用户名: 密码: 验证码:
复杂网络上自组织临界现象及Opinion演化动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然科学和社会科学领域中的许多复杂系统都可以用复杂网络加以描述。大量的实证研究表明,真实网络中呈现出区别于规则网络和随机网络的特性,如小世界特性、无标度特性、层级结构特性等等。因此,对于复杂网络的拓扑特性的清晰认识将为研究复杂网络的动力学研究奠定基础。在本文中我们侧重研究复杂网络的拓扑结构和复杂网络上动力学行为之间的相互关系,从而由动力学角度探寻复杂网络拓扑特性的涌现机制。
     具有创新性研究的成果,有以下五个方面:
     1.分析了复杂网络拓扑结构对分形维数的影响。首先,采用Shanker定义的分形维数方法研究了真实网络的分形维数。然后,研究了小世界网络的捷径(Shortcuts)对分形维数的影响,通过非线性拟合给出了网络的分形维数df与捷径数(Np)之间的函数关系。最后,分析了规则格子尺寸对其分形维数的影响。这里,分形维数的定义可以推广到规则格子中,且分形维数的计算是精确解。
     2.首次提出利用列车运营情况的加权方法,研究了中国铁路网。首先,在L空间中分析了中国铁路网节点度分布以及节点度关联特性。然后,依据中国铁路网上实际列车运营情况,对中国铁路网中的节点和边进行加权。其中,每列列车对其停靠的每一个车站的贡献都是其停靠的所有车站数目的倒数。这里权重的定义弥补了抽象空间(L空间和P空间)中对网络拓扑分析的不足。
     3.复杂网络节点异质性对复杂网络上动力学行为的影响。分析了静态无标度网络上Bak-Sneppen模型进化动力学。其中,静态无标度网络构造模型中可调参数α反映了网络中节点异质性的强弱。α越大,网络的异质性越强。研究发现网络的临界平均适应度〈f〉*随着α的增加而减小。另一方面,网络的〈f〉0雪崩指数T随着可调参数α的变化而呈现阶梯下降,结合静态无标度网络上疾病传播动力学行为,将无标度网路分为三类:随机类、线性类和物理类。最后,分析了规则格子、小世界网络和无标度网络上改进Deffuant模型演化动力学,我们发现系统稳态opinion s*随着信任参数ε变化呈现出分叉现象。通过分析较小团簇的opinion及节点度与信任参数ε的关系,发现小世界网络和无标度网络上opinion达到一致态的形成过程具有明显差异,这在复杂网络的同步现象中也有所呈现。
     4.小世界网络捷径对opinion形成动力学的影响。类比于统计物理中的Ising模型,研究了小世界网络上二态opinion演化动力学。通过分析系统的opinion磁化强度、空间关联特性以及时间关联特性,发现小世界网络中的捷径具有增强系统长程关联的作用,从而促使系统演化到一致态。通过有限尺寸效应分析,发现从一维环开始生成的小世界网络上opinion相变是赝相变。
     5.自适应网络上社团结构的涌现。构造了一个简单的自适应网络演化模型。如果网络中两活动节点的opinion之差大于信任参数ε,连接这两节点的边将断开;反之,节点之间的连边促使两节点的opinion向彼此靠近,靠近强度依赖于收敛参数μ。网络中断边的重绕依据局域重绕连接和全局重绕连接两种方式。这反映了网络的拓扑结构演化动力学与网络上节点状态演化动力学之间的相互作用。通过模拟研究,发现全局重绕增强网络上opinion演化到一致态的相变能力;而局域重绕连接增强网络社团结构的涌现。局域重绕连接概率越强,网络中社团的模块强度越大。
Many complex systems arising from nature and human society can be described as complex networks. A lot of experimental works show that real complex networks share some distinctive characteristic properties, such as the small-world effect, scale-free property and the hierarchical structure, which differ from the random network and the regular lattice. The topology structure of complex networks has been studied, which is helpful for us to search the dynamics of and on complex networks. In this paper, we focus on the interaction between the complex network structure and the dynamics on complex networks, and study the emergence of some distinctive characteristic properties in complex networks from the viewpoint of dynamics.
     The results of innovative research are shown as follows:
     1. To analyze the effects of complex network structure on fractal dimension. Firstly, the fractal dimensions of real complex networks are studied by means of Shanker's defini-tion. Secondly, the effect of the shortcuts in small-world network on the fractal dimension is shown through the relation between the fractal dimension df and the shortcuts (Np), which is given by the method of nonlinear fitting. Finally, the effect of the regular lattice size N on its fractal dimension is analyzed through exact calculation.
     2. To study the China Railway Network(CRN) by proposing the weighted method based on the trains'real kinematics. Firstly, the degree distribution and the degree-degree correlation of CRN in space L are studied. Then, the weighted property of CRN is analyzed according to the trains' real kinematics. The contribution of train j to terminal station i is 1/nj(i), where nj(i) is the number of stations that train j passes. Here, the definition of weight makes up the shortage of network topology analysis in the abstract space (spaces L and P).
     3. To analyze how the heterogeneity of complex networks affects the dynamics that occurs on complex networks. We analyze the Bak-Sneppen evolution model on static scale-free networks, where a tunable parameter a is defined to describe the heterogeneous prop-erty of complex network. The larger a is, the more heterogeneous the network is. Our study shows that the critical average fitness * decreases with a increasing. On the other hand, the exponentτof the 0 avalanche decreases in a form of stair-case with a increas-ing. Combining epidemic spreading dynamics on the static scale-free networks and theτexponent, the scale free networks can be divided into three classes:random class, linear class and physical class. Then, extended Deffuant models on regular lattice, small-world networks and scale-free networks are studied, where the bifurcation phenomena is found. Through analyzing the relationship between the opinion, degree and theεin the minority clusters, we find the formation process of opinion in small-world networks is different from that in scale-free networks, which is also found in the synchronization phenomena in both networks.
     4. To analyze the effect of the shortcuts in small-world network on the opinion for-mation dynamics. According to the Ising model in statistical physics, we investigate the binary opinion formation dynamic on small-world network. The magnetization, spatial correlation and temporal correlation are studied. Our results show that the shortcuts en-hance the ability of long-range interactions which can drive the system towards reaching the consensus state. On the other hand, the phase transition in the small-world network which is built on one dimension substrate is a pseudo one.
     5. To analyze the emergence of community in the adaptive network. A simple adap-tive network model is proposed. The edge between active vertices is broken when the difference between two vertices' opinion is greater than the confidence parameterε; Other-wise, each opinion moves partly in favor of the direction of the other. The rewiring of the broken edge follows the rules of the rewiring of local attachment (RLA) and the rewiring of global rewiring (RGA). All is mentioned above shows the interaction between the dynamics of complex network structure and the dynamics on complex network. Through simulations, we find that the RGA enhances the ability of the system reaching the phase transition, and the RLA enhances the formation of community structure in complex networks.
引文
[1]R. Pastor-Satorras, A. Vespignani, Evolution and Structure of the Internet:A Sta-tistical Physics Approach, Cambridge University Press, Cambridge,2004.
    [2]S. N. Dorogovtesev, J. F. F. Mendes, Evolution of Networks, Oxford University Press, Oxford,2003
    [3]D. J. Watts, H. S. Strogatz, Collective dynamics of 'small-world'networks. Nature, 393,440-442(1998).
    [4]A. L. Barabasi, R. Albert; Emergence of scaling in random networks, Science,286, 509-512(1999)
    [5]K. Huang,统计物理和蛋白质折叠讲义,复旦大学出版社,上海,2006.
    [6]R. Albert, A L. Barabasi, Statistical mechanics of complex networks,Rev. Mod. Phys.74,47-97(2002).
    [7]S. N. Dorogovtsev, J. F. F. Mendes, Evolution of networks, Adv. Phys.51,1079-1187(2002).
    [8]M. E. J. Newman, The structure and function of complex networks, SIAM Rev.45, 167-256(2003).
    [9]S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex networks: structure and dynamics, Phys. Rep.424,175-308(2006).
    [10]L. da F. Costa, F. A. Rodrigues, G. Tracieso, P. R. Villas Boas, Characterization of complex networks:a survey of measurements, Adv. Phys.56,167-242(2007).
    [11]G. Szabo, G. Fath, Evolutionary games on graphs, Phys. Rep.446,97-216(2007).
    [12]S. N. Dorogovtsev, A. V. Goltsev, Critical phenomena in complex networks, Rev. Mod. Phys.80,1275-1335(2008).
    [13]A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Synchronization in complex networks, Phys. Rep.469,93-153(2008).
    [14]C. Castellano, S. Fortunato, V. Loreto, Statistical physics of social dynamics, Rev. Mod. Phys.81,591-646(2009).
    [15]方锦清,汪小帆,郑志刚,毕桥,狄增如,李翔,一门崭新的交叉科学:网络科学(上),物理学进展,27,239-343(2007).
    [16]方锦清,汪小帆,郑志刚,毕桥,狄增如,李翔,一门崭新的交叉科学:网络科学(下),物理学进展,27,361-448(2007).
    [17]M. E. J. Newman, D. J. Watts, Scaling and percolation in the small-world network model, Phys. Rev. E 60,7332-7342(1999).
    [18]M. E. J. Newman, D. J. Watts, Renormalization group analysis of the small-world network model, Phys. Lett. A 263,341-346(1999).
    [19]L. Dall'Asta, Phenomenes dynamiques sur des reseaux complexes, http://tel.archives-ouvertes.fr/tel-00093102/en/, a doctoral dissertation.
    [20]F. Buckley, M. Lewinter著,李慧霸,王凤琴译,图论简明教程,清华大学出版社,2005.
    [21]M. Boguna, R. Pastor-Satorras, Epidemic spreading in correlated complex networks, Phys. Rev. E 66,047104(2002).
    [22]M. Boguna, R. Pastor-Satorras, A. Vespignani, Epidemic spreading in complex net-works with degree correlations, Lect. Notes Phys.625,127-147(2003).
    [23]R. Pastor-Satorras, A. Vazquez, A. Vespignani, Dynamical and correlation properties of the internet, Phys. Rev. Lett.87,258701(2001).
    [24]M. E. J. Newman, Assortative mixing in networks, Phys. Rev. Lett.89,208701(2002).
    [25]V. Latora, M. Marchiori, Efficient behavior of small-world networks, Phys. Rev. Lett. 87,198701(2001).
    [26]V. Latora, M. Marchiori, Economic small-world behavior in weighted networks, Eur. Phys. J. B 32,249-263(2003).
    [27]D. J. Watts, Small worlds:the dynamics of networks between order and randomness, Princeton University press, Princeton, New Jersey,1999.
    [28]S. Wasserman, K. Faust, Social network Analysis:methods and applications, Cam-bridge University Press, Cambridge,1994.
    [29]A. Barrat, M. Weigt, On the properties of small-world network models, Eur. Phys. J. B 13,547-560(2000).
    [30]M. E. J. Newman, Scientific collaboration networks. Ⅰ. network construction and fundamental results, Phys. Rev. E 64,016131(2001).
    [31]N. Alon, R. Yuster, U. Zwick, Finding and counting given length cycles, Algorithmica 17,209-223(1997).
    [32]L. C. Freeman, Centrality in social networks conceptual clarification, Social Networks 1,215-239(1979).
    [33]K.-I. Goh, E. Oh, H. Jeong, B. Kahng, D. Kim, Classification of scale-free networks, Proc. Natl. Acad. Sci.99,12583-12588(2002).
    [34]M. E. J. Newman, M. Girvan, Finding and evaluating community structure in net-works, Phys. Rev. E 69,026113(2004).
    [35]R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chkovskill, U. Alon, Network motifs:simple building blocks of complex networks, Science 298,824-827(2002).
    [36]S. Mangan, U. Alon, Structure and function of the fees-forward loop network motif, Proc. Natl. Acad. Sci.100,11980-11985(2003).
    [37]R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Shef-fer, U. Alon, Superfamilies of evolved and designed networks, Science 303,1538-1542(2004).
    [38]B. Everitt, Cluster analysis, John Wiley, New York,1974.
    [39]M. Girvan, M. E. J. Newman, Community structure in social and biological networks, Proc. Natl. Acad. Sci.99,7821-7826(2002).
    [40]J. Scott, Social network analysis:A handbook, SAGE Publications, London,2000.
    [41]S. Wasserman, K. Faust, Social network analysis:Methods and Applications, Cam-bridge University Press, Cambridge and New York,1994.
    [42]M. E. J. Newman, Fast algorithm for detecting community structure in networks, Phys. Rev. E 69,066133(2004).
    [43]F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, D. Parisi, Defining and identifying communities in networks, Proc. Natl. Acad. Sci.101,2658-2663(2004).
    [44]F. Wu, B. A. Huberman, Finding communities in linear time:a physics approach, Eur. Phys. J. B 38,331-338(2004).
    [45]J. F. Padgett, C. K. Ansell, Robust action and the rise of the medici, 1400-1434, Amer. J. Sociol.98,1259-1319(1993).
    [46]J. Moody, Race, School Integration, and Friendship Segregation in America, Amer. J. Sociol. 107,679-716(2001).
    [47]P. Mariolis, Interlocking directorates and control of corporations:the theory of bank control, Social. Sci. Quart,56,425-439(1975).
    [48]M. E. J. Newman, Scientific collaboration networks. Ⅱ. shortest paths, weighted net-works, and centrality, Phys. Rev. E 64,016132(2001).
    [49]S. Milgram, The small-world problem, Psych. Todat 1,60-67(1967).
    [50]J. Travers,S. Milgram, An experimental study of small world problem, Sociometry 32,425-443(1969).
    [51]J. Guare, Six degrees of separation:a play, Vintage, New York,1990.
    [52]http://www.imdb.com/
    [53]A. L. Barabasi, H. Jeong, Z. Neda, E. Ravasz, A. Schubert, T. Vicsek, Evolution of the social network of scientific collaborations, Physica A 311,590-614(2002).
    [54]M. E. J. Newman, S. Forrest, J. Balthrop, Email networks and the spread of computer viruses, Phys. Rev. E 66,035101(R)(2002).
    [55]A. Vazquez, J. G. Oliveira, Z, Dezso, K.-I. Goh, I. Kondor, A.-L. Barabasi, Modeling bursts and heavy tails in human dynamics, Phys. Rev. E 73,036127(2006).
    [56]A.-L. Barabasi, The origin of bursts and heavy tails in human dynamics, Nature 435,207-211(2005).
    [57]A. Vazquez, B. Racz, A. Lukacs, A.-L. Barabasi, Impact of non-poissonian activity patterns on spreading processes, Phys. Rev. Lett.98,158702(2007).
    [58]A. Vazquez, Exact results for the barabasi model of human dynamics, Phys. Rev. Lett.95,248701(2005).
    [59]Z, Dezso, E. Almaas, A. Lukacs, B. Racz, I. Szakadat, A.-L. Barabasi, Dynamics of information access on the web, Phrs. Rev. E 73,066132(2006).
    [60]J. G. Oliveira, A.-L. Barabasi, Darwin and Einstein correspondence patterns, Nature 437,1251(2005).
    [61]S. Lehmann, B. Lautrup, A.D. Jackson, Citation networks in high energy physics, Phys. Rev. E 68,026113(2003).
    [62]S. Bilke, C. Peterson, Topological properties of citation and metabolic networks, Phys. Rev. E 64,036106(2001).
    [63]S. Redner, How popular is your paper? an empirical study of the citation distribution, Eur. Phys. J. B 4,131-134(1998).
    [64]S. Lawrence, C. L. Giles, Accessibility of information on the web, Nature 400, 107(1999).
    [65]S. Lawrence, C. L. Giles, Searching the World Wide Web, Science 280,98-100(1998).
    [66]R. Albert, H. Jeong, A.-L. Barabasi, Internet:Diameter of the World-Wide Web, Nature 401,130-131(1999).
    [67]A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, J. Wiener, Grapg structue in the web, Comput. Netw.33 309-320(2000).
    [68]L. A. Adamic, B. A. Huberman, Power-Law Distribution of the World Wide Web, Science 287,2115(2000).
    [69]L. A. Adamic, R. M. Lukose, A. R. Puniyani, B. A. Huberman, Search in power-law networks, Phys. Rev. E 64,046135(2001).
    [70]F. Wang, Y. Moreno, Y. Sun, Structure of peer-to-peer social networks, Phys. Rev. E 73,036123(2006).
    [71]O. Kinouchi, A. S. Martinez, G. F. Lima, G. M. Lourenco, S. Risau-Gusman, Deter-ministic walks in random networks:an application to thesaurus graphs, Physica A 315,665-676(2002).
    [72]M. Steyvers, J. B. Tenenbaum, the large-scale structure of semanic networks:statis-tical analyses and a model of semantic growth, Congnitive Science 29,41-78(2005).
    [73]A. E. Motter, A. P. S. de Moura, Y.-C. Lai, P. Dasgupta, Topology of the conceptual network of language, Phys. Rev. E 65,065102(2002).
    [74]L. A. N. Amaral, A. Scala, M. Barthelemy, H. E. Stanley, Classes of small-world networks, Proc. Natl. Acad. Sci.97,11149-11152(2000).
    [75]W. Li, X. Cai, Statistical analysis of airport network of China, Phys. Rev. E 69, 046106(2004).
    [76]L. Chi, R. Wang, H. Su, X. Xu, J. Zhao, W. Li, X. Cai, Structural properties of US flight network, Chin. Phys. Lett.20,1393-1396(2003).
    [77]R. Guimera, L. A. N. Amaral, Modeling the world-wide airport network, Eur. Phys. J.B 38,381-385(2004).
    [78]P. Sen, S. Dasgupta, A. Chatterjee, P.A. Sreeram, G. Mukhwejee, S. S. Manna, Small-world properties of the Indian railway network, Phys. Rev. E 67,036106(2003).
    [79]K. A. Seaton, L. M. Hackett, Stations, trains and small-world networks, Physica A 339,635-644(2004).
    [80]W. Li, X. Cai, Empirical analysis of a scale-free railway network in China, Physica A 382,693-703(2007).
    [81]L. Guo, X. Cai, Degree and weighted properties of the directed China Railway network, Int. J. Mod. Phys. C 19,1909-1918(2008).
    [82]V. Latora, M. Marchiori,Is the Boston subway a small-world network? Physica A 314,109-113(2002).
    [83]M. Marchiori, V. Latora, Harmony in the small-world, Physica A 285,539-546(2000).
    [84]J. Sienkiewicz, J. A. Holyst, Statistical analysis of 22 public transport networks in Poland, Phys. Rev. E 72,046127(2005).
    [85]J. Sienkiewicz, J. A. Holyst, Public Transport Systems in Poland:From Bialystok to Zielona Gora by Bus and Tram Using Universal Statistics of Complex Networks, Acta. Phys. Polon. B 36,1771-1778(2005).
    [86]X. Xu, J. Hu, F. Liu, L. Liu, Scaling and correlations in three bus-transport networks of China, Physica A 374,441-448(2007).
    [87]A. Maritan, A. Rinaldo, R. Rigon, Scaling laws for river networks, Phys. Rev. E 53, 1510-1515(1996).
    [88]P. S. Dodds, D. H. Rothman, Geometry of river networks, Phys. Rev. E 63, 016115(2001).
    [89]P. S. Dodds, D. H. Rothman, Geometry of river networks, Phys. Rev. E 63, 016116(2001).
    [90]P. S. Dodds, D. H. Rothman, Geometry of river networks, Phys. Rev. E 63, 016117(2001).
    [91]J. R. Banavar, A. Maritan, A. Rinaldo, Size and form in efficient transportation networks, Nature 399,130-132(1999).
    [92]G. B. West, J. H. Brown, B. J. Enquist, A general model for the structure and allometry of plant vascular systems, Nature 400,664-667(1999).
    [93]G. B. West, J. H. Brown, B. J. Enquist, A General Model for the Origin of Allometric Scaling Laws in Biology, Science 276,122-126(1997).
    [94]M. Faloutsos, P. Faloutsos, C. Faloutsos, On power-law relationships of the internet topology, Comput. Commun. Rev.29,251-262(1999).
    [95]S.-H. Yook, H. Jeong, A.-L. Barabasi, Modeling the internet's large-scale topology, preprint cond-mat/0107417(2001).
    [96]A. Broida, K. C. Claffy, Internet topology:connectivity of IP graphs, in scalability and traffic control in IPnetworks. S. Fahmy and K. Park, eds., Proc. SPIE 4526, Inernational society for optical engineering, Bellingham, WA,172-187(2001).
    [97]H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, A.-L. Barabasi, The large-scale organization of metabolic networks, Nature 407,651-654(2000).
    [98]J. Podani, Z.N. Oltvai, H. Jeong, B. Tombor, A.-L. Barabasi, Comparable system level organization of Archaea and Eukaryotes, Nature Genetics 29,54-56(2001).
    [99]D. A. Fell, A. Wagner, The small world of metabolism, Nature Biotechnology 18, 1121-1122(2000).
    [100]A. Wagner, D. A. Fell, The small world inside large metabolic networks, Proc. R. Soc. Lond. B 268,1803-1810(2001).
    [101]J. Stelling, S. Klamt, K. Bettenbrock, S. Schuster, E. D. Gilles, Metabolic network structure determines key aspects of functionality and regulation, Nature 420,190-193(2002).
    [102]T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, Y. Sakaki, A comprehensive two-gybrid analysis to explore the yeast protein interactome, Proc. Natl. Acad. Sci. 98,4569-4574(2001).
    [103]H. Jeong, S. P. Mason, A.-L. Barabasi, Z. N. Oltvai, Lethality and centrality in protein networks, Nature 411,41-42(2001).
    [104]S. Maslov, K. Sneppen, Specificity and Stability in Topology of Protein Networks, Science 296,910-913(2002).
    [105]I. J. Farkas, H. Jeong, T. Vicsek, A.-L. Barabasi, Z. N. Oltvai, The topology of the transcription regulatory network in the yeast, Saccharomyces cerevisiae, Physica A 318,601-612(2003).
    [106]N. Guelzim, S. Bottani, P. Bourgine, F. Kepcs, Topological and causal structure of the yeast transcriptional regulatory network, Nature Genetics 31,60-63(2002).
    [107]S. S. Shen-Orr, R. Milo, S. Mangan, U. Alon, Network motifs in the transcriptional regulation network of Escherichia coli, Nature Genetics 31,64-68(2002).
    [108]J. M. Montoya, R.V. Sole, Small World Patterns in Food Webs, J. Theor. Biol.214, 405-412(2002).
    [109]R. V. Sole, J. M. Montoya, Complexity and fragility in ecological networks, Proc. R. Soc. Lond. B 268,2039-2045(2001).
    [110]J. Camacho, R. Guimera, L. A. N. Amaral, Robust patterns in food web structure, Phys. Rev. Lett.88,228102(2002).
    [111]P. Jordano, J. Bascompte, J. M. Olesen, Invariant properties in coevolutionary net-works of plant-animal interactions, Ecology Lett.6,69-81(2003).
    [112]J. A. Dunne, R. J. Williams, N. D. Martinez, Network structure and biodiversity loss in food webs:robustness increases with connectance, Ecology Lett.5,558-567(2002).
    [113]R. J. Williams, E. L. Berlow, J. A. Dunne, A.-L. Barabasi, N. D. Martinez, Two degrees of separation in complex food webs, Proc. Natl. Acad. Sci.99,12913-12916(2002).
    [114]J. A. Dunne, R. J. Williams, N. D. Martinez, Food-web structure and network theory: the role of connectance and size, Proc. Natl. Acad. Sci.99,12917-12922(2002).
    [115]O. Sporns, Network analysis, complexity, and brain function, Complexity 8,56-60(2003).
    [116]J. G. White, E. Southgate, J. N. Thomson, S. Brenner, The structure of the nervous system of the nematode caenorhabditis elegans, Phil. Trans. R. Soc. Lond. B 314, 1-340(1986).
    [117]H. E. Stanley, Introduction to phase transition and critical phenomena, Oxford Uni-versity Press, New York,1971.
    [118]K. Falconer著,曾文曲译,分形几何:数学基础及其应用,人民邮电出版社,北京,2007.
    [119]R. Albert, H. Jeong, A.-L. Barabasi, Error and attack tolerance of complex networks, Nature 406,378-382(2000).
    [120]D. S. Callaway, M. E. J. Newman, S. H. Strogatz, D. J. Watts, Network Robustness and Fragility:Percolation on Random Graphs, Phys. Rev. Lett.85,5468-5471(2000).
    [121]R. Cohen, K. Erez, D. ben-Aveaham, S. Havlin, Resilience of the Internet to Random Breakdowns, Phys. Rev. Lett.82,4626-4628(2000).
    [122]R. Cohen, K. Erez, D. ben-Avraham, S. Havlin, Breakdown of the Internet under Intentional Attack, Phys. Rev. Lett.86,3682-3685(2001).
    [123]P. Holme, B. J. Kim, Attack vulnerability of complex networks, Phys. Rev. E 65, 056109(2002).
    [124]P. Crucitti, V. Latora, M. Maechiori, Model for cascading failures in complex net-works, Phys. Rev. E 69,045104(2004).
    [125]J.-F. Zheng, Z.-Y. Gao, X.-M. Zhao, Clustering and congestion effects on cascading failures of scale-free networks, Eur. Phys. Lett.79,58002(2007).
    [126]M. Kurant, P. Thiran, Error and attack of layered complex networks, Phys. Rev. E 76,026103(2007).
    [127]L. Zhao, K. Park, Y.-C. Lai, Attack vulnerability of scale-free networks due to cas-cading breakdowm, Phys. Rev. E 70,035101(2004).
    [128]A. E. Motter, T. Nishikawa, Rang-based attack on links in scale-free networks:are long range links responsible for the small-world phenomenon?, Phys. Rev. E 66, 065103(2002).
    [129]V. Latora, M. Machiori, Vulnerability and protection of infrastructure networks, Phys. Rev. E 71,015103(2005).
    [130]L.-P. Chi, X. Cai, Structural changes caused by error and attack tolerance in US airport network, Int. J. Mod. Phys. B 18,2394-2400(2004).
    [131]L.-P.Chi, C.-B. Yang, K. Ma, X. Cai, Deternded fluctuation analysis on correlations of complex networks under attack ang repair strategy, Commun. Theor. Phys.45, 765-768(2006).
    [132]L.-P. Chi, C.-B. Yang, X. Cai, Stability of random networks under evolution of attack and repair, Chin. Phys. Lett.23,263-266(2006).
    [133]D. Stauffer, A. Ahaeony, Introduction to percolation theory, Taylor & Francis, Lon-don,1994.
    [134]P.Erdos, A. Renyi, On random graphs, Publicationes Mathematicae Debrecen 6, 290-297(1959).
    [135]B. Bollobas, Random graphs, Academic Press, London,1985.
    [136]A. Barrat, M. Weigt, On the properties of small-world network models, Eur. Phys. J. B 13,547-560(2000).
    [137]F. Chung, L. Lu, The average distances in random graphs with given expected degrees, Proc. Natl. Acad. Sci.99,15879-15882(2002).
    [138]K.-I. Goh, B. Kahng, D. Kim, Universal behavior of load distribution in scale-free networks, Phys. Rev. Lett.87,278701(2001).
    [139]K.-I. Goh, C.-M. Ghim, B. Kahng, D. Kim, Goh et al. reply, Phys. Rev. Lett.91, 189804(2003).
    [140]A.-L. Barabasi, R. Albert, H. Jeong, Mean-field theory for scale-free random net-works, Physica A 272,173-187(1999).
    [141]P. L. Krapivsky, S. Redner, F. Leyvraz, Connectivity of growing random networks, Phys. Rev. Lett.85,4629-4632(2000).
    [142]S. N. Dorogovtsev, J. F. F. Mendes, A. N. Samukhin, Structure of growing networks with preferential linking, Phys. Rev. Lett.85,4633-4636(2000).
    [143]张济忠,分形,清华大学出版社,北京,1995.
    [144]J. Feder, Fractals, Plenum Press, New York and London,1988.
    [145]C. Song, S. Havlin, H. A. Makse, Origins of fractality in the growth of complex networks, Nature Phys.2,275-281(2006).
    [146]C. Song, S. Havlin, H. A. Makse, Self-similarity of complex networks, Nature 433, 392-395(2005).
    [147]C. Song, L. K. Gallos, S. Havlin, H. A. Makse, How to calculate the fractal dimension of a complex network:the box covering algorithm, J. Stat. Mech.03, P03006(2007).
    [148]J. S. Kim, K.-I. Goh, G. Salvi, E. Oh, B. Kahng, D. Kim, Fractality in complex networks:critical and supercritical skeletons, Phys. Rev. E 75,016110(2007).
    [149]K.-I. Goh, G. Salvi, B. Kahng, D. Kim, Skeleton and fractal scaling in complex networks, Phys. Rev. Lett.96,018701(2006).
    [150]J. S. Kim, K.-I. Goh, B. Kahng, D. Kim, Fractality and self-similarity in scale-free networks, New J. Phys.9,177-188(2007).
    [151]C.-Yong Lee, S. Jung, Statistical self-similar properties of complex networks, Phys. Rev. E 73,066102(2006).
    [152]O. Shanker, Defining dimension of a complex network, Mod. Phys. Lett. B 21,321-326(2007).
    [153]O.Shanker, Graph zeta function and dimension of complex network, Mod. Phys. Lett. B 21,639-644(2007).
    [154]D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, J. Zhang, S. Sun, L. Ling, N. Zhang, G. Li, R. Chen, Topological structure analysis of the protein-protein interaction net-work in budding yeast, Nucl. Acids. Res.31,2443-2450(2003).
    [155]R. Guimera, L. Danon, A. Diaz-Guilera, F. Giralt, A. Arenas, Self-similar community structure in a network of human interactions, Phys. Rev. E 68,065103(2003).
    [156]L. Gao, Y. Hu, Z. Di, Accuracy of the ball-covering approach for fractal dimensions of complex networks and a rank-driven algorithm, Phys. Rev. E 78,046109(2008).
    [157]S. Galam, Sociophysics:a review of Galam models, Int. J. Mod. Phys. C 19,409-440(2008).
    [158]R. Toral, C. J. Tessone, Finite size effects in the dynamics of opinion formation, Commun. Comput. Phys.2,177-195(2007).
    [159]K.-I. Goh, B. Kahng, D. Kim, Fluctuation-driven dynamics of the internet topology, Phys. Rev. Lett.88,108701(2002).
    [160]P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality:an explanation of 1/f noise, Phys. Rev. Lett.59,381-384(1987).
    [161]P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality, Phys. Rev. A 38,364-375(1988).
    [162]P. Bak著,李炜,蔡勖译,大自然如何工作,华中师范大学出版社,武汉,2001.
    [163]B. Gutenberg, C. F. Richter, Magnitude and Energy of Earthquakes, Nature 176, 795(1955).
    [164]K. Burridge, L. Knopoff, Model and theoretical seismicity, Bull. Seis. Soc. Am.57, 341-371(1967).
    [165]P. Bak, K. Sneppen, Punctuated equilibrium and criticality in a simple model of evolution, Phys. Rev. Lett.71,4083-4086(1993).
    [166]M. Paczuski, S. Maslov, P. Bak, Avalanche dynamics in evolution, growth, and de-pinning models, Phys. Rev. E 53,414-443(1996).
    [167]S. Boettcher, M. Paczuski, Exact results for spatiotemporal correlations in a self-organized critical model of punctuated equilibrium, Phys. Rev. Lett.76,348-351(1996).
    [168]W. Li, X. Cai, Different hierarchy of avalanches observed in the Bak-Sneppen evolu-tion model, Phys. Rev. E 61,771-775(2000).
    [169]W. Li, X. Cai, Exact equations and scaling relations for f0 avalanche in the Bak-Sneppen evolution model, Phys. Rev. E 61,5630-5633(2000).
    [170]W. Li, X. Cai, Analytic results for scaling function and moments for a different typess of avalanche in the Bak-Sneppen evolution model, Phys. Rev. E 62,7743-7747(2000).
    [171]W. Li, X. Cai, Interaction strength and a generalized Bak-Sneppen evolution model, Chin, Phys. Lett.19,1420-1423(2002).
    [172]W. Li, X. Cai, Information measure for size distribution of avalanche in the Bak-Sneppen evolution model, Chin. Phys, Lett.20,31-34(2003).
    [173]K. Christensen, R. Donangelo, B. Koiller, K. Sneppen, Evolution of random networks, Phys. Rev. Lett.81,2380-2383(1998).
    [174]R. V. Kullkarni, E. Almaas, D. Stroud, Evolutionary dynamics in the Bak-Sneppen model on small-world networks, http://arxiv.org/abs/cond-mat/9905066,1999.
    [175]Y. Moreno, A. Vazquez, The Bak-Sneppen model on scale-free networks, Europhys. Lett.57,765-771(2002).
    [176]S. Lee, Y. Kim, Coevolutionary dynamics on scale-free networks, Phys. Rev. E 71, 057102(2005).
    [177]R. Pastor-Satorras, A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett.86,3200-3203(2001).
    [178]范泽孟,刘怡君,汪云林,李丁,付允编译,社会物理学国际前沿研究透视,科学出版社,北京,2007.
    [179]P. Clifford, A. Sudbury, A model for spatial conflict, Biometrika 60,581-588(1973).
    [180]R. A. Holly, T. M. Liggett, Ergodic Theorems for Weakly Interacting Infinite Systems and the Voter Model, Ann. Probab.3,643-633(1975).
    [181]S. Redner, A guide to first-passage processes, Cambridge University Press, Cam-bridge,2001.
    [182]M. Scheucher, H. Spohn, A soluble kinetic model for spinodal decomposition, J.Stat. Phys.53,279-294(1988).
    [183]L. Frachebourg, P. L. Krapivsky, Exact results for kinetics of catalytic reactions, Phys. Rev. E 53, R3009-R3012(1996).
    [184]J. W. Evans, T. R. Ray, Kinetics of the monomer-monomer surface reaction model, Phys. Rev. E 47,1018-1025(1993).
    [185]F. Slanina, H. Lavicka, Analytical results for the Sznajd model of opinion formation, Eur. Phys. J. B 35,279-288(2003).
    [186]V. Sood, S. Redner, Voter Model on Heterogeneous Graphs, Phys. Rev. Lett.94, 178701(2005).
    [187]V. Sood, T. Antal, S. Redner, Voter models on heterogeneous networks, Phys. Rev. E 77,041121(2008).
    [188]C. Castellano, V. Loreto, A. Barrat, F. Cecconi, D. Parisi, Comparison of voter and Glauber ordering dynamics on networks, Phys. Rev. E 71,066107(2005).
    [189]K. Sychecki, V. M. Eguiluz, M. S. Miguel, Conservation laws for the voter model in complex networks, Europhys. Lett.69,228-234(2005).
    [190]G. J. Baxter, R. A. Blythe, A. J. Mckane, Fixation and Consensus Times on a Network:A Unified Approach, Phys. Rev. Lett.101,258701(2008).
    [191]C. Castellano, D. Vilone, A. Vespignani, Incomplete ordering of the voter model on small-world networks, Europhys. Lett.63,153-158(2003).
    [192]D. Vilone, C. Castellano, Solution of voter model dynamics on annealed small-world networks, Phys. Rev. E 69,016109(2004).
    [193]B. Latane, The psychology of social impact, Am. Psychol.36,343-356(1981).
    [194]K. Sznajd-Weron, J. Sznajd, Opinion evolution in closed community, Int. J. Mod. Phys. C 11,1157-1165(2000).
    [195]D. Stauffer, A. O. Sousa, S. M. de Oliveira, Generalization to square lattice of Sznajd sociophysics model, Int. J. Mod. Phys. C 11,1239-1245(2000).
    [196]I. Chang, Sznajd sociophysics model on a triangularlattice:ferro and antiferromag-netic opinions, Int. J. Mod. Phys. C 12,1509-1512(2001).
    [197]F. A. Rodrigues, L. da F. Costa, Surviving opinions in Sznajd models on complex networks, Int. J. Mod. Phys. C 16,1785-1792(2005).
    [198]A. S. Elgazzar, Applications of small-world networks to some socio-economic systems, Physica A 324,402-407(2003).
    [199]M.,C. Gonzalez, A. O. Sousa, H. J. Hermann, Opinion formation on a deterministic pseudo-fractal network, Int. J. Mod. Phys. C 15,45-57(2004).
    [200]M. He, B. Li, L. Luo, Sznajd model with "social temperature" and defender on small-world networks, Int. J. Mod. Phys. C 15,997-1003(2004).
    [201]M. Bartolozzi, D. B. Leinweber, A. W. Thomas, Stochastic opinion formation in scale-free networks, Phys. Rev. E 72,046113(2005).
    [202]A. T. Bernardes, D. Stauffer, J. Kertesz, Election results and the Sznajd model on Barabdsi network, Eur. Phys. J. B 25,123-127(2002).
    [203]J. Bonnekoh, Monte carlo simulations of the Ising and the Sznajd model on growing Barabdsi-Albert networks, Int. J. Mod. Phys. C 14,1231-1235(2003).
    [204]A. O. Sousa, Consensus formation on a triad scale-free network, Physica A 348, 701-710(2005).
    [205]A. O. Sousa, J. R. Sanchez, Outward-inward information flux in an opinion formation model on different topologies, Physica A 361,319-328(2006).
    [206]J. C. Gonzalez-Avella, V. M. Eguiluz, M. G. Cosenza, K. Klemm, J. L. Herrera, M. San Milguel, Local versus global interactions in nonequilibrium transitions:A model of social dynamics, Phys. Rev. E 73,046119(2006).
    [207]K. Sznajd-Weron, Controlling simple dynamics by a disagreement function, Phys. Rev. E 66,046131(2002).
    [208]K. Sznajd-Weron, Dynamical model of Ising spins, Phys. Rev. E 70,037104(2004).
    [209]K. Sznajd-Weron, Mean-field results for the two component model, Phys. Rev. E 71, 046110(2005).
    [210]K. Sznajd-Weron, R. Weron, How effective is advertising in duopoly markets?, Phys-ica A 324,437-444(2003).
    [211]K. Sznajd-Weron, R. Weron, A simple model of price formation, Int. J. Mod. Phys. C 13,115-123(2002).
    [212]G. Deffuant, D. Neau, F. Amblard, G. Weisbuch, Mixing beliefs among interacting agents, Adv. Complex Systems 3,87-98(2000).
    [213]M. Porfiri, E. M. Bollt, D. J. Stilwell, Decline of minorities in stubborn societies, Eur. Phys. J. B 57,481-486(2007).
    [214]S. Fortunato, Universality of the threshold for complete consensus for the opinion dynamics of Deffuant et al., Int. J. Mod. Phys. C 15,1301-1307(2004).
    [215]J. Lorenz, D. Urbig, About the power to enforce and prevent consensus by manipu-lating communication rules, Adv. Complex System 10,251-269(2007).
    [216]E. Ben-Naim, P. L. Krapivsky, S. Redner, Bifurcations and patterns in compromise processes, Physica D 183,190-204(2003).
    [217]J. Lorenz, Heterogeneous bounds of confidence:Meet, Discuss and Find Consensus!, arXiv:0801.1399v2,2009.
    [218]G. Deffuant, F. Amblard, G. Weisbuch, T. Faure, How Can Extremism Prevail? a Study Based on the Relative Agreement Interaction Model, J. Artif. Soc. Soc. Simul. 5(4), http://jasss.soc.surrey.ac.uk/5/4/1.html,2002.
    [219]G. Deffuant, F. Amblard, G. Weisbuch, Modelling Group Opinion Shift to Extreme. the Smooth Bounded Confidence Model, e-print arXiv:cond-mat/0410199,2004.
    [220]G. Deffuant, Comparing Extremism Propagation Patterns in Continuous Opinion Models, J. Artif. Soc. Soc. Simul.9(3), http://jasss.soc.surrey.ac.uk/9/3/8.html, 2006.
    [221]G. Aldashev, T. Carletti, Benefits of diversity, communication costs, and public opin-ion dynamics, Complexity, to be published,2009.
    [222]E. Ben-Naim, S. Redner, Dynamics of social diversity, J. Stat. Mech.:Theory Exp. L11002,2005.
    [223]T. Carletti, D. Fanelli, S. Grolli, A. Guaruno, How to make an efficient propaganda, Europhys. Lett.74,222-228(2006).
    [224]R. Hegselmann, U. Krause, Opinion dynamics and bounded confi-dence:models, analysis and simulation, J. Artif. Soc. Soc. Simul.5(3), http://jasss.soc.surrey.ac.uk/5/3/2.html,2002.
    [225]B. Kozma, A. Barrat, Consensus formation on adaptive networks, Phys. Rev. E 77, 016102(2008).
    [226]J. Gomez-Gardenes, Y. Moreno, A. Arenas, Paths to Synchronization on Complex Networks, Phys. Rev. Lett.98,034101(2007).
    [227]R. K. Pathria, Statistical Mechanics, Elsevier Pte Ltd., Singapore,1997.
    [228]K, Christensen, N. R. Moloney,复杂性和临界状态(英文影印版),复旦大学出版社,上海,2006.
    [229]T. Gross, H. Sayama, Editors, Adaptive networks:theory, models and applications, Springer & NECSI, London and New York,2009.
    [230]M. C. Gonzalez, P. G. Lind, H. J. Herrmann, System of mobile agents to model social networks, Phys. Rev. Lett.96,088702(2006).
    [231]J. M. Kumpula, J.-P. Onnela, J. Saramaki, K. Kaski, J. Kertesz, Emergence of communities in weighted networks, Phys.Rev. Lett.99,228701(2007).
    [232]A. Clauset, M. E. J. Newman, C. Moore, Finding community structure in very largr networks, Phys. Rev. E 70,066111(2004).
    [233]汪小帆,李翔,陈关荣编著,复杂网络理论及其应用,清华大学出版社,北京,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700