用户名: 密码: 验证码:
锈蚀对低碳钢疲劳寿命及裂纹扩展速率影响的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属构件因疲劳破坏是造成构件失效的最普遍、最常见的形式之一。尤其在工程中应用十分普遍的低碳钢,由于服役环境复杂,极易发生锈蚀现象,更易发生破坏,其个别结构的破坏往往造成灾难性的巨大损失。因此研究锈蚀对低碳钢疲劳寿命及裂纹扩展速率的影响具有巨大的现实意义。
     本文主要是通过在中、外大量文献对疲劳裂纹及扩展研究的基础上,采用电化学快速锈蚀模拟低碳钢在自然环境下的锈蚀,制作疲劳光滑试样和紧凑拉伸(C(T))试样,研究其在不同锈蚀率下疲劳寿命及裂纹扩展(da/dN)行为,具体研究内容和结果如下:
     1、本文开发的电化学快速锈蚀试验装置可以在较短的时间内成功模拟低碳钢在自然条件下的锈蚀;本文采用对锈蚀后试件表面进行“镀铬色自动喷漆”的处理在试验过程中可以使裂纹更加清晰的观察记录;结果证明了这一方法的有效性。
     2、在疲劳寿命试验中,5%锈蚀率试件的萌生寿命大大低于未锈蚀试件的萌生寿命,萌生寿命和疲劳寿命大约降低了55%,疲劳极限大大降低;由图5-5知锈蚀对低周疲劳寿命的影响大于对高周疲劳寿命的影响。
     3、本文提出的da/dN=Ca~k裂纹扩展速率公式可以较好地描述低碳钢基材在不同锈蚀率下的疲劳裂纹扩展规律。
     4、锈蚀率对疲劳裂纹扩展速率影响不大,主要是因为裂纹扩展过程中在裂纹尖端会形成塑性区,而塑性区的粗晶纤维组织可促进氧化物的产生并诱发裂纹闭合现象的发生,再加上锈蚀促进裂尖塑性变形,必然导致裂尖后部的塑性延伸量增大,从而使裂纹闭合程度得到提高。同时,锈蚀必然导致裂纹面粗糙,而裂纹面粗糙可以提高材料的疲劳断裂阻力。锈蚀率对疲劳裂纹扩展速率影响不大是以上因素共同作用的结果。
     5、由疲劳寿命试验和裂纹扩展试验可以看出:裂纹萌生寿命占到了疲劳寿命的主要部分,可以达到90%,而裂纹扩展寿命只占很小一部分;锈蚀主要影响的是裂纹萌生寿命,而对裂纹产生后的裂纹扩展速率影响并不明显。
That metal component are failed because of the fatigue failure is one of the most popular and common form. The low-carbon steels are used widely in the engineering. They are corroded and damaged easily because of the complex service environment. And the local failure often leads to a huge loss of catastrophic damage. So it will have the great practical significance that the influence of the corrosion on the fatigue life and crack growth rate of the low-carbon steels.
     Based on the research on fatigue cracks and crack propagation in the vast literature, a rapid electrochemical corrosion is used to simulate the corrosion the low carbon steels in the natural environment, and to make the fatigue and smooth specimens and compact tension specimens. And their rate of corrosion in different fatigue life and the behavior of crack growth are researched. The specific studies and results are as followings:
     The rapid development of the electrochemical corrosion testing device developed in this paper can simulate corrosion of the low-carbon steels under natural conditions in a short time. The treatment technology of "chrome-automatic painting" on the surface of the corroded specimens will make crack more clear to be observed and recorded in the test. The results prove that these methods are effective.
     The crack growth formula (da)/(dN)=Ca~k proposed can describe the fatigue crack growth law of the low carbon substrate under various corrosion rates.
     Corrosion rate has little effect on the fatigue crack growth. The plastic zone appears at the crack tip during the crack growing. Coarse grain fibrous tissue in plastic zone promotes the production of Oxide and appears the phenomenon of the fatigue crack closure, and plastic deformation appears because of corrosion. All of above result in the increase of the plastic extension amount at the crack tip and the extent of crack closure. Meantime, the resistance of fatigue fracture is improved by the roughness of the crack surface which caused by the corrosion. The little effect of the corrosion rates on the fatigue crack growth rate is the result of above factors.
     Experimental research on fatigue life and crack growth shows that crack initiation life is the main part of Fatigue Life,can each to 90%,while crack propagation life is a very little part. Corrosion has great influence on crack initiation life and no obvious effect on crack Growth Rate
引文
[1](美)S.Suresh.王中光等译.李家宝校。材料的疲劳[M].国防工业出版社,1992.
    [2]王栓柱.金属疲劳[M].福建科学技术出版社,1985.P12-18.
    [3]高镇同.疲劳可靠性[M]。北京航空航天大学出版社,2005.
    [4]H.O.Fuchs and Stephens.Metal fatigue in engineering[M],1980,P1-3
    [5]Frost.N.E,Marsh,K.I.& Pook,L.E Metal Fatigue Oxford Clarendon Press[J],1974.
    [6]Sneddon,I N.The distribution of stress in the neighborhood of a crack in an elastic solid [J].Proc.Roy.Soc.Series A,187,22 9-260,1946.
    [7]Richards,C.E.&Lindley T.C.The influence of stress intensity and microstructure on fatigue crack propagation in ferrite materials[J].Engineering Fracture Mechanics 4951-78,1972.
    [8]Laird.C.The influence of metallurgical structure on the mechanisms of fatigue crack propagation[J].In Fatigue Crack Propagation,Special Technical Publication 4 15,pp 131 -68.Philadelphia:The American Society for Testing and Materials.1967
    [9]R.A.Smith.Thirty Years of Fatigue Crack Growth-an Historical Review,in " Fatigue Crack Growth"[J],Edited by R.A.Smith,Pogrom on Press,Oxfid,1984,pp.1-16.
    [10]Forman R.G.,Keamey,V.E.& Engle.R.M.Numerical analysis of crack propagation in cyclic-loaded structures[J].Journal of Basic Engineering89459-64.
    [11]M.O.Specimen,Fatigue Crack Growth at High Temperatures,in "High Temperature Materials in Gas Turbines" Proc.Syrup[J].Brown Bovril Central Research Laboratories,Baden,Switzerland,March 1973,pp.207-255.
    [12]Tiaras.S,Tanaka K.& Hashanah.M.Grain size effect on crack nucleation and growth in long-life fatigue of low steel.In Fatigue Mechanisms[J].Special Technical Publication675.pp.13 5-73.Philadelphia:American Society for Testing and Materials.
    [13]Matthias,C.,M6canique et m6canismes de la dissertation par fatigue,dens La fatigue desmateriaux ends structures[J],Les Presses Dells 'University De Montreal,1 981,16 3-200.
    [14]Masounave,I,Bail on,J-P.et Dickson,J.L,Les Lois de la dissertation par fatigue[J],lbid,201- 236.
    [15]Okoboji,T.ASTM STP675[J].1979,683-706
    [16]Clark,W G.,Jr.,Engine Fractal Mesh[J],1971,2(2),287-299.
    [17]Suzuki,H.& Mc Emily,A.J.(1979).Microstructures effects on fatigue crack growth in low carbon steels[J].Metallurgical Transactions 10A,475-81.
    [18]Zheng X.L,Yan J.H.,Zhao K.Crack growth rate and cracking velocity in fatigue for a class of ceramics[J].Theoretical and Applied Fracture Mechanics32(1999)65-73.
    [19]Mutoh Y.,Takahashi M.and Takeuchi M.Fatigue crack growth in several ceramic materials[J].Fatigue& Fracture of Engineering Materials & Structures,Vo 116,No8,pp875-890,1993.
    [20]Liu,S.Y.,Chen,I.W.& Tine,T.Y Fatigue-crack growth of silicon-nitride at 1400Degrees C-A novel fatigue-induced crack-tip bridging phenomenon[J].Journal of the American Ceramic Society77,137-42,1994.
    [21]Ramamurthy,U.,Hansom,T.& Suresh,S.mechanisms of high-temperature crack growth in monolithic and Sic-reinforced Si3N4 under static and cyclic loads[J].Journal of the American Ceramic Society77,2985-99,1994.
    [22]Deny,N.,Society,D.F & Hsiao,K.J.Modeling static and cyclic fatigue in ceramics containing a viscous grain boundary phase[J].Alta Metallurgical ET M aterialia43,2163-75,1995.
    [23]王永廉.对确定疲劳裂纹扩展理论门槛值方法的评介.南京工程学院学报(社会科学版),2002 Vol.2 No.01.
    [24]徐芝纶.《弹性力学》[M].高等教育出版社,2002.
    [25]范天佑.《断裂力学基础》[M].江苏科学技术出版社,1978.
    [26]中国航天研究院.《应力强度因子手册》[M].科学出版社,1993.
    [27]王荣.《金属材料的疲劳腐蚀》[M].西北工业大学出版社,2006。
    [28]中华人民共和国国家标准.金属材料疲劳裂纹扩展速率试验方法GB/T 6398-2000[S],2000.
    [29]郑修麟.工程材料的力学行为[M].西安:西北工业大学出版社,2004.
    [30]郭海丁.,邬华芝,高德平,TC4钛合金焊接接头疲劳性能实验研究[J].理化检验.物理分册。2002年12期。
    [31]陈琳.材料强度的统计性质[J].国外石油机械,Vol.6(1),1995:71-76.
    [32]R.K.Nalla,I.Altenberger,U.Noster b,G.Y.Liu,B.Scholtes,R.O.Ritchie,On the influence of mechanical surface treatments~*/deep rolling and laser shock penning/on the fatigue behavior of Ti_/6A1_/4V at ambient and elevated temperatures[J].Materials Science and Engineering A355(2003)216_/230.
    [33]王猛等.轻金属材料加工手册(下)[M]北京:冶金工业出版社,1980:392-430.
    [34]肖代红,王健农,陈世朴,丁冬雁.铈对高Cu:Mg比率AI-Cu-Mg合金组织和耐热性能的影响[J].中国稀土学报,2003,21(5):264-268.
    [35]林钢,林慧国,赵玉涛 铝合金实用手册[M].北京:机械工业出版社,2006.
    [36]李超,金属学原理.哈尔滨工业大学出版社[M]。1989-321.
    [37]Polmear I J.Role of trace elements in aged Aluminum alloys[J].Materials science Forum,1987,13/4:195-214.
    [38]Hongwei Tang,Research on Fatigue S-N Curves Of Corrosion-Damaged Reinforcement [J],Key Engineering Materials.2006.
    [39]ASME Boiler and Pressure Vessel Code[S].Section Ⅺ,Appendix A,2001,Article A -3000,371 -389.
    [40]Blackburn P R.and Rana M.D.Acoustic Emission Testing and Structural Evaluation of Seamless.Steel Tubes in Compressed Gas Service[J].Pressure Vessel Technology.1986,108(2):234-240.
    [41]T.R.Fabis,P.K.Liaw and J.D.Landes.Computer-Controlled Fatigue Crack Growth Rate Testing On Bend in a Corrosive Environment[J].Environment Sensitive Fracture:Evaluation and Comparison of Test Methods.1984:470-483.
    [42]Barsom.J.M.Effect of Cyclic Stress Form on Corrosion -Fatigue Crack Propagation Below KISCC in a High Yield Strength Steel[J].National Association of Corrosion Engineers.1972:424- 436.
    [43]Stewart,A.T.The Effect of Hydrogen on Fatigue Crack Propagation in Steels[J].In proceedings,Mechanisms of Environment Sensitive Cracking of Materials.University of Survey,Guildford,4-7April 1977,400-411.
    [44]布洛克D著.工程断裂力学基础[M].王克人,何明元,高桦译.北京:科学出版社,1980.
    [45]NakasaK,ShimizuT.Effects of hydrogen-charging on the fatigue crack initiation and propagation behavior of Ti-15 pct V-3 pct Cr-3 pct A1-3 pct Snalloy[J].JapanInstitute of Light Metals,1995,45(11):643-648.(in Japanese)
    [46]ASTM E647-1999 Standard test method for measurement of fatigue growth rates[S].Philadelphia:American Society for Testing and Materials,1999.
    [47]Sarrazin-Bandoux C,Lestrerlin S,Petit J.Atmospheric influence on fatigue crack propagation titanium alloys at elevated temperature[C].Proceedings of the 27th National Symposium on Fatigue and Fracture Mechanics,West Conshohocken,PA ASTM Special Technical Publication No1297,1997.117-139.
    [48]邱海,李广铎.应力比R对09CuPCrNi钢焊接接头疲劳裂纹扩展门槛值△K_(th)的影响[J].焊接学报,1993,14(1):24-29.
    Qiu Hai,Li Guangduo.Influence of stress ratio r on threshold value △K_(th)of fatigue crack propagation for welded joints of 09CuPCrNi steel[J].Journal of Welding,1993,14(1):24-29.(in Chinese)
    [49]金属材料轴向等幅低循环疲劳试验方法[S].GB/T 15248-94中华人民共和国国家标准.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700