用户名: 密码: 验证码:
协同人工免疫计算模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对当前人工免疫系统的通用模型在计算效能方面仍然存在的一些问题,本文通过借鉴生命科学中协同进化的一些概念和行为方式,如生态环境、物种影响等,探讨了一种协同人工免疫计算模型(CAIM)的实现方法,旨在改善当前该类计算模型中的不足。
     该模型的核心思想是将一类物种的某种进化特性总结后作用于另一类物种相似的进化特性,以提高对应物种的进化过程。具体而言,首先,系统将每类物种的最优解集合进行曲线拟合,以得出该种群进化趋势参数表;其次,对两种群之间的相似度进行判断,如果相似度超过系统设定的阈值,则根据相似种群进化趋势参数表调整各自种群的参数使其种群得以快速进化;最后,系统动态调整种群规模以形成协同进化的生态格局。我们用双物种的聚类算法进行了简单的仿真实验,两物种在相似性上达到阈值之后,对其分别进行最优解集合的三次样条曲线拟合,根据相对应的参数调整以达到各自种群加速进化的效果。结果表明在该协同进化模型算法下,两物种所得到的最优解优于各自单独进化的结果,且寻优时间大大缩短。
     在上述工作的基础之上,将此协同进化模型与人工免疫理论相结合,进一步针对协同人工免疫计算模型进行了深入的研究,使该模型应用于解决经典的TSP优化问题。其主要思想在于分析种群进化过程中,在免疫疫苗亦随之进化的情况下,如何建立疫苗库与种群间的协同进化机制以提高算法全局搜索最优解或者满意解的概率。通过理论分析和针对多组TSP问题的仿真计算,结果表明该模型在搜索最优解或满意解均优于传统的遗传算法,同时在寻优效率上有较大提升。
For the limited computing efficiency of existing artificial immune models, a novel method is proposed to improve their searching capabilities, which makes use of some coordinative mechanisms, such as ecological environment and species affected etc, with referring to such kind of models or concepts in natural world, discussion a means of computing model of Cooperation-based Artificial Immune Model (CAIM).
     The core idea of the model is one species will be some sort of evolutionary characteristics of the role of sum of the other species in the evolution of similar characteristics, to enhance the evolution speed of corresponding species. Specifically, First, Species of each type of system will be the optimal solution set for curve fitting, come to the evolutionary trend of the population parameter table; Second, on the similarity between the two groups to judge, if the similarity of system settings for more than the threshold, then adjust the parameters of each species to the rapid evolution of its species; Finally, system dynamic adjust the size of species to form a co-evolutionary patterns of ecological. we use the two-species clustering algorithm to carry out a simple simulation experiment, At the after of similarity of the two species reached the threshold, separately for its optimal solution set of cubic spline curve fitting, according to adjust the corresponding parameters in order to achieve their respective species to evolve more rapidly to the effects of. The results proved that in the under of the model of co-evolutionary algorithm, the two species have been the optimal solution is superior to the results of their separate evolution, and optimization time significantly shortened.
     Based on the above-mentioned, we were in combination with the co-evolution model and artificial immune theory, for in-depth study of CAIM, so that the model is applied to solve the classic TSP optimization problem. With regarded to the fact that a vaccine itself evolves along with population's evolution, this method aims at setting up a coordinative relation between the population and the vaccination-base during the whole evolutionary process, in order to raise the probability with which the algorithm finds the optimum or a satisfied solution. Both theoretical analysis and the simulation on multi examples of TSP problem, show that this model appears batter than traditional genetic algorithms, and the searching efficiency for the globally optimum is greatly improved as well.
引文
[1]吉欢.基于免疫机制的模糊聚类方法的研究[D].西安:西安理工大学计算机科学与工程学院,2008,1-3.
    【2】 张树义.协同进化(一)——相互作用与进化理论[J].生物学通报,1996,31(11):35-36.
    [3]张树义.协同进化(二)——传授花粉与传播种子[J].生物学通报,1996,31(12):25-26.
    [4]张树义.协同进化(三)——竞争、捕食、拟态[J].生物学通报,1997,32(1):19-21.
    [5]J.H.Holland. Adaptation in Natural and Artificial Systems.Cambridge [M]. MA:MIT press.1975.
    [6]P.B.Grosso. Computer Simulations of Genetic Adaptation:Parallel Subcomponent Interaction in a Multi-locus Model [D]. PHD thesis, University of Michigan, AnnArbor MI.1995.
    [7]Husbands P,F.Mill. Simulated Co-evolution as the Mechanism for Emergent Planning and Scheduling [C]. In R.K.Belew and L.B.Booker(Eds),Proceedings of the Fourth International Conference on Genetic Algorithms. Morgar, Kaufmann.1991,264-270.
    [8]Hillis D.W. Co-evolving parasites improve simulated evolution as an optimization procedure [C]. In C.G.Langton,C.Taylor,J.D.Farmer,and S.Rasmussen (Eds.),Artificial life Ⅱ,SFI Studies in the Science of Complexity, Addison-Wesley.1991,313-324.
    [9]Potter M A,De Jong K A. Acooperative coevolutionary approach to function optimization [J]. The Parallel Problem Solving from Nature. Jerusalem,Israel, Springer-verlag.1994,249-257.
    [10]Potter M A, De Jong K A,Grefenstette J J. A co-evolutionary approach to learning sequential decision rules [C]. In:the Proceedings of the Sixth International Conference on Genetic Algorithms.Morgan Kaufmann.1995,366-372.
    [11]Potter M A,De Jong K A. Evolving neural networks with collaborative species [C]. In:the Proceedings of the 1995 Summer Computer Simulation Conference.The Society for Computer Simulation.1995,340-345.
    [12]De Jong K A and Potter M A. Evolving Complex Structures via Cooperative Coevolution [C]. In:the Proceedings of the Fourth Annual Conference on Evolutionary Programming,San Diego,CA.1995, March:1-3.
    [13]De Jong K A. Analysis of Behavior of a Class of Genetic Adaptive Systems [D]. Ph.D.thesis,University of Michigan,Ann Arbor,MI.1975.
    [14]Potter M A. The Design and Analysis of a Computational Model of Cooperative Co-evolution [D]. Ph.D.thesis,George Mason University,Fairfax,VA.1997.
    [15]Potter M A and De Jong K A. Cooperative Co-evolution:An Architecture for Evolving Co-adapted Subcomponents [J]. Evolutionary Computation.Massachusetts Institute of Technology.2000,8(1): 1-29.
    [16]R.Paul Wiegand. Applying Diffusion to a Cooperative Co-evolution Model. http://www.demo.cs.brandeis.edu
    [17]Zhao. Q. F. A general framework cooperative algorithms:asociety model [J]. Proc IECE98:57~62.
    [18]Sevan G. Ficici and Jordan B. Pollack. A Game-Theoretic Approach to the Simple Co-evolutionary Algorithm. http://www.demo.cs.brandeis.edu
    [19]Maria Gordin Evolving Cooperative Groups:Preliminary Results. http://www.demo.cs.brandeis.edu
    [20]曹先彬,王煦法.基于生态竞争模型的遗传强化学习[J].软件学报,1996,10(6):658-662.
    [21]郑浩然.基于生态特征的进化与协同研究[D].博士论文合肥:中国科学技术大学,2000.
    [22]Naoyuki K, Koji S, Fukuda T. The role of virus infection virus-evolutionary genetic algorithm [C]. In:the Proceedings of the IEEE International Conference on Evolutionary Computation Nagoya: IEEE,1996,182-187.
    [23]Kubota N, Arakawa T, Fukuda T Shimojima K. Fuzzy manufacturing scheduling by virus-evolutionary genetic algorithm in self-organizing manufacturing system [C]. In:the Proceedings of the 6th IEEE International Conference on Fuzzy Systems. Barcelona:IEEE,1997, 1283~1288.
    [24]Kubota N, Arakawa T, Fukuda T, Shinojima K. Trajectory generation for redundant manipulator using virus evolutionary genetic algorithm [C].In:the Proceedings of 1997 IEEE International Conference on Robotics and Automation. Albuquerque:IEEE,1997,205~210.
    [25]Kubota N, Fukuda T. Schema representation in virus-evolutionary genetic algorithm for knapsack problem [C]. In:the Proceedings of 1998 IEEE World Congress on Computational Intelligence. Anchorage:IEEE,1998,834~839.
    【26】胡仕成,徐晓飞,李向阳.项目优化调度的病毒协同进化算法[J].软件学报,2004,15(1):49-57.
    【27】刘希玉,王文平,姚坤.微粒群优化算法及其在创新概念设计中的应用[J].山东交通学院学报,2006,14(3):1-2.
    [28]孙关龙.科学新闻周刊[N].1999.
    [29]蓝盛芳.试论达尔文进化论与协同进化论[J].生态科学,1995,2:167~170.
    [30]Iba H, Garis H, Sato T. Genetic programming using a minimum description length principle [C]. In: Advances in Genetic Programming, chapter 12, MIT Press,1994,265-284.
    [31]Jazen D H. When is it coevolution [J]. Evolution.1980,34:611-612.
    【32】李振基等.生态学[M].北京:科学出版社,2000,89-193.
    [33]张大勇等.理论生态学研究[M].北京:高等教育出版社,2000,151~228.
    [34]尚玉昌,蔡晓明.普通生态学[M].北京:北京大学出版社,1992.
    [35]Tanese R. Parallel genetic for a hypercube [C]. In:the Proceedings of eht Second International
    Conference on Genetic Algorithms.1987,177~183.
    [36]Tanese R. Distrbuted genetic algorithm. In:the Proceeding of 3rd International on Genetic Algorithm [C]. Morgan Kaufmann,1989,434~439.
    [37]Muhlenbein H, Schomisch M, Born J. The parallel genetic algorithm as function optimizer [C]. In: the Proceedings of 4th Conference on Genetic Algorithms. Morgan Kaufmann,1991,271~278.
    [38]Starkweather T, Whitley D, Mathias K. Optimization using distributed genetic algorithm [C]. In: Parallel Problem Solving from Nature, Lecture Notes in Computer Science. Vol.496, Springer-Verlag,1991,176~184.
    [39]Petty C C, Leuze M R. A theoretical investigation of a parallel genetic algorithm [C]. In:the Proceeding of 3rd International on Genetic Algorithms. Morgan Kaufmann,1989,398~405.
    [40]Kroger B, Schwenderling P, Vornberger O. Parallel genetic packing of rectangles [C]. In:Parallel Problem Solving from Nature, Lecture Notes in Computer Science. Vol.496, Springer-Verlag,1991, 160~164.
    [41]Murayama T, Hirose T, Konagaya A. A fine-gained parallel genetic algorithm for distributed parallel system [C]. In:the Proceeding s of the 6th International Conference on Genetic Algorithms. Morgan Kaufmann,1993,184~190.
    [42]Schleuter M G. ASPARAGOS:An asynchronous parallel genetic optimization strategy [C]. In:the Proceeding of 3rd International Conference on Genetic Algorithms. Morgan Kaufmann,1989, 422~427.
    [43]Tamaki H, Nishikawa Y. A parallel genetic algorithm based on neighborhood model and its application to the Jobshop scheduling [C]. In:Parallel Problem Solving from nature II, Elsevier Science,1992,573~582.
    [44]Baluja S. Structure and performance of fine-grain parallelism in genetic search [C]. In:the Proceeding s of the International Conference on Genetic Algorithms. Morgan Kaufmann,1993, 155~162.
    [45]Tahk M J, Sun B C. Coevolutionary augmented Lagrangian methods for constrained optimization [J]. IEEE Trans. Evolutionary Computation.2000,4(2):114~124.
    [46]关志华,寇纪淞,李敏强.基于∈-约束方法的增广Lagrangian多目标协同进化算法[J].系统工程与电子技术,2002,24(9):33~37.
    [47]Cao X B, Li J L, Wang X F. Research on coevolutionary optimization based on ecological cooperation [J]. Journal of software.2001,12(4):521~528.
    [48]曹先彬,王煦法.基于生态竞争模型的遗传强化学习[J].软件学报,1996,10(6):658~662.
    [49]曹先彬,罗文坚,王煦法.基于生态种群竞争模型的协同进化[J].软件学报,2001,12(4):556~562.
    [50]Hillis W D. Coevoling parasites improve simulated evolution as an optimization procedure [C]. In:
    Artificial Life Ⅱ. Redwood City, CA:Addison-Wesley,1992,313~324.
    [51]Paredis J. Steps towards coevolutionary classification neural networks [C]. In:the Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems. Cambridge, Mass:MIT Press,1994,102~108.
    [52]Paredis J. Coevolutionary constraint satisfaction [J]. In:the Proceeding s of the Third Conference on Parallel Problem Solving from Nature 2, Lecture Notes in Comuter Science, Vol.866, Berlin Heidelberg:Springer Verlag 1994,46~55.
    [53]Paredis J. Coevolutionary computation [J]. Artificial Life.1995,2(4):355~375.
    [54]Potter M A, De Jong K A. A cooperative coevolutionary approach to function optimization [J]. The Parallel Problem Solving From Nature. Jerusalem, Israel. Berlin:Springer-Verlag,1994,249~257.
    [55]Potter M A, De Jong K A. Cooperative coevolution:an architecture for evolving coadapted subcomponents [J]. Evolutionary Computation.2000,8(1):1-29.
    [56]Potter M A, De Jong K A. Evolving neural networks with collaborative species. In:the Proceedings of the 1995 Summer Computer Simulation Conference [C]. The Society for Computer Simulation, 1995,340~345.
    [57]Potter M A, De Jong K A, Grefenstette J J. Acoevolutionary approach to learning sequential decision rules [C]. In:the Proceedings of the Sixth International Conference on Genetic Algorithms. Morgan Kaufmann,1995,366~372.
    【58】郑浩然,唐爱军,何劲松.共生进化在参数学习中的应用[J].计算机工程与应用,2002,38(15):11~12,17.
    [59]Seredynski F, Zomaya A F. Coevolution and evolving parallel cellular automata-based scheduling algorithms [C]. Artificial Evolution:5th International Conference on Evolution Artificiality, Springer-Verlag Heidelberg,2001,362~374.
    [60]Seredynski F. Coevolutionary Came-Theoretic Multi-Agent Systems:the Application to Mapping and Scheduling Problems [R]. Technical Reports:tr-96-045, International Computer Science Institute, Berkeley, California.
    [61]Seredynski F. Loosely Coupled Distributed Genetic Algorithms [C]. Parallel Problem Solving from Nature-PPSN III,1994,514~523.
    [62]Bouvry P, Arbab F, Seredynski F. Distributed Evolutionary Optimization [J]. In:Manifold: Rosebrock's Function Case Study. Information Sciences,2000,112(2-4):141~159.
    [63]Kim J Y, Kim Y, Kim Y K. An endosymbiotic evolutionary algorithm for optimization [J]. Applied Intelligent,2001,15:117~130.
    [64]Naoyuki K, Koji S, Fukuda T. The role of virus infection in virus-evolutionary genetic algorithm[C]. In:the Proceedings of the IEEE International Conference on Evolutionary Computation. Nagoya: IEEE,1996,182~187.
    [65]Kubota N, Arakawa T Fukuda T et al. Fuzzy Manufacturing scheduling by virus-evolutionary genetic algorithm in self-organizing manufacturing system [C]. In:the Proceedings of the 6th IEEE International Conference on Fuzzy Systems. Barcelona:IEEE,1997,1283-1288.
    [66]Kubota N, Arakawa T, Fukuda T et al. Trajectory generation for redundant manipulator using virus evolutionary genetic algorithm [C]. In:the Proceedings of 1997 IEEE International Conference on Robotics and Automation. Albuquerque:IEEE,1997,205-210.
    [67]Kubota N, Fukuda T. Schema representation in virus-evolutionary genetic algorithm for knapsack problem [C]. In:the Proceedings of 1998 IEEE World Congress on Computational Intelligence. Anchorage:IEEE,1998,834~839.
    【68】胡仕成,徐晓飞,李向阳.项目优化调度的病毒协同进化遗传算法[J].软件学报,2004,15(1):49~57.
    [69]吴敏毓,刘恭植.医学免疫学[M].合肥:中国科学技术大学出版社,1995,1-219.
    [70]Somayaji A, Hofmeyr S, Forrest S. Principles of a computer immune system [A]. In:Proceeding of New Security Paradigms Workshop [C]. Langdale, Cumbria,1997,75~82.
    [71]潘志松,陈松灿,张道强.一种基于人工免疫原理的入侵检测系统模型[J].数据采集与处理,2003,3(1):23~24.
    [72]马启肇.免疫学基础及病原生物学[M].成都:四川科学技术出版社,1996.
    [73]Bersini H, Barela F. Hints for adaptive problem solving gleaned from immune network [A]. Parallel Problem Solving from Nature [C]. Berlin Heidelberg:Springer-Verlag,1991,343~354.
    [74]Cooke D E, Hunt J E. Recognizing Promoter sequences using an artificial immune system [A]. Proc-Intelligent Systems in Molecular Biology (ISMB'95) [C]. Cambridge:AAAI Press,1995, 89~97.
    [75]Jiao Licheng, Wang Lei. Novel genetic algorithm based on immunity [J]. IEEE Trans on Systems, Man and Cybernetics---Part A:Systems and Humans,2000,30(5):552~561.
    [76]Ha Daewon, Shin Dongwon, Ko h Dwan-Hyeob, et al. Cost effective embedded DRAM integration for high-density memory and high performance logic using 0.15μm technology node and beyond [J]. IEEE Trans on Election Devices,2000,47(7):1499~1506.
    [77]Ding Yongsheng, Ren Lihong. Fuzzy self-tuning immune feedback controller for tissue hyperthermia [A]. IEEE Int conf on Fuzzy Systems [C]. San Anton,2000,1:534~538.
    [78]王磊,潘进,焦李成.免疫算法[J].电子学报,2000,28(7):74~78.
    【79】肖人彬,王磊.人工免疫系统:原理、模型、分析及展望[J].计算机学报,2002,25(12):1281~1293.
    [80]Forrest S, Perelson A S, Allen L, et al. Self-nonself discrimination in a computer[A]. Proc of IEEE Symposium on Research in Security and Privacy [C]. Oakland,1994,202~212.
    [81]Chun J S, Kim M K, Jung H K. Shape optimization of electrum agnetic devices using immune algorithm [J]. IEEE Trans on Magnetics,1997,33(2):1876~1879.
    [82]龚涛.多维教育免疫艾真体的研究[D].长沙:中南大学,2003.
    [83]Rudolph G. Convergence analysis of canonical genetic algorithms [J]. IEEE Transactions on neural networks,1994,5(1):96~101.
    [84]戚玉涛,焦李成,李芳.基于并行人工免疫算法的大规模TSP问题求解[J].电子学报,2008,36(8):1552~1557.
    [85]Guo T, Michalewicz Z. Inver-over operator for the TSP [A]. In:Eiben AE, et al, eds. Proc. of the 5th Parallel Problem Solving from Nature Conf [C]. LNCS1498, Nerlin:Springer-Verlag,1998, 803~812.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700