Cybernetics and Systems,1998,29(2):137-157.
    [48] M. Tadahiko. Multi-objective genetic algorithm and its applications to flow shop scheduling[J]. Computers and Industrial Engineering,1996,30(3):86-93.
    [49] M. Laszlo, S. Mukherjee. A genetic algorithm using hyper-quadtrees for low-dimensionalK-mean a clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(4):533-543.
    [50] L. Gang, M. Thomas, M. McGinnity, G. Prasad. Design for self-organizing Fuzzy NeuralNetworks Based On Genetic Algorithms [J]. IEEE Transactions on Fuzzy Systems.2006,14(6):755-766.
    [51] R. A. Russell. Ant trails-an example for robots to follow[C]//IEEE International Conferenceon Robotics and Automation. Detroit,1999:2698-2703.
    [52] A. W. Israel, L. Michael, M. B. Alfred. Distributed covering by ant-Robots using evaporatingtraces [J]. IEEE Transactions on Robotics and Automation,1999,15(5):918-933.
    [53] B. Alberto, D. C. Stefano, J. Jorge. Event-driven optimal control of integral continuous-timehybrid automata[C]//44th IEEE Conference on Decision and Control,and the EuropeanControl Conference, Stevile, Spain,2005:1409-1414.
    [54] Q. S. Jia. Improved constrained ordinal optimization for simulation-based constrainedoptimization[C]//Joint48th IEEE Conference on Decision and Control and28th ChineseControl Conference, Shanghai, P.R. China,2009:2315-2320.
    [55]刘贤,李建华,李向,陈楠.基于扩展同步Petri网的BPEL建模[J].计算机工程,2011,37(2):57-59.
    [56]张海燕,曾建潮,李临生.交互式多媒体动态同步Petri网模型—扩展的MDSPN[J].太原科技大学学报,2005,26(3):185-189.
    [57]张伟军,魏长青,杨汝清.机器人装配过程任务级控制的同步Petri网方法[J].上海交通大学学报,2001,35(7):1020-1023.
    [58]张伟军,魏长青,杨汝清.机器人装配状态变迁控制的同步Petri网模型[J].机械工程学报,2001,37(4):33-38.
    [59]张伟军,李建军,杨汝清.机器人开放式控制系统软件调度的同步Petri网方法[J].上海交通大学学报,2009,43(11):1775-1779.
    [60] P. J. Ramadge, W. M. Wonham. Supervisory control of a class of discrete event processes[J].Siam Journal on Control and Optimization,1987,25(1):206-230.
    [61] P. J. Ramadge, W. M. Wonham. Modular feedback logic for discrete event system[J]. SiamJournal on Control and Optimization,1987,25(5):1202-1218.
    [62]陆飞华.离散事件系统的混合监控理论[D].浙江大学,浙江杭州,2009.
    [63]王寿光,许振伟.带有不可控变迁的一般不等式约束的Petri网控制器综合[J].上海交通大学学报,2007,41(9):1551-1555.
    [64]罗继亮,吴维敏,董利达,苏宏业,褚健.一类离散事件系统的控制器综合[J].控制理论与应用,2007,24(4):621-624.
    [65]罗继亮,吴维敏,苏宏业,褚健.一类离散事件系统的混合型控制器设计[J].系统工程理论与实践,2006,(12):105-119.
    [66]张瑶瑶,颜钢锋,张森林,刘妹琴.含有不可控变迁的Parikh约束的Petri网控制器综合[J].浙江大学学报(工学版),2006,40(7):1123-1126.
    [67]王向云,张文辉,王鹏,李永超,蔡开元.一种基于监控理论的软件设计方法:状态性质变换方法[J].控制理论与应用,2007,24(2):187-193.
    [68]王丽丽,吴哲辉,方欢.标识-T网中同步距离的计算[J].计算机科学,2008,35(10):100-103,169.
    [69]孙满囤,李俊山,韩先锋.基于扩展计算网的分层动态网格工作流研究[J].系统工程与电子技术,2006,28(3):444-447.
    [70]闫哲,赵文,袁崇义,王立福.基于同步网的工作流过程变动问题研究[J].电子学报,2006,34(2):226-231.
    [71] A. Rosich, E. Frisk, J. Aslund, R. Sarrate, and F. Nejjari. Fault diagnosis based on causalcomputations [J]. IEEE Trans. Syst., Man, Cybern. A, Syst.,Humans,2011, DOI:10.1109/TSMCA.2011.2164063.
    [72] D. Lefebvre and E. Leclercq. Stochastic Petri net identification for thefault detection andisolation of discrete event systems [J]. IEEE Trans. Syst.,Man, Cybern. A, Syst., Humans,2011,41(2):213–225.
    [73] A. Ramírez-Trevino, E. Ruiz-Beltrán, J. Arámburo-Lizárraga, and E. López-Mellado.Structural diagnosability of DES and design of reduced Petri net diagnosers[J] IEEE Trans.Syst., Man, Cybern. A, Syst., Humans,2011, DOI:10.1109/TSMCA.2011.2169950.
    [74] J. Meseguer, V. Puig, and T. Escobet. Fault diagnosis using a timed discrete-event approachbased on interval observers: Application to sewer networks [J] IEEE Trans. Syst., Man, andCybern. A, Syst., Humans,2010,40(5):900–916.
    [75] S. Takai and R. Kumar. Decentralized diagnosis for nonfailures of discrete event systemsusing inference-based ambiguity management [J] IEEE Trans. Syst., Man, Cybern. A, Syst.,Humans,2010,40(2):406–412.
    [76] D. Bertsimas, D. Gamarnik, and J. Tsitsiklis. Stability conditions for multiclass fluid queueingnetworks [J]. IEEE Trans. Autom. Control,1996,41(11):1618–1631.
    [77] H. Chen and D. Yao. Fundamentals of Queueing Networks: Performance, Asymptotics, andOptimization [M]. New York: Springer-Verlag,2001.
    [78] G. Sun, C. Cassandras, and C. Panayiotou. Perturbation analysis of multiclass stochastic fluidmodels [J]. Discrete Event Dyn. Syst.: Theory Appl.,2004,14(3):267–307.
    [79] M. Silva and L. Recalde. On fluidification of Petri net models: from discrete to hybrid andcontinuous models [J] Annu. Rev. Control,2004,28(2):253–266.
    [80] J. Júlvez and R. Boel. A continuous Petri net approach for model predictive control of trafficsystems [J]. IEEE Trans. Syst., Man, Cybern. A, Syst., Humans,2010,40(4):686–697.
    [81] M. Silva, J. Júlvez, C. Mahulea, and C. Vázquez. On fluidization of discrete event models:Observation and control of continuous Petri nets [J]. Discrete Event Dyn. Syst.: Theory Appl.,2011,21(4):1–71.
    [82] L. Recalde, E. Teruel, and M. Silva. Autonomous continuous P/T systems[C]//in Proc. Appl.Theory Petri Nets, vol.1639, Lecture Notes in Computer Science, J. K. S. Donatelli, Ed.,Springer-Verlag,1999:107–126.
    [83] S. Genc, S. Lafortune. Distributed diagnosis of place-bordered Petri nets[J]. IEEETransactions on Automation Science and Engineering,2007,4(2):206-219.
    [84] M. P. Cabasino, A. Giua, C. Seatzu. Fault detection for discrete event systems using Petri netswith unobservable transitions [J]. Automatic,2010,(46):1531-1539.
    [85] M. Dotoli, M.P. Fanti, A.M. Mangini, W. Ulkovich. On-line fault detection in discrete eventsystems by Petri nets and integer linear programming [J]. Automatic,2009,(45):2665-2672.
    [86] C. Mahulea, C. Seatzu, M.P.Cabasino, M. Silva. Fault Diagnosis of discrete-event systemsusing Continous Petri nets [J]. IEEE Transactions on Systems, Man and Cybernetics, A,2012,42(4):970-984.
    [87] F. Basil, P. Chiacchio, G. De Tommasi. On K-diagnosability of Petri nets via integer linearprogramming [J]. Automatica,2012,(48):2047-2058.
    [88] M. Sampath, R.Sengupta, S.Lafortune, K.Sinnamohideen, D.Teneketzis. Diagnosability ofdiscrete event systems [J]. IEEE Transactions on Automatic Control,1995,40(9):1555–1575.
    [89] S. H. Zad, R. H. Kwong, W. M. Wonham. Diagnosis in discrete-event systems: incorporatingtiming information [J]. IEEE Transactions on AutomaticControl,2005,50(7):1010–1015.
    [90] J. Lunze, J. Schroder, State observation and diagnosis of discrete-event systems described bystochastic automata [J]. Discrete Event Dynamic Systems,2001,11(4):319–369.
    [91] R. Debouk, S. Lafortune, D. Teneketzis. Coordinated decentralized protocols for failurediagnosis of discrete event systems [J]. Discrete Event Dynamic Systems,2000,10(1):33–86.
    [92] A. Paoli, S.Lafortune. Safe diagnosability for fault-tolerant supervision of discrete-eventsystems [J]. Automatica,2005,41(8):1335–1347.
    [93]唐应辉,唐小我.排队论—基础与应用[M].电子科技大学出版社,2000.
    [94]殷保群,奚宏生,周亚平.排队系统性能分析与Markov控制过程[M].合肥:中国科学技术大学出版社,2004.
    [95]田乃硕.休假随机服务系统[M].北京:北京大学出版社,2004.
    [96] R. O. Baldwin, N. J. Davis IV, S. F. Midkiff, John E Kobza. Queueing Network Analysis:Concepts, Terminology and Methods [J]. The Journal of Systems and Software (S0164-1212),2003,66(2):99-117.
    [97] L. Brenner, P. Fernandes, A. Sales. MQNA-Markovian Queueing Networks Analyser [C]//IEEE11th International Symposium on Modeling, Analysis and Simulation of Computer andTelecommunications Systems (MASCOTS`03). USA: IEEE,2003:194-199.
    [98]余玅妙,唐应辉.离散时间有限缓冲空间GI/Geom/1/N工作休假排队系统稳态概率算法及性能分析[J].系统工程理论与实践,2009,29(9):99-107.
    [99] WOLFFGANG BISCHOF. Analysis of M/G/1-queue with setup times and vacations undersix different service disciplines [J]. Queueing Systems,2001,39:265-301.
    [100] Wei Sun, Pengfei Guo, Naishuo Tian. Equilibrium threshold strategies in observable queueingsystems with setup/closedowm times [J].Central European Journal of Operation Research,2010,18:241-268.
    [101] Zhe G. Zhang. Analysis of queueing system with synchronous single vacation for someservers [J]. Queueing Systems,2003,45:161-175.
    [102] Zhe G. Zhang, Naishuo Tian. Analysis on queueing systems with synchronous vacations ofpartial servers [J]. Performance Evaluation,2003,52:269-282.
    [103] Chuen-Horng Lin, Jau-Chuan Ke. Multi-server system with single working vacation [J].Appiled Mathematical Modelling,2009,33:2967-2977.
    [104] N. S. Tian, Zhe G. Zhang. A two threshold vacation policy in multiserver queueing systems [J].European Journal of Operational Reasearch,2006,168:153-163.
    [105] X. L. Xu, Zhe G. Zhang. Analysis of multi-server queue with a single vacation (e, d)-policy[J]. Performance Evaluation,2006,63:825-838.
    [106]连露,吴云江.带启动时间的同步多重休假的GI/M/c排队[J].运筹与管理,2010,19(4):85-94.
    [107]朱翼隽,潘小春,胡彬. N策略带启动时间的Geom/Geom/1工作休假排队[J].应用数学与计算数学学报,2010,24(1):25-34.
    [108]张丽媛,马占友.基于仿真实验的休假Geom/G/1排队的性能分析[J].数学的实践与认识,2010,40(6):151-154.
    [109] N. Gharbi, M. Ioualalen. GSPN analysis of retrial systems with server breakdowns and repairs[J]. Appiled Mathematics and Computation,2006,174:1151-1168.
    [110] N. Gharbi, C. Dutheillet, M. Ioualalen. Colored stochastic Petri nets for modeling andanalysis of multiclass retrial systems [J]. Mathematic and Computer Modelling,2009,49:1436-1448.
    [111] N. Gharbi, M. Ioualalen. Numerical investigation of Finite-Source Multiserver System withDifferent Vacation Policies [J]. Journal of Computational and Applied Mathematics,2010,234:625-635.
    [112] O. Gemikonakli, E. Ever, A. Kocyigit. Approximate Solution for Two Stage Open Networkswith Markov-modulated Queues Minimizing the State Space Explosion Problem [J]. Journalof Computational and Applied Mathematics,2009,223:519-533.
    [113] S. Kounev, A. Buchmann. SimQPN—A tool and methodology for analyzing queueing Petrinet models by means of simulation [J]. Performance Evaluation (S0166-5316),2006,63:364–394.
    [114]朱连章,隋瑞升,孔莹莹.基于CPN Tools的性能评价仿真研究[J].微计算机应用,2008,29(4):78-81.
    [115]朱连章,张华.基于CPN的排队网模型分析方法[J].系统仿真学报,2009,21(23):7377-7380,7385.
    [116] P. Peter, M. Gero, F. Ludger. Distributed Event-Based Systems: An Emerging Community [J].IEEE Distributed Systems Online,2007,8(2):1-3.
    [117] S. Kounev, S. Kai, B. Jean, A. Buchmann. A methodology for performance modeling ofdistributed event-based systems[C]//11th IEEE Symposium on Object Oriented Real-TimeDistributed Computing (ISORC), Orlando, Florida, USA,2010:13-22.
    [118] M.Guido, N.David. A genetic approach for adaptive multiagent control in heterarchicalmanufacturing systems [J]. IEEE Transactions on System, Man and Cybernetics, A,2003,33(5):573-588.
    [119] S. B. Jiang, R. Kumar. Supervisory control of nondeterministic discrete-event systems withdriven events via masked prioritized synchronization [J]. IEEE Transactions on AutomaticControl,2002,47(9):1438-1449.
    [120] Y. J. Zhao, Q. C. Zhao, Q.S. Jia, X. H. Guan, X. R. Cao. Event-based optimization fordispatching policies in material handling systems of general assembly lines[C]//47th IEEEconference on Decision and Control, Cancun, Mexico,2008:2173-2178.
    [121] Q. S. Jia. On solving optimal policies for finite-stage event-based optimization [J]. IEEETransaction on Automatic Control,2011,56(9):2195-2200.
    [122] P. Alex, H. Alex, J. Karel. Modeling and logic control design for production system: a matrixbased approach[C]//3rd IEEE International Conference on Industrial Informatics (INDIN),Perth, Australia,2005:468-473.
    [123] A. M. Hagalisletto, J. Bj rk, I. C. Yu, P. Enger. Constructing and Refining Large-ScaleRailway Models Represented by Petri Nets [J]. IEEE Transactions on System, Man, andCybernetics, C, Applications and Reviews,2007,37(4):444-460.
    [124] L. Ferrarini, L. Piroddi. Modeling and Control of Fluid Transportation Operations inProduction Plants with Petri Nets [J]. IEEE Transactions on Control System Technology,2008,16(5):1090-1098.
    [125] W. J. Knottenbelt, S. Zertal, P. G. Harrison. Performance analysis of three implementationstrategies for distributed lock management [J].Computer Digital Technology,2001,148(4):176-187.
    [126] C. Mahulea, C. Seatzu, M. P. Cabasino, M. Silva. Fault Diagnosis of discrete-event systemsusing Continous Petri nets. IEEE Transactions on Systems, Man and Cybernetics, A,2012,42(4):970-984.
    [127] M. Zhou, F. Dicesare. Petri net synthesis for discrete event control of manufacturing system.Norwell, MA: Kluwer,1993.
    [128] F. Basile, A. Giua, C. Seatzu. Petri net control using event observers and timing information.Proceedings of41th IEEE Conference on Decision Control,2002:787-792.
    [129] M. P. Cabasino, A. Giua, M. Pocci, C. Seatzu. Discrete event diagnosis using labeled Petrinets: An application to manufacturing systems. Control Engerneeing and Practice,2011,19(9):989-1001.
    [130] A. Giua, F. DiCesare, M. Silva. Generalized mutual exclusion constraints on nets withuncontrollable transitions. Proceedings of IEEE International Conference on System, Manand Cybernetics,1992:974-979.
    [131] K. Yamalidou, J. Moody, M. Lemmon, P. Antsaklis. Feedback control of Petri nets based onplace invariants. Automatica,1996,32(1):15-28.
    [132] F. B. Talbot. Resource-constrained project scheduling with time resource tradeoffs: thenonpreemptive case[J]. Manage Science,1982,28(10):1197–210.
    [133] B. Gavish, H. Pirkul. Algorithms for multi-resource generalized assignment problem [J].Manage Science1991,37(6):695–713.
    [134] J. P. Stinson. A branch and bound algorithm for a general class resource-constrainedscheduling problem [D]. University of North Carolina, Chapel Hill, NC,1976.
    [135] J. K. Lee, Y. D. Kim. Search heuristics for resource constrained project scheduling [J]. Journalof Operation Resource Society,1996,47(5):678–89.
    [136] H. ZHANG, H. LI, C. M. Tam. Particle swarm optimization for resource-constrained projectscheduling [J]. International Journal of Project Management,2006,(24):83-92.
    [137] M. A. Al-Fawzan, M. Haouari. A bi-objective model for robust resource-constrained projectscheduling [J]. Internation Journal of Production Economics,2005,(96):175-187.
    [138] M. LU, Hoi-Ching Lam, F. DAI. Resource-constrained critical path analysis based on discreteevent simulation and particle swarm optimization [J]. Automation in Construction,2008,(17):670-681.
    [139] Kuo-Ching Ying, Shih-Wei Lin, Zne-Jung Lee. Hybrid-directional planning: improvingimprovement heuristics for scheduling resource-constrained projects [J]. International Journalof Advanced Manufacturing Technology,2009,(41):358-366.
    [140] M. Mika, G. Waligora, J. Weglarz. Tabu search for multi-mode resource-constrained projectscheduling with schedule-dependent setup times [J]. European Journal of OperationalResearch,2008,(187):1238-1250.
    [141]寿涌毅,傅奥.多目标资源受限项目调度的多种群蚁群算法[J].浙江大学学报(工学版),2010,44(1):51-55.
    [142]廖晶静,王明哲,倪枫,郭法滨.大型Petri网模型最小trap(siphon)集合的快速求解算法[J].系统工程与电子技术,2010,32(8):1766-1770.
    [143]李玉良.矿井机车监控系统[M].中国矿业大学出版社,2003:14-24.
    [144]陆阳,郭智奇,韩江洪,杨晴晴.矿井机车运输监控系统调度联锁过程的Petri网建模[J].煤炭学报,2007,32(11):1216-1223.
    [145] F. Balduzzi, A. Giua, G. Menga. First-order hybrid Petri nets: a model for optimization andcontrol [J]. IEEE Transactions on Robotics and Automation (S1042-296X),2000,16(14):382-399.
    [146] I. Demongodin, N. T. Koussoulas. Differential Petri nets: representing continuous systems indiscrete event world [J]. IEEE Transactions on Automatic Control(S0018-9286),1998,43(4):573-579.
    [147] I. Demongodin, F. Prunet. Batches Petri nets[C]//Proc. of Computer in Design, Manufacturingand Production, Pairs, France,1993. France: IEEE Compeuro,1993:29-37.
    [148]廖伟志,古天龙.基于一种新型混杂Petri网的混杂系统建模与控制[J].控制与决策,2007,22(4):366-372.
    [149]廖伟志,古天龙.一种新的混杂Petri网可达性分析方法[J].小型微型计算机系统,2009,30(8):1651-1655.
    [150]赵义军,王培良.最大速度恒定的连续Petri网(CCPN)的性质及判定方法[J].系统工程学报,2000,15(1):107-111.
    [151]叶志宝,赵义军,董焕河.最大速度变化的连续Petri网(VCPN)的动态演变及性质判定[J].计算机研究与发展,2002,39(3):330-334.
    [152]卢燕俊,戴华平.城市交通网络的混杂Petri网建模[J].浙江大学学报(工学版),2007,41(6):930-933.
    [153]杨欣,杨蒲,费树岷.基于资源配置混杂Petri网的混杂系统生产过程建模[J].控制与决策,2009,24(12):1831-1835.
    [154]叶阳东,程少芬,王旭,贾利民.基于一种混合Petri网的列车运行系统的建模与分析[J].铁道学报,2009,31(5):42-49.
    [155] N. Q. WU, F. CHU, C. B. CHU, M. C. ZHOU. Hybrid Petri net modeling and schedulabilityanalysis of high fusion point oil transportation under tank grouping strategy for crude oiloperation in refinery [J]. IEEE Transactions on Systems, Man and Cybernetics, C,2010,40(2):159-175.
    [156] D. F. Angela, G. Davide, S. Nicola. Urban traffic control structure based on hybrid Petri nets[J]. IEEE Transactions on Intelligent Transportation Systems,2004,5(4):224-237.
    [157] D. Mariagrazia, M.P. Fanti, I. Giorgio, M. M. Agostino. A first-order hybrid Petri net modelfor supply chain management [J]. IEEE Transactions on Automation Science and Engineering,2009,6(4):744-758.
    [158] K. Fateh, H. Said, E. M. Abdellah. A hybrid Petri nets-based simulation model for evaluatingthe design of railway transit stations [J]. Simulation Modelling Practice and Theorey,2007,15:935-969.
    [159]廖伟志,古天龙,王汝凉.区间速率连续Petri网模型行为分析研究[J].小型微型计算机系统,2006,27(8):1490-1494.
    [160] C. G. Cassandras, S. Lafortune. Introduction to discrete event systems (2ndedition)[M].Springer, New York,2008.
    [161] S. L. Chung. Diagnosis PN-based models with partial observable transitions [J]. InternationalJournal of Computer Integrated Manufacturing,2005,(18):158-169.
    [162] C. N. Hadjicostis, G. C. Verghese. Monitoring discrete event systems using Petri netembeddings [M]. In: Application and Theory of Petri nets (Series Lecture Notes in ComputerScience,(1639)),1999:188-207.
    [163] Y. Wu, C. N. Hadjicostis. Algebraic approaches for fault identification in discrete-eventsystems [J]. IEEE Transactions on Automatic Control,2005,50(12):2048-2055.
    [164] A. Aghasaryan, E. Fabre, A. Benveniste, R. Boubour, C. Jard. Fault detection and diagnosis indistributed systems: An approach by partially stochastic Petri nets[J]. Discrete Event DynamicSystem: Theory and Applications,1998,(8):203-231.
    [165] A. Benveniste, E. Fabre, S. Harr, C. Jard. Diagnosis of asynchronous discrete-event systems:A net unfolding approach [J]. IEEE Transactions on Automatic Control,2003,48(5):714-727.
    [166] A. Ramírez-Treviňo, E. Ruiz-Beltr n, I. Rivera-Rangel, E.L pez-Mellado. Online faultdiagnosis of discrete event systems: A Petri net-based approach [J]. IEEE Transactions onAutomation Science and Engineering,2007,4(1):31-39.
    [167] A. V. Ramesh, D.W. Twigg, U.R. Sandadi, T.C.Sharma. Reliability analysis of systems withoperation-time management [J]. IEEE Transactions on Reliability,2002,51(1):39-48.
    [168] J. Jorge, R. K. Boel. A continous Petri net approach for model predicitive control of trafficsystems [J]. IEEE Transactions on Systems, Man, and Cybernetics, A,2010,40(4):686-697.
    [169] S. Z. Hashtrudi, R.H. Kwong, W.M. Wonham. Fault detection in discrete-event systems:Framework and model reduction [J]. IEEE Transaction on Automatic Control,2003,48(7):1199-1212.
    [170] D. Lefebvre, C. Delherm. Diagnosis of DES with Petri net models[J]. IEEE Transactions onAutomation Science and Engineering,2007,4(1):114-118.
    [171] Y. Ru, C. H. Hadjicostis. Fault detection in discrete event systems modeled by partiallyobserved Petri nets [J]. Discrete Event Dynamic Systems,2009,(19):551-575.
    [172] S.Jiang, R. Kumar. Failure diagnosis of discrete-event systems with linear-time temporallogical specificiations [J]. IEEE Transaction on Automatic and Control,2004,49(6):934-945.
    [173] D. Lefebvre, E. Leclercq. Stochastic Petri net identification for the fault detection andisolation of discrete event systems [J]. IEEE Transactions on System, Man and Cybernetic, A,2011,41(2):213-225.
    [174] G. Jiroveanu, R. K. Boel. A distributed approach for fault detection and diagnosis based ontime Petri nets [J]. Mathematics and Computers in Simulation,2006,(70):287-313.
    [175] J. Sun, S.Y. Qin, Y.H. Song. Fault diagnosis of electric power systems based on fuzzy Petrinets [J]. IEEE Transactions on Power Systems,2004,19(4):2053-2059.
    [176] M. C. Zhou, F. Dicesare. Petri net synthesis for discrete event control of manufacturingsystem [M]. Norwell, MA: Kluwer,1993.
    [177] F. Basile, A. Giua, C. Seatzu. Petri net control using event observers and timinginformation[C]//Proceedings of41th IEEE Conference on Decision Control,2002:787-792.
    [178] M. P. Cabasino, A. Giua, M. Pocci, C. Seatzu. Discrete event diagnosis using labeled Petrinets: An application to manufacturing systems[J]. Control Engineering and Practice,2011,19(9):989-1001.
    [179] A. Giua, F. DiCesare, M. Silva. Generalized mutual exclusion constraints on nets withuncontrollable transitions[C]//Proceedings of IEEE International Conference on System, Manand Cybernetics,1992:974-979.
    [180] K. Yamalidou, J. Moody, M. Lemmon, P. Antsaklis. Feedback control of Petri nets based onplace invariants [J]. Automatic,1996,32(1):15-28.
    [181]古天龙,周衿畅,周春晖.离散事件系统的一种N步在线监控策略[J].自动化学报,1997,23(3):404-407.
    [182]王飞,胡奇英.离散事件系统的混合分散监控[J].控制理论与应用,2005,22(2):277-280.
    [183]徐泽洪,岳强.车站信号计算机联锁控制系统—原理与应用[M].中国铁道出版社,2009:1-74.
    [184]张华,孙洋.道岔状态监测系统的研究[J].铁路通信信号,2008,44(11):7-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700