用户名: 密码: 验证码:
电场法水中除砷机理及不同材料除砷效率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
早在公元317年中国人就首先发现了砷。砷广泛存在于自然界中,目前已知在三百多种矿物中都含有砷。砷主要通过含砷矿物的风化、人类的生产生活活动等途径而进入水体。据文献报道,每年全球通过上述途径进入水圈的砷就有11万吨。
     元素砷对人和生物无毒,但砷化物对人体非常有害,砷化物能使人致癌、致畸和致突变,长期饮用高砷水会对皮肤、肝、肾、神经系统和生殖系统等造成伤害。砷化合物的毒性及其大小与其形态有关,无机砷化物的毒性大于有机砷。砷污染治理已是当今全球环境保护刻不容缓的问题。阳宗海砷污染及其治理就是向人类提出的一个严重挑战。
     目前砷污染治理主要是针对工业废水,处理的主要方法有:沉淀法、离子交换法、氧化法、吸附法、膜分离法、生物法等。电场法水中除砷以受砷污染的农灌、养殖、饮用水体为研究对象,以全新的视角、方法对砷污染治理展开研究。砷在水中主要以三价砷As(Ⅲ)和五价砷As(Ⅴ)的形态存在。As(Ⅲ)可经氧化形成As(Ⅴ),As(Ⅴ)在弱酸、中性和碱性水体呈电性,占80%以上,且是砷的主要存在形态。
     本论文在云南阳宗海砷污染治理的大背景下,针对大型受砷污染的弱碱性(pH =8.5-9.0)的水体(如湖泊、水库等)除砷进行机理和实验探索。研究表明,电场法水中除砷产生三个效应两个过程:水中砷酸根在正极富集效应,极板金属原子的电离效应,水电解、砷酸根氧化效应;通过金属离子与砷酸根反应形成难溶性砷酸盐沉淀过程,金属氢氧化物与砷酸根、亚砷酸根的络合反应( As ?O?)的共沉淀吸附过程,达到低碳、高效、无污染除砷。通过对不同材料电极除砷的实验研究,分析总结不同材料电极(铜、铝、铁)除砷的规律及其效率,并在此基础上提出在实际应用中采用间歇电场,可充分实现低碳、高效的观点,设计间歇电场法水中除砷装置,在实际水体中进行试验,结果好于预期。选择适当的作用参数,水中砷含量可降3个数量级。
     本论文对电场法水中除砷进行总结归纳,提出了研究的特色和创新之处。
At about AD 317, the arsenic was found by Chinese people. Arsenic widely exists in nature, more than 300 kinds of minerals are known to contain arsenic. Arsenic mainly filters into water by the weathering of arsenic minerals, or by the production of human activities. It was reported that there are 110,000 tons of arsenic enter into the cycle water each year.
     Element arsenic is Non-toxic, but the arsenides can harm people and cause carcinogenic、teratogenic and mutagenic. Long-term consumption water with high concentration of arsenic will damage skin, liver, kidney, nervous system and reproductive system. The toxicity of arsenic compounds is relevant to its shape, and the toxicity of inorganic arsenic is greater than organic arsenic. Arsenic pollution becomes imperatively a global environmental problem at present. The control and decrease of arsenic pollution of Yangzonghai is a serious challenge.
     Currently, the main target is the control of arsenic pollution from industrial wastewater, and the main control methods include such techniques as precipitation, ion exchange, oxidation, adsorption, membrane separation, and biological methods, etc. Using the electric field method on the removal of arsenic in water for agricultural irrigation、aquaculture、drinking water, can be a new perspective and method to study the arsenic pollution. The arsenic in the water mainly exists as trivalent arsenic As (Ⅲ) and pentavalent arsenic As (Ⅴ). As (Ⅲ) can be transformed from the oxidation of As (Ⅴ), As (Ⅴ) in weak acid, neutral and alkaline water are electric, more than 80%, and is the primary form of arsenic.
     The background of this thesis is arsenic contamination in Yangzonghai, Yunnan province, for large-scale arsenic contamination by weak alkaline (pH= 8.5-9.0) of water bodies (such as lakes, reservoirs, etc.) in addition to the mechanism and experimental exploration of arsenic. The results show that removing the arsenic in water by the electric field method include three effects and the two processes: Plate metal atom ionization effect, arsenate accumulation in the anode, water electrolysis, oxidation of arsenate. Reaction of metal ions and arsenate induces the formation of insoluble arsenate, metal hydroxide and arsenate, sub-arsenite complexation reaction ( As ? O?) form of coprecipitation adsorption. These productions of reaction favor the achievement of low-carbon, efficient, pollution-free removal of arsenic in water. Electrodes with different metal materials (copper, aluminum, iron) have been used in the arsenic removal experiment. Then, we analyze and summarize the law and efficiency of removal of arsenic. On this basis, the intermittent electric field method, which can be fully realized the view of low-carbon, high efficiency, is proposed to be used in the practical application. In this thesis, the arsenic removal device has been designed, and the intermittent electric field method has been conducted, and the results of removing arsenic are better than our prevenient expected. There three orders of magnitude of arsenic concentration can be decreased by selecting the appropriate role of parameters. The remove the arsenic in water by the electric field method are well summarization in the thesis, and the features and innovations of this method are also proposed.
引文
[1]张海燕.高铁酸钾强化氯化铁混凝去除水中三价砷[D].长沙:湖南大学环境学院,2008
    [2]司涛.除砷吸附剂的脱附及再生过程[D].天津:天津大学化工学院,2008
    [3]曹庭礼,郭炳南.无机化学丛书氮磷砷分族[M].北京:科学出版社,1995.195~203
    [4]白建刚,李汉生.三氧化二砷抗肿瘤研究进展[J].中国药事,2008,22(12):1105~1107
    [5]沈洁,金璋.亚砷酸同步联合三维适形放射治疗原发性肝癌临床观察.临床医学,2008, 28(11):39~40
    [6]王华东,郝春曦,王建.环境中的砷——行为·影响·控制[M].第一版.北京:中国环境科学出版社,1992.96~177.
    [7]向雪松.铁盐一剩余活性污泥法处理高浓度碱性含砷废水[D].中南大学
    [8]李树猷.氯化铁混凝法饮水除砷研究[J].中国供水卫生,1993,2:3~4
    [9]王微,徐炎华.水体中砷污染和治理概况[J].微量元素与健康研究,2005,22(5):59~61
    [10]江世强,葛宪民.砷及其化合物的水污染治理研究进展[J].A nthology of Medicine,2004,23(3):364~368
    [11] G.A.Cutter,Kinetic controls on metalloids Peciation in sea water,Marine Chem.1992,40:65~80
    [12]杨若明.环境中有毒有害化学物质的污染与检测[M].北京:中央民族大学出版社,2001.
    [13]牛秋雅.砷污染治理及砷资源回收利用的清洁生产新技术研究.[D].长沙:湖南大学环境学院,2001
    [14]廖自基.环境中微量重金属元素的污染危害与迁移转化[M].北京:科学出版社,1989.
    [15]胡留杰,白玲玉,李莲芳等.土壤中砷的形态和生物有效性研究现状与趋势[J].核农学报,2008 22(3):383~388
    [16]杨洁等.含砷废水处理技术研究进展.工业水处理[J] 2003,23(6):14~18
    [17]方兆珩,石伟,韩宝玲,等.高砷溶液中和脱砷过程[J].化工冶金. 2000, 21(4):359~362.
    [18]曹忠良,王珍云.无机化学反应方程式手册[M].长沙:湖南科学技术出版社,1982.
    [19]蒋宏国,潘剑波.三氧化二砷冶炼“三废”治理研究[J].湖南有色金属. 2002,18(6):39~41.
    [20]葛宪民,江世强,韦波,等.广西3起有毒化学品重大事故的处治方法和控制体会[J].中国职业医学. 2003, 30(4):55~56.
    [21]葛宪民,江世强,韦波,等.石灰中和法对砒霜泄漏污染河流的野外现场应急处理[J].广西医科大学学报. 2004, 21(2):1~4.
    [22]李飞.砷的应用及前景[J].有色金属工业. 2003, (1):70~71.
    [23]邱立萍.砷污染危害及其治理技术[J].新疆环境保护. 1999, (3):15~19.
    [24] Wolfgang D, Reiner S, Martin J. Oxidation of arsenate(Ⅲ) with manganese oxides in watertreatment[J]. Water Research. 1995, 29(1):297~305.
    [25] Myoung-Jin K, Jerome N. Oxidation of arsenite in groundwater using ozone and oxygen[J]. The Science of the Total Environment. 2000, 247(1):71~79.
    [26] Ement M T, Khoe G H. Photochemical oxidation by oxygen and iron in acidic solutions[J]. Water Research. 2001, 35(13):649~656.
    [27] Vagliasindi F, Benjamin M. Arsenic removal in fresh and NOM-preloaded ion exchange packed bed adsorption reactors[J]. Water Science and Technology. 1998, 38(6):337~343.
    [28] Min J H, Hering J G. Arsenate sorption by Fe(Ⅲ)-doped alginate gels[J]. Water Research. 1998, 32(5):1544~1552.
    [29] Shailendra K Gupta, Kenneth Y Chen. Arsenic removal by adsorption[J]. Journal WPCF, 1978, (3):493~506.
    [30] Xu Yanhua, Akira Ohki, and Shigeru Maeda. Adsorption of arsenic(Ⅴ) by use of aluminium- loaded Shirasu-zeolite[J]. Chemistry Letters. 1998:1015~1016.
    [31] Xu Yanhua, Akira Ohki, and Shigeru Maeda. Removal of arsenate, phosphate, and fluoride ions by aluminium-loaded Shirasu-zeolite[J]. Toxicological and Environmental Chemistry. 2000, 76:111~124.
    [32] Xu Yanhua, Tsunenori Nakajima, Akira Ohki. Adsorption and removal of arsenic(Ⅴ) from drinking water by aluminium-loaded Shirasu- zeolite[J]. Journal of Hazardous Materials.2002, B92:275~287.
    [33] Xu, Yan-Hua, Nakajima, Tsunenori; et al. Leaching of arsenic from coal fly ashes 1.Leaching behavior of arsenic and mechanism study[J]. Toxicological and Environmental Chemistry. 2001:55~68.
    [34] Xu, Yan-Hua, Nakajima, Tsunenori, et al. Leaching of arsenic from coal fly ashes 2. Arsenic pre-leaching with sodium gluconate solution[J]. Toxicological and Environmental Chemistry. 2001:69~80.
    [35] MarcelMulder.膜技术基本原理[M].北京:清华大学出版社, 1999.
    [36]李菁,李俊,路春娥.膜分离技术在治理含砷废水中的应用研究[J].化工时刊.1999(4):17~19.
    [37] Lester J N. Significance and behavior of heave metals in wastewater treatment process[J]. The science of the tocal environment. 1983, 30:1~44.
    [38] Kasan H C. The role of waste activated sludge and bacteria in metal-ion removal from solution[J]. General reviews in Environmental Science and Technology. 1993, 23(1):79~117.
    [39] Modak J K, Natarajan K A. Biosorpion of metals using nonliving biomass:A review[J]. Minerals and Metallurgical Processing. 1995, 12:189~196.
    [40]王连方.环境砷与地方性砷中毒[J].国外医学医学地理分册. 1994, 15(4):149~153.
    [41]孙飚,范晓.海藻中砷的含量分布特征[J].海洋科学. 1996, 5:24~27.
    [42]袁涛,曾欣,罗启芳.对混凝凝沉淀法分散式饮水除砷的研究[J]. 1999,28(6):331~333
    [43]李树献,谷莉华,唐志刚.新型饮水除砷剂-GC净水剂[J].卫生研究.1994,23(6):351~352
    [44]孟祥和,胡国飞.重金属废水处理口咽[M].第一版.北京:化学工业出版社,2000,226~227
    [45] Ohsako N,Yonyama H.Treatment of Arsenic Containing Sulfm-ic Acid Production Plants[J]. Chem Abstr,1973,78:235
    [46]徐利时.刘琼.炼锑砷碱渣浸出液硫化脱砷过干罕的研究[J].化工环保,1997,l 7(5):284~286
    [47] Vagliasindi F G A,Benjamin M.Arsenic removal in fresh and NOM-preloaded ion exchange packed bed adsorption reactors.Water Science and Technology,1998,38(6):337~343
    [48]毕伟东,王成艳,王成贤.砷及砷化物与人类疾病[J].微量元素与健康研究. 2002, 19(2):76~79.
    [49]天津大学物理化学教研室编.1992.物理化学[M].北京:高等教育出版社:158
    [50]顾惕人,朱瑶,李外郎,等.2003.表面化学[M].北京:科学出版社:260~261
    [51]梁美娜铁、铝及其复合氢氧化物去除水中砷(Ⅴ)的吸附研究[毕业论文],桂林工学院,分析化学.
    [52]冯孝庭.吸附分离技术[M].北京:化学工业出版社, 2001
    [53]国家环境保护总局.现行环境保护标准目录.2005.
    [54] He bin,Jiang Gui-bin,Zhang Meng,and Xu Xiao-bai,Determination of As Species in Extracts of ChineseMedicines Realgar and Orpiment by Ion Chromatography and Hydride Generation GFAAS,Atomic Spectroscopy 200021(4):143~148
    [55]殷学锋,徐光明等.因子分析-氢化物发生原子吸收法分析砷的形态[J].分析化学,1999,27 (7):798~801
    [56]黄振华,林群,林瑞雨.氢化物原子吸收法测定水中的砷、硒和汞[J].净水技术.1997,59(1):33~34
    [57]严淑云,杜新等.流动注射氢化物发生原子吸收光谱法测定蔬菜中微量砷[J].仪器仪表与分析检测,2003(1):40~43
    [58]何滨,江桂斌,胡立刚.毛细管气相色谱与原子吸收联用测定水貂皮及其毛发中的有机汞[J].分析化学,1998,26(7):850
    [59]陈甫华,郁建栓,戴树桂.离子色谱-氢化物发生-原子吸收法测定天然淡水中的4种砷形态[J].中国环境科学. 1996,16(1):77~80
    [60]景逵,郭兴家,刘新,唐侠.石墨炉原子吸收光谱法测定高纯镍中痕量杂质砷[J].理化检验-化学分册,2002,38(12):616~619
    [61]祝艳.阳宗海流域环境背景状况[J].环境科学导报,2008,27(5):75~78
    [62] TokunagaS,WasaySA,Park,SW.Removal of Arsenic(Ⅴ)ion form aqueous by lanthanum compounds.Water Sci Tech 1997,35(7):71~78
    [63]朱立军,傅平秋,万国江,碳酸盐红土中氧化铁矿物表面化学特征及其吸附机理研究[J].环境科学学报,1997,17(2):174~178
    [64]张昱,杨敏,高迎新,王峰,黄霞,用天地下水中砷去除的铈铁复合材料的制备和作用机.中国科学(B辑),2003,33(2):127~132
    [65]常钢,江祖成,彭天石等.溶胶-凝胶法制备高比表面积的纳米氢氧化铝及其对过渡金属离子吸附行为的研究[J].化学学报,2003,61(1):100~103.
    [66]邵长生,沈钟,孙洪流等.氢氧化铝的吸附和界面电性质研究[J].化学世界,1997,2:70~73
    [67] Halter W E.,Hans R Pfeifer.Arsenic(Ⅴ)adsorption ontoα-Al2O3 between 25 and 70℃.Applied Geochemistry,2001,16(7–8):793~802
    [68]李树猷,郑宇,何淑敏等,活性氧化铝去除饮水中共存砷氟的试验研究[J],卫生研究.1995,24(2):88~100
    [69]姜浩,廖立兵,王素萍.低聚合羟基铁离子—蒙脱石复合体吸附砷的实验研究[J].地球化学.2002,31(6):593~600
    [70] Yong and Weber.A distributed reactivity model for一s orption by soils and sediments.3.Effects of diagenetic.processes on so tion energetics.Environ.Sci.Technol.,1995,29(1):92~97
    [71] Sigg.et al.,Sorption phenomena at environmental solid surfaces.Chimia,1997,51(12):893~899.
    [72]武荣成,曲久辉,吴成强.磁性吸附材料CuFe2O4吸附砷的性能[J].环境科学,2003,24(5):60~64
    [73] KimMJ , NriaguJ. Oxidation of arsenite in groundwater.using ozone and oxygen . The Science of the totalen vironment ,2000 , 247 ( 1 ) : 71–79
    [74] Halter W E.,Hans R Pfeifer.Arsenic(Ⅴ)adsorption ontoα-Al2O3 between 25 and 70℃.Applied Geochemistry,2001,16(7–8):793~802
    [75] Blangenois N,Florea M,Grange P.Influence of the co-precipitation pH on the physico-chemical and catalytic properties of vanadium aluminum oxide catalyst.Applied Catalysis A:General, 2004,263(2):163~170.
    [76] Kvsaka E,Amano N,Nakahiro Y.Effect of hydrolysed aluminum(III)and chromium(III)cation on the lipophilicity of talc.Int J Miner Process,1997,50(4):243~253.
    [77] Esmadi F,Simm J.Sorption of Cobalt(Ⅱ)by amorphous ferric hydroxide.Colloids andSurfaces A:Physicochemical and Engineering Aspects,1995,104:265~270.〔2〕
    [78] Raven K P,Jain A,Loeppert R H.Arsenite and Arsenate Adsorption on Ferrihydrite:Kinetics, Equilibrium,and Adsorption Envelopes.Environ Sci Technol,1998.32(3):344~349
    [79] Jain A,Raven K P,Loeppert R H.Arsenite and Arsenate adsorption on ferrihydrite:Surface charge reduction and net OH-release stoichiometry.Environ Sci Technol.1999,33(1):1179~1184
    [80]杨力.砷污染及含砷废水治理[J].有色金属加工. 1999, (4)(总154):27-29.
    [81] Vagliasindi F, Benjamin M. Arsenic removal in fresh and NOM-preloaded ion exchange packed bed adsorption reactors[J]. Water Science and Technology. 1998, 38(6):337-343.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700