用户名: 密码: 验证码:
TB2合金微弧氧化陶瓷层组织形貌和摩擦性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用微弧氧化方法在TB2钛合金表面制备氧化陶瓷层,分别在Na_2SiO_3-(NaPO_3)_6和NaAlO_2两种电解液体系中实验。并在氧化过程中改变氧化电源的电参数,观察电参数对微弧氧化过程和陶瓷层最终形貌的影响。利用XRD、SEM、EDS等分析方法对微弧氧化陶瓷层的微观组织结构进行分析,并测试了陶瓷层在滑动摩擦条件下的摩擦学性能。
     实验表明,微弧氧化陶瓷层表面呈现微孔镶嵌的网格状结构,孔径平均在3~9μm之间。在同一电解液中,单脉冲的放电能量是决定陶瓷层组织结构的主要因素。电流密度、脉冲电压、脉冲宽度的增加或者脉冲频率的减少都会引起陶瓷层表面粗糙度的增加。
     陶瓷层的组织成分主要取决于电解液体系。Na_2SiO_3-(NaPO_3)_6电解液体系中陶瓷层主要由金红石相和锐钛矿相组成,并有少量的SiO_2和非晶化合物。在NaAlO_2电解液体系中陶瓷层主要是由Ti_2AlO_5和少量金红石相构成,并有少量白色Al_2O_3晶粒分布在陶瓷层表面。
     对微弧氧化陶瓷层进行滑动干摩擦实验时,未抛光的陶瓷层与GCr15钢球对磨的摩擦系数都比较大,在0.7~0.8之间。对陶瓷层进行处理,抛光除去疏松层后陶瓷层与GCr15钢球对磨时的摩擦系数显著降低,在0.2~0.4之间,但是当摩擦进入后期,对偶钢球发生的氧化磨损机制导致了摩擦系数逐渐增大。陶瓷层涂抹润滑油后,与钢球对磨的摩擦系数降低至0.12。
In this paper, in order to obtain good friction characteristic coating on surface of TB2 alloy, Na_2SiO_3-(NaPO_3)_6 and NaAlO_2 coatings were prepared in the corresponding electrolyte system by micro-arc oxidation(MAO) way. During the MAO we also change the parameters of the electrical source, to observe the effect of electrical parameters for the MAO process and morphology. Microstructure of the coatings were analyzed using XRD, SEM, EPMA techniques. The tribological properties of the coatings were evaluated in sliding contact conditions.
     Experimental results show that MAO coating is puff in the outer layer, with many microspores structure(pore size 3~9μm). The microstructures of the coating are mainly dependent on discharging energy of a single pulse in the same electrolyte.
     The increase of electrical current、impulse voltage、impulse width and the reduce of impulse frequency all can change the smoothness of surface.
     The microstructure of coatings depends mainly on the type of electrolyte. Coatings which are formed in Na_2SiO_3-(NaPO_3)_6 electrolyte are mainly composed of nano-structure rutile and anatase TiO_2 with small quantity of SiO_2 and some other compounds. The coatings which are formed in NaAlO_2 electrolyte are mainly composed of Al_2TiO_5, with a small amount of Al_2O_3 and rutile TiO_2 compounds.
     Under dry sliding contact conditions, the unpolished coatings against GCr15 steel ball have high coefficient of friction of about 0.7, which are significantly reduced to 0.25 after polished. The chemical oxidation ware occurring on the GCr15 steel ball surface leads to the gradual increase of coefficient of friction in the later sliding stage. When the coatings were in lubricated wear test, the coefficient of friction rapid reduce to 0.12.
引文
1刘耀辉,李颂.微弧氧化技术国内外研究进展.材料保护. 2005,38(6):36~38
    2杨文甲.对TB2钛合金板材热处理的研究.有色矿冶.1993.4:27~30
    3于顺兵,李德富,陈海珊等.钛合金TB2热扎棒材组织与性能的试验研究.稀有金属. 2005,29(3):275~278
    4高莹,于顺兵,李德富,陈海栅.热处理制度对TB2钛合金焊接接头性能的影响.稀有金属. 2005,29(5):631~634
    5 Yerokhin A L, Nie X, Leyland A. Plasma electrolysis for surface engineering [J]. Surface and Coatings Technology. 1999,122:73~93
    6 Voevodin A A, Yerokhin A L, Lyubimov V V. Characterization of wear protective Al-Si-O coatings formed on Al-based alloys by micro-arc discharge treatment. Surface and Coatings Technology. 1996: 86~87, 516~521
    7王德云,东青,陈传忠,雷廷权.微弧氧化技术的研究进展.硅酸盐学报. 2005,33(9):1133~1138
    8 A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S. J. Dowey, Plasma Electrolysis for Surface Engineering. Surf. Coat. Technol. 1999, 122:73~93
    9 L. Yerokhin, V. V. Lyubimov and R. V. Ashitkov, Phase formation in ceramic coatings during plasma electrolytic oxidation of aluminium alloy. Ceram. Inter. 1998, 24:1~6
    10王亚明,雷廷权,周玉等.氧化处理时间对Ti6Al4V微弧氧化陶瓷膜的影响.材料科学与工艺. 2003,9 11(3):244~247
    11 Nykyforchyn H M, Klapkiv M D, Posuvailo V M. Properties of synthesized oxide-ceramic coatings in electrolyte plasma on aluminium alloys[J]. Surface and Coatings Technology. 1998:219~221
    12张文华,胡正前,马晋.俄罗斯微弧氧化技术的研究进展.世界有色金属. 2004,1:43~46
    13邓志威,薛文彬,汪新福等.铝合金表面微弧氧化技术.材料保护. 1996, 29 (2):15~16
    14 L. Young, Space charge in formation of anodic oxide films. Acta Metallurgica. 1956, 4(1):100~101
    15 J. Yahalom, J. Zahavi, Electrolytic breakdown crystallization of anodic oxidefilms on A1, Ta and Ti . J. Electrochim. Acta. 1970,15(9):1429~1435
    16 J. Yahalom, J. Zahavi. Experimental evaluation of some electrolytic break down hypotheses. J. Electrochim. Acta. 1971,16(5):603~607
    17 G. C. Wood, C. Pearson, The theory of avalanche breakdown in solid dielectrics. J. Corros. Sci. 1967,7(2):119~125
    18 K. Vijh. Sparking voltages and side reactions during anodization of value metals in terms of electron tunneling. J. Corros. Sci.1971,11(6):411~417
    19 R. S. Alwitt, A. K. Vijh, Statistics of electron avalanches in the proportional counter. J. Electrochem. Soc. 1969,116(3):388~390
    20 S. Ikonopisov, A.Girgnivv, A. Machkova. Post-breakdown Anodization of Aluminium. Electrochem Acta. 1977,22(1):1283~1286
    21 S.Ikonopisov, A.Girgnivv, A.Machkova. Theory of Electrical Breakdown during Formation of Barrier Anodic Films. Electrochem Acta. 1977,22(10): 1077~1082
    22 S. Ikonopisov, Electronic conduction of anodized aluminium electrodes. J. Electrochim. Acta. 1969,14(8):716~771
    23 S. Ikonopisov, L. Andreeva, Anodization of molybdenum in glycol-borate electrolyte––A peculiar kinetics of insulating film formation. J. Electrochem. Soc. 1973,120(10):1361~1368
    24 A. K. Vijh, Electrical properties of non-metallic deposits. Surf. Coat. Technol. 1976, 4(1):7~30
    25 V. Kadary, N. Klein, Reverse avalanche breakdown in gated diodes. J. Electrochem. Soc. 1980,127(1):139~151
    26 V. Kadary, N. Klein, Experimental determination of the electron-avalanche and the electron-ion recombination coefficient. J. Electrochem. Soc. 1980,127(1):152~155
    27 J. M. Albella, I. Montero, Electron injection sand avalanche during the anoxic oxidation of tantalum. J. Electrochem. Soc. 1984,131:1101~1104
    28 Montero, J. M. Albella, J. M. Martinez-Duart, Anodization and breakdown model of Ta2O5 films. J. Electrochem. Soc. 1985, 132(4):814~818
    29 J. M. Albella, I. Montero, J. M. Martinez-Duart, A theory of avalanche breakdown during anodic oxidation. J. Electrochem Acta. 1987,32(2): 255~258
    30 L. H. Li ,H. W. Kim, S. H. Lee, Y.M. Kong, H.E. Kim. Biocompatibility of Titanium Implants Modified by Micro-arc Oxidation and HydroxyapatiteCoating. Journal of Biomedical Materials Research-Part A. 2005,73(1): 48~54
    31 W. Krymann, P.K. urze, K.H. Dittrich, H.G Schneider. Process Characteristics and Parameters of Anode Oxidation by Spark Discharge(ANOF). Corros. Sci. 1971,11:411~417
    32 Y. V. Magurova, A. V. Timoshenko. The Effect of a Cathodic Component on Ac Micro-plasma Oxidation of Aluminum alloys. Prot. Met. 1995,31 (4): 377~380
    33 A.L.Yerokhin,L.O.Snizhko,N.L.Gurevina,A.Leyland,A.Pilkington,A.Matthes.Discharge Characterization in Plasma Electrolytic Oxidation of Aluminium. J. Phys. D: Appl. Phys. 2003,36:2110~2120
    34 X. Nie, A . Leyland, A. Matthews. Deposition of Layered Bioceramic Hydroxyapatite/TiO2 Coatings on Titanium Alloys Using a Hybrid Technique of Micro-arc Oxidation and Electrophoresis. Surface and Coatings Technology. 2000,125:407~414
    35 X. Nie, A. Leyland, A. Mathews. Low Temperature Deposition of Cr(N)/TiO2 Coatings Using a Duples Process of Unbalanced Magnetron Sputtering and Microarc Oxidation. Surface and Coatings Technology. 2000:133~134:331~337
    36 J. P. Schreckenbach, G .Marx, F . Schlottig, M . Textor, N. D. Spencer.Characterization of Anodic Spark-converted Titanium Surfaces for Biomedical Bpplications. Journal of Materials Science: Materials in Medicine. 1999,10: 453~457
    37 V. M. Frauchiger, F. Schlotig, B. Gasser, M. Textor. Anodic Plasma-chemical Treatment of CP Titanium Surfaces for Biomedical Applications. Biomaterials. 2004,25:593~606
    38 M. Fini, A. Cigada, G .Rondelli, R .Chiesa, R. Giardion, G. Giavaresi, N. N. Alidini, P. Torricelli, B .Vicentini. In vitro and in vivo Behaviour of Ca and P–enriched Anodized Titanium. Biomaterials. 1999,20:1587~1594
    39 H. Ishizawa, M. Ogino. Formation and Characterization of Anodic Titanium Oxide Films Containing. Journal of Biomedical Materials Research. 1995,29: 65~72
    40 Long-Hao Li, Young-Min Kong, Hae-Won Kim. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials. 2004,25:2867~2875
    41 Yang G, Lu X , Bai Y, et al . The effects of current density on the phasecomposition and microstructure properties of micro-arc oxidation coating. J Alloy Comps. 2000,345:196~200
    42薛文斌,王超,邓志威等. TC4钛合金表面交流微弧氧化膜研究.无机材料学报. 2002, 17(2):3291
    43 V. Buscaglia, P. Nanni. Decomposition of A12Ti05 and A12(1-x)MgxTi(1x)O5 Ceramics. J. Am. Ceram. Soc. 1998,81:2645~2653
    44蒋百灵,朱静,白力静.铝合金微弧氧化陶瓷层在润滑条件下的抗磨性能性研究.摩擦学学报. 2004,24(3):222
    45莫畏,邓国珠,罗方承.钛冶金.冶金工业出版社, 1998:84~85
    46 Schreckenbachj, Schlottigf, Marx G, et al. Preparation and microstructure characterization of anodic spark deposited barium titanate conversion layers [J] . J Mater Res. 1999,14(4):1437~1443
    47刘勇.真空及低温下TC4合金干滑动摩擦磨损行为研究.哈尔滨工业大学工学博士学位论文. 2003:38~39
    48 J. Qu, P. J. Blau, T. R. Watkins, O. B. Cavin, N. S. Friction and Wear of Titanium Alloys Sliding against Metal. Ploymer and Ceramic Counterfaces. Wear. 2005,258:1348~1356
    49王亚明. Ti6Al4V合金微弧氧化涂层的形成机制与摩擦学行为.哈尔滨工业大学博士论文. 2006:99~105
    50仲荣, Léo Vincent.微动磨损.科学出版社, 2002:104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700