用户名: 密码: 验证码:
ZnO-1.1TiO_2微波介质陶瓷的水热—固相法合成及低温烧结研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微波技术的高速发展,需要具有低温烧结的高性能的微波介质材料来满足微波元器件微型化发展要求。为满足此要求,利用低温共烧陶瓷(Low temperature cofired ceramic,LTCC)技术设计制造片式多层微波器件已成为当今的研究热点。低温共烧陶瓷以其优异的电子、机械、热学特性,已成为未来电子元件集成化、模组化的首选方式,在全球发展迅速,广泛用于基板、封装及微波器件等领域。ZnTiO3陶瓷具有介电常数高、介电损耗低、频率温度系数小等特点,如能提高钛酸锌陶瓷中ZnTiO3相的热稳定性,并和LTCC技术制造工艺匹配,将是理想的LTCC介质材料。
     本文采用水热法合成ZnO-TiO2前驱体氧化物,并以此为原料通过传统氧化物固相煅烧法合成ZnO-1.1TiO2。实验发现,180℃反应8h、填充度为80%的水热条件下合成的物料,其合成偏钛酸锌的最佳温度为800~850℃。钛酸锌陶瓷的致密化行为主要发生在1020~1070℃。
     在此基础上,我们分别添加V2O5-Bi2O3(简写为VB),CuO-V2O5(简写为CV)及CuO-V2O5-Bi2O3(简写为CVB),并利用X射线衍射(XRD)、扫描电镜(SEM)等技术手段研究了不同烧结温度下六方相ZnTiO3的热稳定性、显微形貌特征及微波介电性能等。结果表明:添加了0.5wt%V2O5-Bi2O3的ZnO-1.1TiO2陶瓷,谐振频率温度系数曲线经过零点,添加0.5wt%VB样品的微波介电性能为:εr≈25.3,Qf≈20860GHz,τf≈+2ppm/℃。CuO或V2O5的加入并没有影响钛酸锌陶瓷的相组成,870℃烧结添加CV样品的微波介电性能为:εr≈28,Qf≈20000GHz,τf≈+6ppm/℃。添加CuO-V2O5-Bi2O3能够抑制钛铁矿相ZnTiO3的分解,具有很好的降温作用,830℃烧结掺杂2wt%CVB的陶瓷的体积密度最大,为理论密度的98.8%,微波介电性能为:εr=30,Qf=33460GHz,τf=6ppm/℃。
As the rapid development of microwave technology, high performance microwave dielectric ceramics, which can be sintered at low temperature, are required by the microminiaturization of components. In order to fulfill these requirements, design and manufacture of multi-chip microwave components using low temperature cofired ceramics technology has become a research hotspot now. LTCC by its excellent electronic, machinery, thermal properties, has become the electronic components intergrated,modular preferred way, in the global development of rapid,widely used for substrate,packaging,and microwave devices and other fields.ZnTiO3 ceramics behaves high dielectric constant, low dielectric loss and stable temperature coefficient of resonant frequency, if can improve the thermal stability ZnTiO3 and with the LTCC technology manufacture craft match, will be the ideal LTCC dielectric materials.
     In this thesis,ZnO-TiO2 composite oxide were prepared by hydrothermal method, and synthesizes ZnO-1.1TiO2 take this as raw material through conventional mixed-oxide method. It has been found experimentally that calcining the powder at different temperature after hydrothermal reaction at 180℃,8h and volumetric rate of 80%,the optimum synthesis temperature of zinc titanate was 800~850℃. Zinc titanium ceramic densification behavior mainly occurred in the 1020~1070℃.
     On this basis, doped separately with V2O5-Bi2O3(hereinafter designated as VB) , CuO-V2O5 ( hereinafter designated as CV ) and CuO-V2O5-Bi2O3 ( hereinafter designated as CVB), thermal, microstructural and microwave dielectric properties of the hexagonal phase ZnTiO3 prepared were characterized or measured by means of XRD,SEM. As a result, ZnO-1.1TiO2 ceramics doped with V2O5-Bi2O3, its temperature coefficient of resonant frequency curve through zero, The dielectric properties of samples with 0.5wt% VB addition were:εr≈25.3,Qf≈20860GHz,τf≈+2ppm/℃.CuO or V2O5 addition have not affect the phase composition of zinc titanate ceramics, the dielectric properties of samples sintered at 870℃with CV addition were:εr≈28,Qf≈20000GHz,τf≈+6ppm/℃. Ilmenite phase did inhibit the decomposition with the addition of CuO-V2O5-Bi2O3,showing a very good effect of lowering sintering temperature. With 2wt% CVB addition,the ceramics sintered at 830℃get a relative density value of 98.8%,and microwave dielectric properties:εr=30,Qf=33460GHz,τf=6ppm/℃.
引文
[1]包东智.国内外移动通信发展的新特点.电信快报. 2003(1): 39~42.
    [2]郑澜.移动通信3G技术概述.通信市场. 2003: 1~5.
    [3] H.T.Kim,J.D.BYUN,and Y.H.KIM ,Microstructure and microwave dielectric properties of modified zinc titanates(Ⅰ).Mater.Res.Bull.,1998,33(6):963~973.
    [4] H.T.Kim,J.D.BYUN,and Y.H.KIM ,Microstructure and microwave dielectric properties of modified zinc titanates(Ⅱ).Mater.Res.Bull.,1998,33(6):975~986.
    [5] A.Golovchansk,H.T.Kim,and Y.H.Kim,Zinc titanates dielectric ceramics prepared by Sol-Gel process.[J].Koren Phys.Soc.,1998,32(2):S1167~1169.
    [6]张绪礼.电介质物理与微波介质陶瓷[J].压电与声光,1997,19(5):315~320
    [7]李标荣,王筱珍,张绪礼.无机电介质[M].武汉:华中理工大学出版社,1995
    [8] Moulson A.J.,Herbert J.M. Electroceramics Materials,Properties,Applications(中译本).第一版.武汉:武汉工业大学出版社,1993:81~83.
    [9]方俊鑫,陆栋.固体物理学(下册).第一版.上海:上海科学技术出版社,1981:55~59.
    [10]关振铎,张中太,焦金生.无机材料物理性能.第一版.北京:清华大学出版社,1992:292~321.
    [11]殷之文主编.电介质物理学[M].第二版.北京:科学出版社. 2003:28~34.
    [12]朱建华,梁飞,汪小红等.微波介质陶瓷材料介电性能间的制约关系.电子元件与材料,2003,24(3):32~35.
    [13]孟中盐,姚熹等编.电介质理论基础.北京:国防工业出版社. 1979. 222~225.
    [14]宋英,王福平,周玉,微波介质陶瓷材料的研究进展,材料科学与工艺,1998,69(2):59~64.
    [15] Penn S J,Alford N M,Templeton A,et al.Effect of porsity and grain size on the micowave dielectric properties of sintered alumina. [J]. Am. Ceram. Soc. 1997, 80:1885~1891.
    [16] N.Qin,X.C.Fan,and X.M.Chen.Infrared Reflection Spectra of Ba6-3xSm8+2xTi18O54 (x=0.5 , 0.67 , and 0.75)Microwave Dielectric Ceramics.[J].Appl.phys.2007 ,101:064~103.
    [17] M.P.O’Horo,A.L.Frisillo,and W.B.White.Lattice Vibrations of MgA12O4 Spine.[J].Phys.Chem.Solids.1973,34:23. [18〕S.Wada,H.Yasuno,T.Hoshina,H.Kakemoto,YKameshina,T.Tsurumi,and T.Shimada.THz Region Dielectric ProPerties of Barium Titanate Fine Particles using Infrared Reflection Method.[J].Eu.Ceram.Soc.2006,26:1807~1810.
    [19] Y.Ohishi,Y.Miyauchi,H.Ohsato,et al.Controlled temperature coefficient of resonant frequency of Al2O3-TiO2 ceramics by annealing treatment. Jpn. [J].Appl.Phys.2004,43(6A):L749~L751.
    [20] Toshikazu Endoh, Bluetooth Conformity Paints Bright Outlook for TDKs Chip Antennas, AEI, 2000, 9: 30
    [21] Templeton D.H., Dauben C.H. Polarized octahedral in barium tetratitanate [J]. J. Chem. Phy. 1960, 32(5): 1515~1518.
    [22] Jancar B,Suvorov D,Valant M.Microwave dielectric properties of CaTiO3-NdAlO3 ceramics.[J].Mater.Sci.Lett.2001,20:71~77.
    [23] Zhang H,Bagshaw H,Gyorgyfalva G,et al.Raman spectroscopy and microwave properties of CaTiO3-based ceramics.[J].Appl.Phys.2003,94:2948~2958.
    [24] Jancar B,Suvorov D,Valant M,et al.Characterization of CaTiO3-NdAlO3 dielectric ceramics.[J].Euro.Ceram.Soc.2003,23:1391~1399.
    [25] Kim M H,Woo C S,Nahm S,et al.Crystal structure and microwave dielectric properties of (1-x)NdAlO3-xCaTiO3 ceramics.Mater.Res.Bull.2002,37:605.
    [26] Huang Chenggliang,Chen Yaochung.Mater.Sci.Eng.2003,A345:106~112.
    [27] Noboru I,Hideyuki A.Preparation and microwave dielectric properties of the BaO·(Sm1-xLax)2O3·TiO2,ceramic system.[J].Eur.Ceram.Soc.,2001,21:2751~ 2753.
    [28] Wu Yongjun,Chen xiangming.Structures and microwave dielectric properties of Ba6-3x(Nd,Bi)8+2xTi18O54.[J].Mater.Res,2001,16(6):1734~1738.
    [29] Chen X M,Zheng X H,Wan D J.Structural and dielectric characterization of Ba4Nd2Ti4-xTa6-xO30-x.[J].Mater.Res,2001,16(10):2859~2863.
    [30]谢道华、李智华、张永祥等,中温BaO-TiO2-Nd2O3系陶瓷的结构和介电性质研究,硅酸盐学报,1993,21(2):129~135
    [31] Suvorov D.,Valant M.,Kolar D..The role of dopants in tailoring the microwave properties of Ba6-xR8+2/3xTi18O54 R=(La-Gd)ceramics.[J].Materials science, 1997, 32:6483~6488
    [32] Kolar D.,Gaberscek S.,Volavsek B.,et al.Synthesis and crystal chemistry of BaNd2Ti3O10,BaNd2Ti5O14,Nd4Ti9O24.[J].Solid State Chemistry,1981,38:158~164
    [33] G.H.Maher,Improved Dielectrics for Multi-layer Ceramic Capacitors.Proceeding of the 27th electronic component conference,1978:391~399.
    [34] Valant M. , Suvorov D.Glass-free low-temperature cofired ceramics:calcium germanates,silicates and tellurates.[J].Eur.Cerarn.Soc.,2004,24(6):1715~1719.
    [35] Kagata H,Inoue T,Kato J and Kameyama I.Low-fire bismuth-based dielectric ceramics for microwave use.Jpn.[J].Appl.Phys.1992,31(9B):3152~3155.
    [36] Huang C L and Weng M H.Low-fire BiTaO4 dielectric ceramics for microwave applications.Mater.Lett.2000,43:32~35.
    [37]姚尧,赵梅瑜,王依琳等.BaNbO4微波介质陶瓷的研究.无机材料学报,1998,13(2):176~180.
    [38] Kim D W,Lee D G,Hong K S.Low-temperature firing and microwave dielectric properties of BaTi4O9 with Zn-B-O glass system. Mater.Res.Bull.2001,36: 585~595.
    [39] Kagata H,Inoue T,Kato J,et al.Low-fire bismuth-based dielectric ceramics for microwave use.Jpn.[J].Appl.Phys.1992,31 part 1(9B):3152~3155.
    [40]Takada T,Wang S F,Yoshikawa S,et al.Effect of glass additions on BaO-TiO2-WO3 microwave ceramics.[J].Am.Ceram.Soc.1994,77(7):1909~1916.
    [41] Kim H T,Nahm S,Byun J D and Kim Y.Low-fired(Zn,Mg)TiO3 microwave dielectrics.[J].Am.Ceram.Soc.1999,82(12):3476~3480.
    [42]王宁,赵梅瑜,殷之文.微波介质陶瓷的中低温烧结.无机材料学报,2002,17(5):915~924.
    [43]杨辉,张启龙,王家邦等.微波介质陶瓷及器件研究进展.硅酸盐学报,2003,31(10):965~980.
    [44] Cheng C.M., Lo S.H., Yang C.F. The effect of CuO on the sintering and properties of BiNbO4 microwave ceramics [J]. Ceram. Int. 2000, 26: 113~117.
    [45]张启龙,杨辉,魏文霖,王信权,陆德龙.掺杂ZnO-B2O3低温烧结BiNbO4介质陶瓷的研究.硅酸盐通报,2004,23(4):79~81,90.
    [46]张启龙,杨辉,魏文霖,邹佳丽,尤源.烧结助剂对BiNbO4陶瓷烧结特性及介电性能的影响.电子元件与材料,2004,23(2):7~9.
    [47] TzouW-C,Yang C-F,ChenY-C,et al.Improvements in the sintering and microwave properties of BiNbO4 microwave cerarnics By V2O5 addition.[J].Eur. Ceram.Soc.,2000,20(7):991~996.
    [48] Huang C.L., Weng M.H. Low-fire BiTaO4 dielectric ceramics for microwave applications [J]. Mater. Lett. 2000, 43: 32~35.
    [49] Huang C.L., Weng M.H.,et al.Low-fire BiNbO4 microwave dielectric ceramics modified by Sm2O3 addition. [J]. Mater.Res.Bull. 2001, 36(5-6): 827-~835.
    [50] Cho S.Y., Youn H.J., Kim D.W., et al. Interaction of BiNbO4-based low-firing ceramics with silver electrodes [J]. Am. Ceram. Soc. 1998, 81(11): 3038~3041.
    [51] Kagata H,Inone T,Kato J,Kameyama I,Low-fired bismuth based dielectric ceramics,Jpn. [J].Appl phys Part1,1992,31(9B):3152~3155.
    [52] Choi G.K,Kim D.W,Cho S.Y,Hong K.S,Influence of V2O5 substitutions to Bi2(Zn1/3Nb2/3)2O7 pyrochlore on sintering temperature and dielectric properties,Ceram Int,2004,30:1187~1190.
    [53] E.A. Nenasheva,N.F. Kartenko. Low-sintering cermic materials based on Bi2O3-ZnO-Nb2O5 compounds. 2006,26(10-11):1929~1932.
    [54]M.E.VILLAFUERTE-CASTREJóN,A.ARAGóN-PI?A,R.VALENZUELA,.R.WEST.Compound and Solid-Solution Formation in the System Li2O-Nb2O5-TiO2. Journal of solid Chemisty. 1987(71): 103~106.
    [55] Cohn S.B. Microwave band pass filters containing high Q dielectric resonators [J]. IEEE Trans. Microwave Theory Tech. 1968, 16: 218~227.
    [56] Plourde J.K., Linn D.F., O’Bryan H.M., et al. Ba2Ti9O20 as a microwave dielectric resonator [J]. J. Am. Ceram. Soc. 1975, 58: 418~420.
    [57] Masse D.J., Pucel R.A., Readey D.W., et al. A new low loss high-k temperature compensated dielectric for microwave applications [J]. Proc. IEEE. 1971, 59: 1628~1629.
    [58] Wakino K., Katsube M., Tamura H., et al. Microwave dielectric materials [M]. (In Japanese). IEEE Four Joint Conv. 1977. 235.
    [59]高春华,黄新友.微波介质陶瓷及其展望[J].陶瓷. 2002, 1: 42~45.
    [60] Wakino K., Nishikawa T., Tamura H., et al. Microwave band pass filers containing dielectric resonator with improved temperature stability and spurious response [J]. IEEE MTT-Int. Microwave Symp. Dig. 1975. 63~65.
    [61] Cheng C.M., Lo S.H., Yang C.F. The effect of CuO on the sintering and properties of BiNbO4 microwave ceramics [J]. Ceram. Int. 2000, 26: 113~117.
    [62] Rase D.E., Roy R. Phase equilibria in the system BaO-TiO2 [J]. J. Am. Ceram. Soc. 1955, 38(3): 102~113.
    [63] Dulin F H. Rase D E. Phase equiliburia in the system ZnO-TiO2.[J].Am.Ceram. Soc.,1960,43(3):125~130.
    [64] Steinike U,Wallis B. Formation and structure of Ti-Zn oxide. Cryst.Res.Technol., 1997,32(10:187~193.
    [65] Kim H. T., Kim Y. H. Titanium incorporation in Zn2TiO4 spinel ceramics [J].J Am Ceram Soc. 2001, 84(5): 1081~1086.
    [66]张益新,“钛铁矿结构Zn1-xAxTi1-yByO3之合成及性质研究”,国立成功大学材料科学及工程研究所博士论文,2004
    [67]侯育冬,崔斌. MgO含量对ZTM体系六方钛铁矿相热稳定性的影响[J].功能材料, 2002, 20(4): 603~606.
    [68] Sohy Jeong-ho. Microwave dielectric characteristics of ilmenite-typetitanates with high Q values [J]. Jpn J Appl Phys. 1994 (33): 5466~5470.
    [69] Sheinkman A. I., Sheinkman F. P. Phase formation sequence during the reaction of zinc oxide with titanium dioxide [J]. Neorg Mater. 1977, 13(8):
    [70] Sheinkman A. I., Sheinkman F. P. Phase formation sequence during the reaction of zinc oxide with titanium dioxide [J]. Neorg Mater. 1977, 13(8):
    [71] Kim H. T. Low-fired (Zn,Mg)TiO3 microwave dielectrics [J]. J Am Ceram Soc,1999, 82(12): 3476~3480.
    [72] Kim H. T. Structure and microwave dielectric properties of (Zn1-xCox)TiO3 ceramics [J]. J Am Ceram Soc, 2003, 86(11): 1874~1878.
    [73] Kim H. T. Structure and microwave dielectric properties of (Zn1-xNix)TiO3 ceramics [J]. J Mater Res, 2003, 18(5): 1067.
    [74]Yee-Shin Chang , Yen-Hwei Chang , In-Gann Chen , et al.Synthesis and characterization of zinc titanate doped with magnesium.Solid State Comrnunications,2003,128:203-208.
    [75] Kim H. T., Byun J. D., Kim Y. H. Microstructure and microwave dielectrics properties of modified zinc titanates (I) [J]. Mater Res Bull. 1998.32(6):963.
    [76]王玉梅,李玲霞,吴霞宛等(Zn1-xMgx)TiO3微波陶瓷系统介电性能的研究,[J].硅酸盐学报.2004,32(8):911~915.
    [77] Kim H. T., Byun J. D., Kim Y. H. Microstructure and microwave dielectrics properties of modified zinc titanates(II) [J]. Mater Res Bull.1998, 32(6):955~986
    [78] Chang Y. S., Chang Y H, Chen I G..The structure and properties of zinc titanate doped with strontium[J] J Alloys and compounds.2003, 354:303~309.
    [79]刘向春,钛酸锌介电陶瓷的低温烧结研究.西北工业大学.西安:西北工业大学,2004
    [80] Kim H. T., Kim S. H. Low-temperature sintering and microwave dielectric properties of zinc metatitanate-rutile mixtures using boron [J]. J Am Ceram Soc.1999, 82(11): 3043~3048.
    [81] Alexander Golovchansky. Zinc titanates dielectric ceramics prepared by sol-gel process [J]. J Korean Phys Soc.1998, 32(2): 1167.
    [82] Li Bo. Low-fired microwave dielectrics in ZnO-TiO2 ceramics doped with CuO and B2O3 [J]. J Mater Sci. 2002, 13: 415~418.
    [83]王辉,徐建梅,沈上越.水热法工艺对合成陶瓷粉体性能的影响.宝鸡文理学院学报.2006.12(26):291-296.
    [84]施尔畏,夏长泰,王步国,元如林等.水热法制备的陶瓷粉体晶粒粒度.硅酸盐学报.1997.6(25):287-294.
    [85]仲维卓,刘光照,施尔畏,等.[J].中国科学(B).1994.24 (4) :394.
    [86]罗君,邢献然,于然波等.溶胶凝胶法合成钛酸锌陶瓷粉体[J].无机材料学报200410(10) :1182-1186.
    [87] Kim H T, Byun J D, Kim Y H. Microstructure and microwave dielectrics properties of modified zinc titanates (I) [J]. Mater Res Bull. 1998.32(6):963.
    [88] Zhenxing Yue,Jing Yan,Fei Zhao,et al.Low-temperature sintering and microwave dielectric properties of ZnTiO3-based LTCC materials[J].J Electroceram, 2007: 18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700