用户名: 密码: 验证码:
华北汛期降水的多尺度变化及其大尺度降水条件的演变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文利用1957-2006年中国740站逐日降水资料和NCEP/NCAR逐日再分析资料,采用EOF分析,小波分析等多种统计方法和天气诊断分析方法,从天气和气候学角度,对华北汛期降水的四种变化,即月内时间尺度变化,年际时间尺度变化,年代际变化以及长期趋势变化,进行了研究和分析,尤其从大气环流以及大尺度降水条件的角度,重点研究和分析了形成华北暴雨以及华北汛期降水年代际变化原因,得到以下结论:
     (1)从气候学意义上确定了华北汛期的开始和结束日期,即华北汛期大致始于6月30,止于8月18日,持续期大约为50天,其中7月19日-8月14日,为华北雨季。华北汛期的开始和结束,具有明确的天气学意义。在整个华北汛期期间,华北区域上空对流层以下基本为上升运动所控制,而在汛期前和后,华北区域上空的垂直运动并不具备这些特征。华北汛期开始时,中国大陆和中国东部海洋为“东高西低”的异常海平面气压场配置,异常偏南风已经到达了30°N附近,此时华北开始进入对流性天气多发期;而当华北汛期结束时,地面上中国大陆和其东部海洋地区出现“西高东低”的异常海平面气压场配置,异常偏北风控制整个中国东部地区,华北汛期结束。
     (2)华北汛期降水在1978年前后发生了年代际减少,这和华北地区雨带的年代际变化密不可分。从1978年前到1978年后,华北雨带降水强度由大变小,准纬向雨带由位置偏北变为位置偏南,准经向雨带由位置偏西转变为位置偏东。同时,中国东部雨带的移动也表现出显著的年代际变化特征。在华北汛期降水偏多阶段,准纬向雨带出现时间较早,存在明显北抬特征。准经向雨带,位置偏西,雨带基本能够接近华北西部边界。在华北汛期降水偏少阶段,准纬向雨带出现时间较迟,雨带北抬和西伸都不明显。西太平洋副热带高压的变动,华北上空以及渤海湾附近的大气稳定度,华北整个汛期期间东亚夏季风的年代际变化是导致雨带出现这种年代际变化的重要因素。华北汛期降水量、5类降水频率及其贡献率都有一定的下降趋势,华北汛期降水量的多寡主要受大雨的频率和暴雨的贡献率影响。华北暴雨贡献率的年代际突变是造成华北汛期降水量发生年代际突变的一个主要因素。
     (3)由于西太平洋副热带高压,东亚夏季风的月内时间尺度周期振荡存在显著的年代际变化,使得华北汛期降水在两个不同阶段,存在着显著不同的月内时间尺度的周期振荡。在华北汛期降水偏多阶段,整个汛期从开始到结束,都存在单一的、显著的3-8d天气时间尺度的周期振荡高频降水,有明显的“7下8上”之规律;在华北汛期偏少阶段,显著的天气时间尺度的高频降水,直到7月中旬才开始出现,出现时间较迟;而在7月22日以后,华北汛期日降水又存在着3-8d和10-20d两种时间尺度周期振荡的叠加,并且,在8月上中旬,10-20d低频降水以负位相开始,正位相结束,从而使华北汛期日峰值降水集中于“7下8上”的规律被打破。
     (4)根据华北暴雨日降水量落区的相似性原则,通过K-means聚类方法,可将华北暴雨分成3类。华北暴雨发生次数的年代际减少,主要是由“北部”型暴雨所造成。其在1978年以后减少的次数占1978年前暴雨总次数的1/3。分别对发生在1978年前和1978年后的“北部”型暴雨进行合成分析表明,在两个不同的阶段,形成暴雨的大尺度降水条件也发生了显著变化。发生在1978年后的暴雨和发生在其前的暴雨相比,发生日当天的高低空急流的强度在减弱,供应华北暴雨的水汽与湿度条件减弱,影响华北暴雨天气的气团也较干。但有意思的是,暴雨发生日当天的抬升凝结高度偏低,由于大气层结变得较为干冷,自由对流高度更高,但CAPE值较大,大气不稳定能量较大。K指数,A指数,全指数以及肖沃特指数等稳定度指数表明,偏少阶段的暴雨比偏多阶段的暴雨对流程度要强。
     (5)除了影响华北汛期降水的大气环流在1978年前后发生的年代际变化以外,大尺度降水条件也在1978年前后发生了年代际变化。即由南边界和西边界的异常水汽输送,改变为由北边界和东边界异常水汽输送;华北地区水汽由异常水汽辐合和盈余,改变为异常水汽辐散和亏损;东亚副热带高空西风急流位置由原来的偏西偏北,改变为偏东偏南,强度由强变弱;华北区域由低空异常上升、高空异常辐散运动改变为低空异常下沉、高空异常辐合运动;而其南部渤海至江淮流域由异常辐合下沉运动改变为异常辐散上升运动;由原来能够到达华北北部甚至华北最北边界的海洋暖湿气团,改变为只能抵达黄河南岸;高原上空大气热源由异常偏强改为异常偏弱,直接导致高原东部邻近地区包括华北在内的纬向垂直环流,由异常上升改变为异常下沉。高原及其邻近地区的大气视热源和华北上空视水汽汇的年代际减少,是华北汛期降水年代际减少的重要热力因素。
The four kinds of variabilities of rainfall during rainy season over North China including submonthly variability,interannual variability,interdecadal variability and long-term trends, are studied in this paper based on 740 stations daily rainfall datasets in China and NCEP/NCAR reanalysis daily datasets, with EOF,wavelet analysis, other various statistical analysis and weather diagnostic analysis methods,especially in the viewpoint of atmosphere circulation and large-scale precipitation conditions. The major conclusions are as follows:
     (1) Rainy season for North China has an average duration of 50 days, starting from Jun 30 and ending on Aug 18 from climatology based on the understanding about the period of rainy season. Thereinto,it is the period of great rainfall for the rainy season of North China from Jul 19 to Aug 14.The initial dates and final dates of rainy season over North China have definite meaning of synoptic meteorology. It is controlled by the upward motion beneath the troposphere over North China region, but it has not these characteristics before and after rainy season of North China. When exits positive anomalies of geo-potential height over the west Pacific, meanwhile exits negative anomalies of geo-potential height in the 5oohpa filed over the North China, and the pattern is an anomalies of“east high and west low”between the Chinese mainland and west Pacific in the surface, that results the anomalies of south wind reaches 30N,the rainy season begins over North China; However, when exits smaller positive anomalies of geo-potential height in the 5oohpa filed over North China ,exits positive anomalies of geo-potential height in the 5oohpa filed over Japanese sea, and the pattern is anomalies of“west high and east low”between the Chinese mainland and west Pacific, that results the anomalies of north wind influence the Eastern China, the rainy season ends over North China.
     (2) There is close relationship between the interdecadal decrease of the rainfall over North China and interdecadal change of rain belt over North China. The intensity of rain belt over North China alters weaker from stronger; quasi-zonal rain belt locates from northward to the southward and quasi-meridian belt locates from westward to the eastward before 1978 and after 1978.Meanwhile, the shift of rain belt over Eastern China exits significant characteristics of interdacadal changes, that is, quasi-zonal rain belt appears earlier and shifts obviously northward; Quasi-meridian belt locates westward and can reach the borders in the west of North China during the flood period of rainfall over North China; on the contrary, quasi-zonal rain belt appears later and two rainfall does not shift obviously northward and weatward.The shift of west pacific subtropical high, the atmospheric stability over North China and nearby Bohai Gulf are important factors which result in these rain belt interdecadal change. The rainfall over North China during rainy season, five kinds of precipitation frequency and precipitation contribution over North China during rainy season have certain decreased trend with the different decreased rate. The rainfall of North China during rainy season is mainly influenced by heavy rain frequency and excessively heavy rainfall contribution. And excessively heavy rainfall contribution during rainy season results in the interdecadal abrupt change of rainfall over North China.
     (3) There exits significantly different submonthly timescale oscillation for the rainfall over North China during rainy season in the two different interdecadal periods due to interdecadal variability in west pacific subtropical high and submonthly timescale oscillation of east Asian monsoon. It exits an obviously singular high frequency rainfall with the 3~8days synoptic timescale periodic oscillation and has a distinct rule of“7 up and 8 down”in the flood period from the beginning and ending of the rainy season over North China;however,it does not take place until mid-July for the distinct synoptic timescale high frequency rainfall, and it appears little later, and there are two timescales with 3~8 days synoptic timescale superimposed 10~20days timescales periodic oscillation for the daily rainfall over North China.furthermore,it appears as negative phase and ends positive phase for the low frequency precipitation in early and mid Aug, which does dot obey the laws which the peak rainfall over North China during the rainy season takes place in the“7 up and 8 down”.
     (4) Heavy rainfall can be categorized into three types according to the similar distribution of its daily rainfall amount by means of K-means clustering algorithms. The interdecadal decreased days of heavy rainfall over North China are mainly caused by the North pattern. The decreased days before 1978 account for one-third of total days after 1978 for heavy rainfall over North China. The composite analyses show that there are distinct interdecadal changes for the heavy rainfall over North China occurring before 1978 and after 1978. The heavy rainfall over North China occurring after 1978 compare to that occurring before 1978,the intensity of the upper level jet stream and low level jet weaken, so do water vapor supply and humidity conditions over North China, and air mass that influences the heavy rainfall over North China is also drier in the heavy rainfall day.however,it is most interesting things that lift condensing level is lower while height of free convective is higher because of drier and colder atmospheric stratification, and atmospheric unstable energy is greater due to the bigger value of CAPE. The stable indexes, such as K-index,A-idex,Total Totals index and Showlter index indicate that heavy rainfall over North China occurring in the drought period is stronger convective than that occurring in the flood one.
     (5) The atmospheric circulation which influences the rainfall over North China during rainy season takes place the interdecadal change around 1978,so do the large-scale precipitation conditions. All the changes are as followings: Anomalous water vapor transport from south and west boundary changes into that from north and east one, while the water vapor from anomalous convergence and abundance converts into anomalous divergence and absence, and the location of east Asia west jet stream in high troposphere is from the westward and northward to eastward and southward, and intensity of east Asia west jet stream in high troposphere is from stronger to weaker, in addition, motion over North China is from anomalous divergent upward to anomalous convergent downward while it is from anomalous convergent downward to anomalous divergent upward between the Bohai Gulf and Yangtze River-Huaihe river valley. Warm and moisture air mass from ocean can reach in the north of North China and even can do the most north border before 1978, and they can only reach in the south bank after 1978.The atmospheric heat source becomes anomalous weaker from anomalous stronger over Qinghai-Xizang Plateau, which results in zonal vertical circulation convert into anomalous upward to anomalous downward in the east of Qinghai-Xizang Plateau and neighboring region including North China. The interdecadal change of the atmospheric heat source in the Qinghai-Xizang Plateau and apparent moisture sink over North China are important thermal factors for the interdecadal decrease of rainfall over North China during rainy season.
引文
1.鲍名,黄荣辉.近40年我国暴雨的年代际变化特征.大气科学,2006,30(6):1057~1067.
    2.鲍名.近50年我国持续性暴雨的统计分析及其大尺度环流背景.大气科学,2007,31(5):779~792.
    3.包庆, Bin Wang,刘屹岷,等.青藏高原增暖对东亚夏季风的影响—大气环流模式数值模拟研究.大气科学, 2008 , 32 (5) : 997~1005
    4.毕宝贵,鲍媛媛,李泽椿.“02. 6”陕南大暴雨的结构及成因分析.高原气象,2006:25(1):34~44
    5.毕云,钱永甫.近40年高层温度场和高度场的时空变化特征.南京气象学院学报, 2001, 24(1): 59~65.
    6.边清河,丁治英,吴明月,等.华北地区台风暴雨的统计特征分析.气象,2005,31(3):61~65.
    7.查良松. 115E经圈垂直环流与我国东部汛期雨带的变动.地理学报,1983,38(1):65~72.
    8.查良松,邹进上.我国东部地区汛期雨带的变动及其与环流的关系.南京大学学报,1985,21(2):380~392.
    9.晁淑懿.夏季黄、渤、日本海高压与华北暴雨的观察事实.应用气象学报,1990,1(2):162~168.
    10.陈德辉,薛纪善.数值天气预报业务模式现状与展望.气象学报,2004,62(5):623~633.
    11.陈烈庭.华北各区夏季降水年际和年代际变化的地域性特征.高原气象,1999,18(4):477~485.
    12.陈隆勋,朱乾根.东亚季风.北京:气象出版社,1991.362.
    13.陈隆勋,朱文琴,王文,等.中国近45年来气候变化的研究.气象学报,1998, 56 (3) : 257~271.
    14.陈隆勋,周秀骥,李维亮.中国近80年来气候变化特征及其形成机制.气象学报, 2004 , 62 : 634~645.
    15.陈文海,柳艳香,汤懋苍.利用地热异常定性预测年度降水之方法.高原气象, 2001 , 20 (4) : 429~434.
    16.陈艳,丁一汇.2004年7月冷空气活动及其对西南地区强降水的影响.气象学报, 2006, 64(6): 743~759.
    17.仇永炎.北方盛夏台风暴雨的天气型及其年际变率.气象,1997,31(3):3~9.
    18.大气物理研究所模拟组.青藏高原上夏季大型对流系统的模拟试验,中国科学,1977a,5:484~495.
    19.大气物理研究所模拟组.夏季青藏高原及其邻近地区流场三维结构的模拟试验.大气科学, 1977b, 7(4):247~255.
    20.戴新刚,汪萍,丑纪范.华北汛期降水多尺度特征与夏季风年代际衰变.科学通报, 2003a, 48( 23) : 2483~2487.
    21.戴新刚,汪萍,张培群,丑纪范.华北降水频谱变化及其可能机制分析.自然科学进展, 2003b, 13 ( 11) : 1182~1189
    22.丁青兰,王令,陈明轩,等.北京地区暖季对流天气的气候特征.气象,2007,33(10):37~44.
    23.丁士晟.北方暴雨分析及其预报研究进展.气象科技,1983,1:7~18.
    24.丁一汇,蔡则怡,李吉顺.1975年8月上旬河南特大暴雨的研究.大气科学, 1978, 2 (4): 276~289.
    25.丁一汇,李吉顺,孙淑清,蔡则怡,赵思雄,陶诗言.影响华北夏季暴雨的几类天气尺度系统分析.中国科学院大气物理研究所集刊(第9号),暴雨及强对流天气的研究.北京:科学出版社, 1980,1:1~13.
    26.丁一汇,章名立,李洪州,蔡则怡,李吉顺.暴雨及强对流天气发生条件的比较分析.大气科学, 1981, 5(4): 388~397.
    27.丁一汇,李鸿洲,章名立,李吉顺,蔡则怡.我国飑线发生条件的研究,大气科学, 1982, 6(1): 18~27.
    28.丁一汇.天气动力学中的诊断分析方法.北京:科学出版社,1989. 293pp.
    29.丁一汇,薛纪善,王守荣等.1998年亚洲季风活动与中国的暴雨/洪涝.南海季风爆发和演变及其与海洋的相互作用.北京:气象出版社,1999.1~4.
    30.丁一汇,李崇银,何金海,陈隆勋,甘子钧,钱永甫,阎俊岳,王东晓,施平方文东,许建平,李立.南海季风试验与东亚夏季风.气象学报,2004,62(5),561~586.
    31.丁一汇.高等天气学.北京:气象出版社,2005,585pp.
    32.丁一汇,柳俊杰,孙颖,柳艳菊,何金海,宋亚芳.东亚梅雨系统的天气-气候学研究.大气科学,2007,31(6):1082~1101.
    33.董安祥,冯松,张存杰.500年来中国东部雨带的南北摆动.气象学报,2002,60(3),678~382.
    34.董丽娜,郭品文,李晓峰.瞬变波活动与江淮地区夏季旱涝的关系.南京气象学院学报:2006,29(4):470~476.
    35.方之芳,张丽.夏季NCEP资料质量和20世纪70年代东亚热低压的突变.高原气象,2006,25(2):179~189.
    36.冯丽文.北京近255年汛期及其多年变化.气象学报,1980,38(4):341~350.
    37.冯伍虎,程麟生,程明虎.“96·8”特大暴雨和中尺度系统发展结构的非静力数值模拟.气象学报, 2001 , 59(3) : 294~307.
    38.冯业荣,王作述.一次梅雨锋暴雨过程Q1和Q2的结构.热带气象学报,1995,11(1): 86~91.
    39.符淙斌,王强.气候突变的定义和检测方法.大气科学,1992,16(4):482~493.
    40.符淙斌,魏和林,陈明,苏炳凯等.区域气候模式对中国东部季风雨带演变的模拟.大气科学,1998,22(4),522~534.
    41.符娇兰,林祥,钱维宏.中国夏季分级雨日的时空特征.热带气象学报,2008,24(4): 367~373.
    42.高庆九,郝立生,闵锦忠.华北夏季降水年代际变化与东亚夏季风、大气环流异常.南京大学学报(自然科学),2006,42(6):590~601.
    43.高由禧等.东亚季风的若干问题,科学出版社,1962,p106.
    44.龚道溢,何学兆.西太平洋副热带高压的年代际变化及其气候影响.地理学报, 2002 , 57 (2) : 185~193.
    45.郭其蕴,王继琴.近30年夏季风时期中国的降水分布.地理学报,1981,36(2),187~195.
    46.郭其蕴,蔡静宁,邵雪梅,等.东亚季风的年代际变率对中国气候的影响.地理学报, 2003, 58 (4) : 569~576.
    47.何金海,温敏,丁一汇,张人禾.亚澳“大陆桥”对流影响东亚夏季风建立的可能机制.中国科学:D辑,2006,36(10):959~967.
    48.何金海,赵平,祝从文,等.关于东亚副热带季风若干问题的讨论.气象学报,2008,66(5):683~696.
    49.何立富,陈涛,周庆亮,李泽椿.北京“7. 10”暴雨β~中尺度对流系统分析.应用气象学报,2007, 18(5):655~665.
    50.何晓群.多元统计分析.北京,中国人民大学出版社,2000,pp380.
    51.胡豪然,钱维宏.东亚夏季风北边缘的确认.自然科学进展,2007,17(1):57~65.
    52.胡亮,何金海,高守亭.华南持续性暴雨的大尺度降水条件分析.南京气象学院学报,2007,30(3):345~351.
    53.“华北暴雨”编写组.华北暴雨.北京:气象出版社,1992,182pp
    54.黄刚,周连童.青藏高原西侧绕流风系的变化及其与东亚夏季风和我国华北地区夏季降水的关系.气候与环境研究, 2004,9(1):316~330.
    55.黄嘉佑.气象统计分析与预报方法.北京,气象出版社,2004,298pp.
    56.黄荣辉.冬季低纬度热源异常对北半球大气环流影响的物理机制.中国科学(B辑),1986,(1):91~103.
    57.黄荣辉,孙凤英.北半球夏季遥相关型的年际变化及其数值模拟.大气科学,1992,16(1):52~61.
    58.黄荣辉,孙凤英.热带西太平洋暖池的热状态及其上空的对流活动对东亚夏季气候异常的影响.大气科学,1994,18(2):141~151.
    59.黄荣辉,徐予红,周连童.我国夏季降水的年代际变化及华北干旱化趋势.高原气象, 1999a, 18(4) : 465~475.
    60.黄荣辉,黄刚.东亚夏季风的研究进展及其需进一步研究的问题.大气科学,1999b,23(2):129~141.
    61.黄荣辉,陈文,丁一汇,等.关于季风动力学以及季风与ENSO循环相互作用的研究.大气科学, 2003, 27 ( 4 ) :484~502.
    62.黄荣辉,蔡榕硕,陈际龙,等.我国旱涝气候灾害的年代际变化及其与东亚气候系统变化的关系.大气科学, 2006,30(5) : 730~743.
    63.黄仕松,余志豪.副热带高压结构及其同大气环流有关若干问题的研究.气象学报, 1962,31(4):339~359.
    64.黄仕松.副热带高压东西向移动及其预报的研究.气象学报,1963,33(3):320~332.
    65.黄仕松.有关副热带高压活动及其预报问题的研究.大气科学,1978,2(2):159~168.
    66.黄士松.西太平洋高压的一些研究.气象,1979,10:1~3.
    67.黄士松,汤明敏.论东亚夏季风体系的结构.气象科学,1987,3:1~11.
    68.黄夏千著,顾钧禧译.华北气团之几种范式.气象杂志,1935,31~36.
    69.江吉喜,项续康.“96·8”河北特大暴雨成因初探.气象, 1997,23 (7) : 19~23.
    70.江吉喜,项续康.“96. 8”河北特大暴雨成因的中尺度分析.应用气象学报,1998,9(3):304~313.
    71.矫梅燕.关于提高天气预报准确率的几个问题.气象,2007,33(11):3~8.
    72.简茂球,罗会帮.华南大气热源和水汽汇的时间变化.热带海洋,1996,15(1):60~67.
    73.匡正,季仲贞,林一骅.华北降水时间序列资料的小波分析.气候与环境研究,2000,5(3):312~317.
    74.雷雨顺.经向型持续性特大暴雨的合成分析.大气科学,1981,39(2):168~181.
    75.李爱华,江志红.中国东部夏季雨带推进过程的年际、年代际变化.南京气象学院学报,2007,30(2):186~193.
    76.李崇银.华北地区汛期降水的一个分析研究.气象学报,1992,50(1):41~49.
    77.李崇银.气候动力学.气象出版社,北京,1995,p205.
    78.李崇银,尤振夏,穆明权.大气季节内振荡及其重要作用.大气科学,2003,27(4):518~535.
    79.李春,孙照渤,陈海山.华北夏季降水的年代际变化及其与东亚地区大气环流的联系.南京气象学院学报,2002,25(4):455~462.
    80.李栋梁,魏丽,李维京,等.青藏高原地面感热异常对北半球大气环流和中国气候异常的影响.气候与环境研究, 2003, 8 ( 1) :60~70.
    81.李峰,丁一汇.近30年夏季亚欧大陆中高纬度阻塞高压的统计特征.气象学报,2004,62(3):327~354.
    82.李红梅,周天军,宇如聪.近四十年我国东部盛夏日降水特性变化分析.大气科学,2008,32(2),358~370.
    83.李跃凤,丁一汇.中国东部夏季降水的多尺度时空分布特征及造成特大暴雨洪涝的下垫面温度条件.国家重点基础研究发展规划大学学术报告摘要,2000.
    84.梁必骐,李勇.暴雨中尺度环场特征及积云对流的反馈作用.热带气象,1991,7(1):16~15.
    85.梁萍,何金海,陈隆勋,等.华北夏季强降水的水汽来源.高原气象,2007,26(3):460~465.
    86.梁平德,刘爱霞,段丽瑶,等.亚洲中部春夏季大气环流持续性异常与我国东部夏季旱涝的关系.大气科学, 2008 , 32 (5) : 1174~1186.
    87.廖清海,高守亭,王会军,陶诗言.北半球夏季副热带西风急流变异及其对东亚夏季风气候异常的影响.地球物理学报,2004,47(1):10~18.
    88.刘海文,丁一汇.华北汛期的起讫及其气候学分析.应用气象学报,2008,19(6):688~696.
    89.刘还珠,张绍晴.湿位涡与锋面强降水天气的三维结构.应用气象学报, 1996, 7 (3) : 275~284.
    90.刘健文,郭虎,李耀东,等.天气分析预报物理量计算基础.气象出版社,2005,253pp
    91.柳艳香,郭维栋,汤懋苍,等. 1996~1998年逐月地震地温场与降水场演变分析.高原气象, 2000, 19 (3) : 304~309.
    92.柳艳香,汤懋苍.我国西部冬季扰动源涡与东部夏季雨带分布.高原气象, 2001, 20(1): 109~112.
    93.柳艳香,郭裕福.中高纬度气压系统异常对东亚夏季风年代际变化的影响.高原气象, 2005, 24 (2) : 129~135.
    94.陆日宇.华北夏季不同月份降水的年代际变化.高原气象,1999,18(4):510~519.
    95.陆日宇.夏季东北阻塞形势维持时的天气尺度波.大气科学, 2001, 25 (3) : 289~302.
    96.陆日宇.华北汛期降水量变化中年代际和年际尺度的分离.大气科学,2002,26(5):611~624.
    97.陆日宇.华北汛期降水量年代际和年际变化之间的线性关系.科学通报. 2003, 48 ( 7) : 718~722.
    98.陆日宇.华北汛期降水量年际变化与赤道东太平洋海温.科学通报,2005,50(11):1131~1135.
    99.马柱国.华北干旱化趋势及转折性变化与太平洋年代际振荡的关系.科学通报,2007,52(10):1199~1206.
    100.毛江玉,吴国雄.1991年江淮梅雨与副热带高压的低频振荡.气象学报,2005,63(5):762~770.
    101.梅士龙,管兆勇.对流层上层斜压波包活动与2003年江淮流域梅雨的关系.大气科学, 2008, 32 (6) : 1333~1340.
    102.缪锦海,Lau,K.M.东亚夏季风降水中30一60天低频振荡.大气科学,1991,15(5):65~71.
    103.闵屾,钱永甫.我国近40年各类降水事件的变化趋势.中山大学学报,2008,47(3):105~111.
    104.彭贵康,柴复新,曾庆存,宇如聪.“雅安天漏”研究I:天气分析.大气科学; 1994,18(4):466~475.
    105.“75·8”暴雨会战北京组.河南_75_8_特大暴雨成因的初步分析(一).气象, 1977a, 7 : 3~5.
    106.“75·8”暴雨会战北京组.河南_75_8_特大暴雨成因的初步分析(二).气象, 1977b , 7: 6.
    107.“75·8”暴雨会战北京组.“75·8”河南特大暴雨的动力学分析.气象学报, 1979 , 37 (4) : 45~55.
    108.“75·8”暴雨会战组.1975年8月河南特大暴雨研究报告.1977.1~173.
    109.钱维宏,符娇兰,张玮玮,等.近40年中国平均气候与极值气候变化的概述.地球科学进125展.2007,22(7):673~684.
    110.覃军,王盘兴.中国东部夏季三个雨带降水的年代际变化及其与中高纬环流和海温的关系.热带气象学报,2005,21(1):63~71.
    111.秦丽,李耀东,高守亭.北京地区雷暴大风的天气—气候学特征研究.气候与环紧研究,2006,11(6):754~762.
    112.寿绍文,李耀辉,范可.暴雨中尺度气旋发展的等熵面位涡分析.气象学报,2001 ,59 (6) :560~568.
    113.寿绍文主编.中尺度气象学.北京:气象出版社, 2003 :370pp.
    114.苏明峰,王会军.全球变暖背景下中国夏季表面气温与土壤湿度的年代际共变率.科学通报,2007,52(8):965~971.
    115.孙安健,高波.华北平原地区夏季严重旱涝特征诊断分析.大气科学,2000,24(3):393~402.
    116.孙凤华,杨素英,任国玉.东北地区降水日数、强度和持续时间的年代际变化.应用气象学报,2007,18(5):610~618.
    117.孙建华,张小玲,卫捷,等. 20世纪90年代华北大暴雨过程特征的分析研究.气候与环境研究.2005,10(3):492~506.
    118.孙建华,齐琳琳,赵思雄.“9608”号台风登陆北上引发北方特大暴雨的中尺度对流系统研究.气象学报,2006, 64 (1) : 57~71.
    119.孙淑清.近五十年来华北地区旱涝特征与全球变化的研究及对未来趋势的探讨.高原气象,1999,18(4): 541~551.
    120.谭本馗,潘旭辉.1998年夏季北半球斜压波活动与长江流域洪涝灾害分析.南京大学学报(自然科学)2002,38(3):355~364.
    121.谭桂容,孙照渤.西太平洋副高与华北旱涝的关系.热带气象学报,2004,20(2):206~211.
    122.汤懋苍,柳苗,朱德琴,李栋梁.我国东部的准经向降水带及其成因分析.高原气象,2006,25(5):964~968.
    123.汤绪,钱维宏,梁萍.东亚夏季风边缘带的气候特征.高原气象,2006,25(3):375~381.
    124.陶诗言.中国夏季副热带天气系统若干问题的研究.北京:科学出版社, 1963,1~146.
    125.陶诗言,丁一汇,周晓平.暴雨和强对流天气的研究.大气科学,1979,3(3):227~238.
    126.陶诗言.中国之暴雨.北京:科学出版社,1980,1~7.
    127.陶诗言,卫捷.再论夏季西太平洋副热带高压的西伸北跳.应用气象学报,2006,17(5):513~524.
    128.陶祖钰,黄伟.大暴雨过程中与急流相关气块的三维运动分析.气象学报, 1994, 52 (3) : 359~367.
    129.田生春,曾昭美.夏季华北地区高空槽前有无暴雨的对比分析.大气科学,1982,6(2):179~186.
    130.涂长望,黄仕松.中国夏季风之进退.气象学报,1944,18:1~20.
    131.涂长望.中国天气与世界大气的活动及其长期预告、中国夏季旱涝的应用,中国现代科学论著丛刊,气象学(1919~1949).科学出版社,1954.
    132.王大钧,陈列,丁裕国.近40年来中国降水量、雨日变化趋势及与全球温度变化的关系.热带气象学报,2006,22(3): 283~289.
    133.王德瀚.雨季划分及雨带变动的研究.气象学报,1981,39(2),252~256.
    134.王欢,寿绍文,解以扬,等.干侵入对2005年8月16日华北暴雨的作用.南京气象学院学报, 2008, 31 (1) : 97~103.
    135.王沛霖,许丽章,孙力.北京地区夏季暴雨形成的环境特征.中山大学学报(自然科学版),1996,35(4):108~111.
    136.王绍武.现代气候学研究进展.北京:气象出版社,2001,P485.
    137.王颖,施能,顾骏强,等.中国雨日的气候变化.大气科学, 2006,30(1):162~170.
    138.王遵娅,丁一汇,何金海,等.近50年来中国气候变化特征的再分析.气象学报,2004,62(2):228~236.
    139.王遵娅,丁一汇.中国雨季的气候学特征.大气科学,2008,32(1):1~13.
    140.汪钟兴.暴雨过程大尺度热量、水汽和动量收支分析.热带气象,1992,2:169~173.
    141.卫捷,张庆云,陶诗言.20年华北地区干旱期大气环流异常特征.应用气象学报,2003,14(2):140~151.
    142.魏凤英.现代气候统计诊断预测技术.北京:气象出版社,1999,296pp.
    143.魏凤英.我国夏季雨带分布类型的集成估算模型.自然科学进展,2007,17(5):639~645.
    144.“58.7暴雨研究组”.黄河中游“58.7”大暴雨成因的天气学分析.1987,大气科学,11(1):100~107.
    145.吴国雄,蔡雅萍,唐晓菁.湿位涡和倾斜涡度发展.气象学报, 1995, 53 (4) : 387~405.
    146.吴国雄,刘还珠.全型垂直涡度倾向方程和倾斜涡度发展.气象学报, 1999a, 57 (1) : 1~15.
    147.吴国雄,刘屹岷,刘平.空间非均匀加热对副热带高压形成和变异的影响I:尺度分析.气象学报, 1999b, 57(3): 257~263.
    148.吴国雄,刘屹岷,刘新,等.青藏高原加热如何影响亚洲夏季的气候格局.大气科学, 2005, 29(1): 47~56.
    149.伍荣生.现代天气学原理.北京:高等教育出版社,1999,319pp.
    150.吴蓁,范学峰,郑世林,席世平.台风外围偏东气流中的暴雨及其等熵位涡特征.高原气象,2008,27(3):584~595.
    151.徐桂玉,杨修群,孙旭光.华北降水年代际、年际变化特征与北半球大气环流的联系.地球物理学报, 2005 , 48 (3) :511~518.
    152.徐国昌,李梅芳,张志银.我国雨带的季节变化.大气科学,1983,7(3),312~318.
    153.徐国强,藏建升,周伟灿.1998年京津冀夏季风的低频振荡与降水的特征.2001,12(3):297~306 .
    154.徐海明,何金海,周兵.“倾斜”高空急流轴在大暴雨过程中的作用.应用气象学报, 2001,24(2):155~161.
    155.徐娟,魏明建.华北地区百年气候变化规律分析.首都师范大学学报(自然科学版),2006,27(4):79~82.
    156.徐淑英,高由禧.我国季风进退及其日期的确定.地理学报,1962,28(1):1~18.
    157.徐淑英.近三十年我国季风气候问题的研究.气象科技,1982,3:1~8.
    158.徐夏囡.夏季华北冷锋暴雨个例分析.大气科学,1982,6(1):71~76.
    159.杨广基,王兴东,王桂芳,周明煌.冬季青藏高原对其周围地区流场影响的模拟实验.气象学报, 1980, 38(1):16~26
    160.杨广基.中国东部降水和风场的低频振荡特征.大气科学,1992,16(1):103~110.
    161.杨伟愚,叶笃正,吴国雄.夏季青藏高原热力场和环流场的诊断分析II环流场的主要特征及其大型垂直环流场.大气科学,1992,16(3):287~301.
    162.杨修群,朱益民,谢倩,等.太平洋年代际振荡的研究进展.大气科学, 2004,28 (6) :979~992.
    163.杨修群,谢倩,朱益民等.华北降水年代际变化特征及相关的海气异常型.地球物理学报, 2005,48 (4): 789~797.
    164.叶笃正,罗四维,朱抱真.西藏高原附近的風埸结构及其对流层大气的热量平衡.科学通报,1957,4,116~117.
    165.叶笃正,陶诗言,李麦村.在六月和十月大气环流的突变现象.气象学报,1958,29(4):249~263.
    166.叶笃正,张捷迁.青藏高原加热作用对夏季东亚大气环流影响的初步模拟实验.中国科学, 1974, 3: 301~320.
    167.叶笃正,高由禧,陈乾.青藏高原及其紧邻地区夏季环流的若干特征.大气科学,1977,4,289~299.
    168.叶笃正,高由禧等.西藏高原气象学.1979,科学出版社,278.
    169.叶笃正,杨广基.北半球夏季中低纬地区的平均垂直环流与大气中冷热源分布的关系.气象学报,1981,9,28~37.
    170.叶笃正,黄荣辉,等编著.长江黄河流域旱涝规律和成因研究.济南:山东科学技术出版社, 1996. 387pp.
    171.游景炎.华北暖性切变线的一些结构特征.气象学报,1965,35(1):107~110.
    172.于玉斌,姚秀萍.对华北一次特大台风暴雨过程的位涡诊断分析.高原气象, 2000, 19 (1) : 111~119.
    173.宇如聪,周天军,李建,辛晓歌.中国东部气候年代际变化三维特征的研究进展.大气科学,2008,32(4): 893~905.
    174.曾庆存,宇如聪,彭贵康,柴复新.“雅安天漏”研究Ⅲ:特征、物理量结构及其形成机制.大气科学,1994,(18)6:649~659.
    175.张芳华,杨克明,毛冬艳,罗金秀,郭文华.2005年6月湖南大暴雨过程的天气动力学诊断分析.气象, 2006 , 32(3): 78~85.
    176.章基嘉.苏联穆尔坦诺夫斯基学派长期天气预告天气学方法之发展.气象学报, 1959, 30(4): 376~389.
    177.章基嘉,孙照渤,陈松军.用自然正交函数分解法划分自然天气季节的研究.南京气象学院学报,1982,2:189~195.
    178.章基嘉,孙照渤,陈松军.应用均值聚类法对东亚各自然天气季节500毫巴候平均环流的分型试验.气象学报,1984,42(3):311~319.
    179.张庆云.1880年以来华北降水及水资源变化.高原气象,1999,18(4): 487~495.
    180.张庆云,卫捷,陶诗言.近50年华北干旱的年代际和年际变化及大气环流特征.气候与环境研究,2003, 8 ( 3) : 307~318.
    181.张琼,吴国雄.长江流域大范围旱涝与南亚高压的关系.气象学报, 2001, 59(5): 569~577.
    182.张人禾. El Ni. no盛夏印度夏季风水汽输送在我国华北地区夏季降水异常中的作用.高原气象, 1999 , 18 (4) : 567~574.
    183.张耀存,郭兰丽.东亚副热带西风急流偏差与中国东部雨带季节变化的模拟.科学通报,2005,50(13):1394~1399.
    184.赵汉光.华北的雨季.气象,1994,20(6):3~8.
    185.赵亮,丁一汇.梅雨期高位涡源区及其传播过程.应用气象学报,2008,19(6):967~708.
    186.赵平,陈隆勋.近35年来青藏高原大气热源气候变化特征及其与中国降水关系的研究.中国科学(D辑), 2001 , 3 : 327~332.
    187.赵平,周秀骥.近40年我国东部降水持续时间和雨带移动的年代际变化.应用气象学报,2006,17(5):548~556.
    188.赵声蓉,宋正山.华北汛期旱涝与中高纬大气环流异常.高原气象,1999,18(4):535~540.
    189.赵声蓉,宋正山,纪立人.华北汛期降水与亚洲季风异常关系的研究.气象学报, 2002 , 60(1) : 68~75
    190.赵声蓉,宋正山,纪立人.华北汛期降水与青藏高原热力异常关系的研究.大气科学, 2003, 27 (5) : 881~893.
    191.赵宇,崔晓鹏,王建国.由台风低压倒槽引发的山东暴雨过程研究.气象学报,2008,66(3):423~436.
    192.赵振国.中国夏季旱涝及环流场.北京:气象出版社,1999 :45.
    193.赵振国,朱艳峰,柳艳香,许力,孙林海,李想. 1880—2006年中国夏季雨带类型的年代际变化特征.气候变化研究进展,2008,14(2):95~100.
    194.郑秀雅.东北暴雨.北京:气象出版社,1992 :219pp.
    195.郑永光,张春喜,陈炯,陈明轩,王迎春.用NCEP资料分析华北暖季对流性天气的气候背景.北京大学学报(自然科学版) ,43(5),2007,600~608.
    196.周长艳,何金海,李薇,陈隆勋.夏季东亚地区水汽输送的气候特征.南京气象学院学报, 2005,28(1) : 18~27.
    197.周连童,黄荣辉.我国华北地区春季降水的年代际变化特征及其可能成因的探讨.气候与环境研究,2006,11(4):441~450.
    198.周连童,黄荣辉.中国西北干旱、半干旱区感热的年代际变化特征及其与中国夏季降水的关系.大气科学, 2008 , 32 (6) : 1276~1288.
    199.周天军,李立娟,李红梅,包庆.气候变化的归因和预估模拟研究.大气科学, 2008, 32 (4) : 906~922.
    200.周晓霞,丁一汇,王盘兴.影响华北汛期降水的水汽输送过程.大气科学, 2008, 32 (4) : 345~357.
    201.朱抱真,宋正山.关于夏季东亚大气环流的研究.大气科学,1979,3(3):219~226.
    202.朱锦红,王绍武,慕巧珍.华北夏季降水80年振荡及其与东亚夏季风的关系.自然科学进展,2003,13(11):1205~1208.
    203.朱乾根,沈桐立.我国东部雨带北进与长波西退的联系.南京气象学院学报,1989,12(1):1~10.
    204.朱乾根,施能.初夏北半球500hPa遥相关型的强度和年际变化及其与我国季风降水的关系.1993,9(1):1~11.
    205.朱乾根,林锦瑞,寿绍文等.天气学原理和方法.2007,气象出版社,649pp.
    206.竺可桢.东南季风与中国之雨量.地理学报, 1934 , 1 (1) :1~27.
    207.朱玉祥,丁一汇,徐怀刚.青藏高原大气热源和冬春积雪与中国东部降水的年代际变化关系.气象学报,2007,65(6):346~958.
    208. Allan, R. and B.J. Soden. Atmospheric warming and the amplification of precipitation extremes. Science,2008,321,12, 1481-1484.
    209. Annamalai, H. and J.M. Slingo. Active/break cycles: diagnosis of the intraseasonal variability of the Asian summer monsoon. Clim. Dyn.,2001,18, 85-102.
    210. Arai, M. and M. Kimoto. Simulated interannual variation in summertime atmospheric circulation associated with the East Asian monsoon. Clim Dyn ,2008,31(4):435-447.
    211. Arthur N Samel, Wang Wei Chyung, IiangXin Zhong. The monsoon rainband over China and relationships with the eurasian circulation. J. Climate,1999, 12(1):115-131.
    212. Blackmon M L. A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J . Atmos. Sci. , 1976 ,33(8):1 607-1 623.
    213. Chan J C L, Ai W, Xu J. Mechanisms responsible for the maintenance of the 1998 South China Sea summer monsoon. J Meteor Soc Japan, 2002, 80: 1103-1113
    214. Chen, T. C. and J. M. Chen. The 10–20 day mode of the 1979 Indian monsoon: Its relation with the time variation of monsoon rainfall. Mon. Wea. Rev,1993, 121, 2465-2482.
    215. Chen, T. C, S. Y. Wang, W. R. Huang, and M. C. Yen. Variation of the East Asian summer monsoon rainfall. J. Climate, 2004,17, 744-762.
    216. Cressman G P. An operational objective analysis system.Mon. Wea. Rev, 1959 , 87 (10) : 367-374.
    217. Cressman G P. Circulation of the west Pacific jet stream. Mon. Wea. Rev , 1981 , 109 : 2450-2463.
    218. Dai A G, Trenberth K E, Qian T T. A global data set of Palmer Drought Severity Index for 1870—2002: Relationship with surface moisture and effects of surface warming. J Hydrometeorol, 2004, 5:1117-1130.
    219. Ding Qinghua , Bin Wang,. Circumglobal teleconnection in the Northern Hemisphere Summer.J.Climate,2005,18(17), 3483-3505.
    220. Ding Y H. Summer monsoon rainfalls in China. J . Meteor.Soc. J apan , 1992 , 70 : 373-396.
    221. Ding Yihui. Monsoon over China. Kluwer Academic Publishers.1994.420.
    222. Ding Yihui , Sun Ying. Changes in Asian summer monsoon and possible mechanisms. Newsletter on Climate Change 2003/ 2004 , 2004 , 47-49.
    223. Ding Yihui,Ma Xiaoqing,Analysis of isentropic Potential Vorticity for a Strong Cold Wave During 2004/2005 Winter,Acta Meteorologica Sinica,2008,22(2):129-141.
    224. DoswellⅢ,C,A. and E.N.Ramsmussen. The effect of neglecting the virtual temperature correction CAPE calculations. Wea Forecasting, 1994, 9: 625-629.
    225. Emanuel K A. The Langrangian parcel dynamics of moist symmetric instability . J Atmos Sci , 1983 , 40 : 2368 -2376.
    226. Enomoto T , Hoskins B J . The formation mechanism of the Bonin high in August . Quart J Roy Meteor Soc , 2003 , 587 :157-178.
    227. Eugenia Kalnay. Atmospheric Modeling , Data Assimilation , and Predictability . The Press Syndicate of University of Cambridge ,2003.328pp.
    228. Flohn H. Large-scale aspects of t he summer monsoon in south and east Asia . J Meteor Soc J apan , 1957 , 75 : 180-186.
    229. Fu, Q., C.M. Johanson, J.M. Wallace, and T. Reichler. Enhanced mid-latitude tropospheric warming in satellite measurements. Science, 2006,312, 1179.
    230. Fumiaki Fujibe,Nobuo Yamazaki,Kenji Kobayshi. Long-Term Changes of Heavy Precipitation and Dry Weather in Japan(1901–2004). J. Meteor. Soc. Japan, 2006, 84(6) : 1033-1046
    231. Gong D Y, HO C H. Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophy Res Letter, 2002, 29(10): 1436
    232. Gong D Y, Shi P J, Wang J A. Daily precipitation changes in semiarid region over northern China. Journal of Arid Environments, 2004,59,771-784.
    233. Goswami B N, Venugopal V, Madhusoodanan M S, at al. Increasing trend of extreme rain events over India in a warming environment. Science, 2006, 314: 1142-1445
    234. Hales, J. E., Jr., and C. A. Doswell III. High~resolution diagnosis of instability using hourly surface-lifted parcel temperatures. Preprints.1982,12th Conf. on Severe Local Storms, 172-175.
    235. Hatsuki Fujinami, Tetsuzo Yasunari. Submonthly Variability of Convection and Circulation over and around the Tibetan Plateau during the Boreal Summer, J. Meteor.Soc. Japan, 2004,82(6):1545-1564.
    236. He H Y.Mc Ginnis, J W.Song Z The onset of the Asian monsoon in 1979 and the effect of the TibetanPlateau Mon Wea Rev,1987,115:1966-1995.
    237. Hoskins B J , M E McIntyre , A W Robertson. On the use and significance of isentropic potential vorticity maps . Quart J R Meteor Soc , 1985 , 111 : 877 -946.
    238. Hongbo Liu, Da-Lin Zhang, and Bin Wang. Daily to submonthly weather and climate characteristics of the summer 1998 extreme rainfall over the Yangtze River Basin. Journal of Geophsical Reseach, 2008,VOL. 113, D22101, doi:10.1029/2008JD010072.
    239. Hsu H H , Liu X. Relationship between the Tibetan Plateau heating and East Asian summer monsoon rainfall . Geophys.Res. Lett. , 2003 , 30 ( 20) : 2066 , doi : 10. 1029/ 2003GL017909.
    240. Hu Y.Y., and Q. Fu. Observed poleward expansion of the Hadley circulation since 1979. Atmos. Phys. Chem., 2007,7, 5229-5236.
    241. Hu Z Z, Yang S, Wu R. Long-term climate variations in China and global warming signals. J Geophys Res, 2004, 108(D19): 4614, doi:10.1029/2004JD003651
    242. Huang R , Zhou L , Chen W. The progresses of recent studies on the variabilities of the East Asia monsoon and their causes. Advances in A tmospheric Sciences , 2003 , 20 : 55-69.
    243. Hulme M, Zhao Z C, Jiang T. Recent and future climate change in East Asia. Int J Climatol, 1994, 14: 637-658.
    244. IPCC.Climate change 2007:The physical science basis.Contribution of Working GroupⅠto the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon,S D.Qin M.Manning Z.Chen,M.et al. 2007, Cambridge University Press,Cambridge,United Kingdom and New York ,NY, USA..
    245. K-M.Lau,G.J Yang,S. H. Shen.Seasonal and Intraseasonal Climatology of Summer Monsoon Rainfall over East Asia.Mon. Wea. Rev.,1988,16:18-37.
    246. Konrad, C. E. Synoptic-scale features associated with warm season heavy rainfall over the interior southeastern United States. Wea. Forecasting, 1997,12: 557-571.
    247. Krishnamurti T N,Subrahmanyam D.The 30-50 day mode at 850mb during MONEX J Atmos Sci,1982,39:2088-2095.
    248. Krishnamurti T N. Summer monsoon experiment-A review. Mon. Wea. Rev.,1985,113:1590-1626.
    249. Krishnamurti T N.,N. Surgi, Observational aspects of summer monsoon.In: Monsoon Meteorology, Ed. C. P Chang and T.N Krishnamurti, Ed., Oxford Univ. Press, 1987,3-25.
    250. Lau, K.H., and N.C. Lau.Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances. Mon. Wea. Rev, 1990,118, 1888-1913
    251. Lau K M , Yang S. Seasonal variation , abrupt transition and intraseasonal variability associated with the Asian summer monsoon in the GLA GCM. J . Climate , 1996 , 9 : 965-985.
    252. Lau K M , Yang S. Climatology and interannual variability of the Southeast Asian summer monsoon. Adv AtmosSci, 1997, 14:141-162
    253. Li,T.,B.Wang,and R.H.Zhang. Western North Pacific monsoon:Its annual cycle and subseasonal tointerannual variability.In:TheGlobal Monsoon System:Research and Forecast.Ed. by C.P.Chang,Bin Wang and N. C.G. Lau.WMO/TD NO. 1266.(TMRP Report No.70),2005,115-135.
    254. Liang P D,Liu A X. Winter Asia jetstream and seasonal precipitation in East China. Adv. Atmos Sci, 1994, 11(3):311-318
    255. Luo H B, Yanai M. The large-scale circulation and heat sources over the Tibetan plateau and surrounding areas during the early summer of 1979, Part I: Precipitation and kinematic analyses. Mon Wea Rev ,1983 , 111 : 922-944.
    256. Luo H B, Yanai M. The large-scale circulation and heat sources over the Tibetan plateau and surrounding areas during the early summer of 1979, PartⅡ: Heat and moisture budgets. Mon Weather Rev, 1984, 112(5): 966-989.
    257. Madden R A, Julian P R. Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific, J Atmos Sci,1971,28: 702-708.
    258. Madden R D ,Julian P. Description of globe scale circulation cells in the tropics with 40-50 day period.J.Atmos.Sci,1972,29:1109-1123.
    259. Matsumoto J, K Takahashi. Regional difference of daily rainfall characteristics in East Asian summer monsoon season. Geogr. Rev. Japan, 1999,72B:193-201.
    260. Menon S , Hansen J , Nazarenko L , et al . Climate effects of black carbon aerosols in China and India. Science , 2002 ,297 :2250-2253.
    261. Murakami, M.Analysis of summer monsoon fluctuations over India. J. Meteor. Soc. Japan,1976,54, 15-31.
    262. Murakami, M.Analysis of the deep convective activity over the western Pacific and Southeast Asia.Part II: Seasonal and intraseasonal variations during northern summer. J. Meteor. Soc. Japan,1984,62, 88-108.
    263. Nitta, T.Observational study of heat sources over the eastern Tibetan Plateau during the summer monsoon. J. Meteor. Soc. Japan, 1983,61: 590-605
    264. Nitta T. Convective activities in the tropical western pacific and their impact on the northern hemisphere summer circulation. J Meteor Soc Japan,1987,65(3):373-390.
    265. Nobuhiko Endo, Borjiginte Ailikun, Tetsuzo Yasunari. Trends in Precipitation Amounts and the Number of Rainy Days and Heavy Rainfall Events during Summer in China from 1961 to 2000. J.Meteor.Soc.Japan,2005,83(4):621-631.
    266. Ogasawara T, R Kawamura.Effects of Combined Teleconnection Patterns on the East Asian Summer Monsoon Circulation Remote Forcing from low and High latitude regions. J. Meteor.Soc. Japan,2008, 86, 491-504.
    267. Qian W H, Lin X. Regional trends in recent precipitation indices in China. Meteorology and Atmospheric Physics, 2006, 93(1-2): 193-207.
    268. Ramage C S.Monsoon meteorology.In:Boer E,Stokes C,eds.International GeophysicsSeries,Vol.15,New York:Academic Press,1971,296pp.
    269. Seidel, D.J., Q. Fu, W.J. Randel, T.J. Reichler, Widening of the tropical belt in a changing climate. Nature Geoscience, 2007,38, doi:10.1038/ngeo.
    270. Shapiro M A. Mesoscale weather systems of the central United States. The National storm program. R A Anthes Ed.,UCAR,P.O.Box 3000,Boulder,Colorado,1983,80307,3.1-3.7
    271. Sikka, D.R, and S. Gadgil, On the maximum cloud zone and the ITCZ over Indian longitudes during the Southwest Monsoon. Mon Wea Rev, 1980, 108 : 1840-1853.
    272. Simmonds I , Bi D , Hope P. Atmospheric water vapor flux and it’s association wit h rainfall over China in summer . J .Climate , 1999 , 12 (5) : 1353-1367.
    273. Stott P A , Tett S F B ,Jones G S , et al . External control of 20th century temperature by natural and anthropogenic forcing. Science , 2000 , 290 : 2133-2137.
    274. Tao S, Chen L. A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C.P. and Krishnamurti TN,Eds. Oxford University Press,1987.60-92.
    275. Tao Shiyan , Ding Yihui. Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull .Amer. Meteor. Soc., 1981 , 62 : 23-30.
    276. Tett S F B , Stott P A , Allen M A , et al . Causes of twentieth century temperature change. Nature , 1999 , 399 : 569-572.
    277. Torrence C, Compo G P. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 1998, 79:61-78.
    278. Uccellini,L.W, D. R. Johnson. The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon Wea Rev, 1979, 107 (6) : 682-703.
    279. Vincent, D. G., and Coauthors. High and low frequency intraseasonal variance of OLR on annual and ENSO timescales. J. Climate, 1998,11,968-986.
    280. Wakabayashi, S. and R. Kawamura. Extraction of major teleconnection patterns possibly associated with anomalous summer climate in Japan. J.Meteor. Soc. Japan, 2004,82, 1577-1588.
    281. Wang, B.and X.,Xu,Northern Hemispheric summer monsoon singularities and climatological intraseasonal oscillation. J. Climate, 1997,10,1071-1085.
    282. Wang, B. Lin Ho. Rainy seasons of The Asian-Pacific monsoon.J.Climate,2002,15,386-396.
    283. Wang, B., and Q. Ding. Changes in global monsoon precipitation over the past 56 years. Geophys. Res. Lett., 2006,33, L06711, doi:10.1029/2005GL025347.
    284. Wang, B., Q. Bao, B. Hoskins, G. Wu, and Y. Liu .Tibetan Plateau warming and precipitation changes in East Asia, Geophys. Res. Lett,.2008, 35, L14702, doi:10.1029/2008GL034330.
    285. Wang Huijun. The weakening of the Asian monsoon circulation after the end of 1970’s. Adv. Atmos. Sci., 2001,18(3):376-386.
    286. Wang Shaowu, et al. Reconstruction of the summer rainfall regime for the last 500 years in China. GeoJournal,1981, 5(2) 117-122.
    287. Wentz, F.J., L. Ricciardulli, K. Hilburn, and C. Mears.How much more rain will global warming bring. 2007,Science, 317, 233-235.
    288. Woo Jin Lee , M Mak .Observed Variability in the Large-Scale Static Stability. J. Atmos.Sci,1994,51(14):2137-2144.
    289. Wu Bingyi.. Weakening of Indian summer monsoon in recent decades.Advances in Atmospheric Sciences. Adv. Atmos. Sci.,2005,22(1):21-29.
    290. Wu R , Wang B. Multi-stage onset of the summer monsoon over the Western North Pacific. Climate Dn. , 2001 , 17 : 277-289.
    291. Wu Renguang , Wang Bin. A contrast of the East Asian summer monsoon-ENSO relationship between 1962-77 and 1978-93 .J . Climate , 2002 , 15 : 3266-3279.
    292. Xu Q. Abrupt change of the mid-summer climate in central East China by the influence of atmospheric pollution. Atmos. Environ.,2001 , 35 : 5029-5040.
    293. Yanai M, Esbensen S, Chu J H. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci, 1973, 30(4): 611-627.
    294. Yanai , M , Li Chengfeng , Song Zhengshan.Seasonal heating of the Tibetan plateau and its effects on the evolution of the Asian summer monsoon , J Meteor Soc Japan , 1992 , 70 (1) , 319-351.
    295. Yasunari, T. Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 1979,57, 227-242.
    296. Yasunari T. A quasi-stationary appearance of 30-60 day period in the fluctuations during the summer monsoon over India, J. Meteor. Soc.Japan,1980,58, 225-229.
    297. Yasunari, T. Structure of an Indian summer monsoon system with around 40-day period. J. Meteor.Soc. Japan, 1981,59, 336-354.
    298. Yihui Ding.The variability of the Asian Summer Monsoon. J. Meteor. Soc, Japan. 2007, 85b,21-54.
    299. Yu Rucong, Bin Wang,Tianjun Zhou.Tropospheric cooling and summer monsoon weakening trend over East Asia, Geophys. Res. Lett., 2004,31, L22212, doi:10.1029/2004GL021270.
    300. Yu R C , Zhou T J . Seasonality and t here-dimensional structure of the interdecadal change in East Asian monsoon. J .Climate , 2007 , 20 : 5344-5355.
    301. Zhai P M, A Sun, F Ren et al.. Changes of climate extreames in China. Clim Change,1999,42: 203-218.
    302. Zhai P M , Zhang X B , Wan H , et al . Trends in total precipitation and frequency of daily precipitation extremes over China. J . Climate , 2005 , 18 : 1096-1108.
    303. Zhang,X.,Zwiers,F.W.,Hegerl,G.C.,et al.Detection of human influence on twentieth-century precipitation trends.Nature, 2007,448, 461-465.
    304. Zhou, T.-J., and R.-C. Yu. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China.2005,J. Geophys. Res., 110, D08104, doi:10.1029/2004JD005413.
    305. Zhou Tianjun, R. Yu, H. Chen, A. Dai, and Y. Pan.Summer precipitation frequency, intensity, anddiurnal cycle over China: A comparison of satellite data with raingauge observations.2008a,Journal of Climate, 21(16), 3997-4010.
    306. Zhou, T., L. Zhang, and H. Li. Changes in global land monsoon area and total rainfall accumulation over the last half century.2008b,Geophys.Res. Lett., 35, L16707 ,doi:10.1029/2008GL034881.
    307. Zveryaev I. I. Interdecadal changes in the zonal wind and the intensity of intraseasonal oscillations during boreal summer Asian monsoon,tellus,2002,54A,288-298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700