用户名: 密码: 验证码:
三维凹坑形自组装涂层表面的特征及其减阻性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着节能型社会的发展,输送管道内涂层减阻技术越来越受到广泛的关注。本文以仿生凹坑非光滑表面减阻机理为依据,采用大尺寸自组装方法制备获得一种大颗粒陶瓷聚合物自组装凹坑非光滑表面涂层结构,并运用自行制作的流阻测试平台对其减阻性能进行了研究及表征。
     传统的凹坑非光滑表面的加工制作成本高,对加工基材有局限性,同时大多不适应于大面积的施工应用。本文中所应用的大尺寸自组装技术,操作简便,且所需的原料为普通的化工原料。首先以高岭土为基料,经过插层处理后,运用高分子网络凝胶法将其制备成不同粒径的陶瓷聚合物颗粒。然后以环氧聚氨酯互穿网络(IPN)为组装液,将不同粒径和含量的陶瓷聚合物颗粒加入其中,再加入相应的固化剂等助剂制得自组装液。为研究对表面凹坑轮廓的影响因素,本文将自组装试片分为六组,主要对聚合物颗粒的粒径和含量对表面轮廓的影响进行研究。并最终发现,影响陶瓷聚合物涂层表面凹坑分布的主要因素是聚合物颗粒的含量,而聚合物颗粒的粒径大小则是影响表面凹坑结构尺寸的主要因素。同时优化出符合理论模型的陶瓷聚合物颗粒的含量(10%)和粒径10±0.5μm。
     在参考前人的技术基础上,本文自行改进制作了流阻测试平台。该平台基于压差流阻测试法原理。通过测量流体流经测试管路后两段所产生的压力差来表征减阻效果——减阻率。在测试管路主体的选材、加工以及压力传感器的选择上与以往有所区别。为避免材料的浪费,采用64#槽钢为矩形凹槽的主体件,两端采用大口进、大口出的连接件方式,避免局部紊流对流体压力的影响。同时,为避免累积误差的出现,本实验装置中采用一个大量程、高精度的压力传感器和一个小量程、高精度的压差变送器,分别对入口压力和测试管路两端压力差进行检测。应用压力传感器配套的数据采集软件进行数据采集分析。
     分别对无涂层的光滑钢内壁、常用管道减阻涂层和大颗粒陶瓷聚合物自组装涂层进行了减阻性能测试,对比分析自组装涂层的减阻效果。同时将上述六组实验方案进行对比,优化出减阻性能最佳的表面凹坑结构,以及相对应的陶瓷聚合物颗粒的含量和粒径参数。
Along with the development of energy-saving society, pipeline undercoat drag reduction technology becomes more widespread concern. This paper take the mechanism of bionic nonsmooth pits surface drag reduction as basis and get a kind of large ceramic polymer particles nonsmooth pits self-assembly coating in the way of macromolecules self-assembly. And the anti-drag property is tested in the self-restraint differential pressure experiment table.
     The traditional indentation nonsmooth surface processing production has many disadvantages such as the cost is high, processing base material has limitations and the working area is very narrow. Commensurate with that, in this paper, macromolecules self-assembly is simple and convenient. First, the intercalation kaolin is made into different size ceramic polymer particles by way of graph-gelling. And then, using the polyurethane-epoxy(IPN) as assembling varnish, put the different size ceramic polymer particles into the varnish together with the accessory ingredient. In the purpose of controlling the surface feature of the coating, it changes the size and the content of the ceramic polymer particles into six groups. At last, it find that distribution coefficient of pits due to the reason of the content of the ceramic polymer particles, and the size of it leads to the change of the size of pits. As the view, the surface of the self-assembly coating with the size(10±0.5μm) and the content(10%) coincides with the ideal model.
     With the study of former technical information, a improved drag-reduction test table is made in this paper. The basic theory is differential pressure experiment, in which tne anti-drag efficiency is remarked by the difference of the pressure between the two end of the testing pipeline. The material, processing method and the pressure sensor are all different with formers. To avoid the waste of material, it use rectangular groove 64# channels for the main body parts, and at the same time both ends link with bigger size steel tube in order to avoid local turbulent flow of fluid pressure effects. In order to avoid the accumulated error, one pressure sensor with large span and high-precision, and one differential pressure transducer with small span and high-precision, are used to test the pressure. The experimental data is collected and analysed by pressure sensor supporting data acquisition software.
     The anti-drag property of different coatings, such as no coating smooth steel inwall, normal coatings and large ceramic polymer particles nonsmooth pits self-assembly coating, is tested in the last of the paper. According to the comparison, the best pits nonsmooth surface is analysed and corresponding size and content of the ceramic polymer particles. So it gives some theory and experiment experience about the using of large self-assembly in making functionality coatings.
引文
[1]封云.仿生非光滑表面湍流场的数值模拟及减阻机理分析[D].吉林大学,2005.
    [2]王晋军.沟槽面湍流减阻研究综述[J].北京航空航天大学学报.1998,24(1):31-34.
    [3]侯晖昌.减阻力学[M].科学出版社.1987.
    [4]htPt:w//w. woilnews. eom.eng/b/mise/2003-05/07/conten--t19lo92. hntt.
    [5]钱成文,划广文.天然气管道的内涂层减阻技术[J].油气储运.2001,20(3):1-6.
    [6]Toms B A. Some observation on the flow of linear polymer solution through straight tubes at large Reynolds numbers. Proc.1st Intern Rheol. Congr. Scheveningen (Holland),1948,135~137.
    [7]Pal S, Merkle C L, Deutsch S. Bubble characteristics and trajectories in a microbble boundary layer. Physics of Fluids,1988,31(4):330-351.
    [8]Madavan N K, Deutsch S, Merkle C L. Reduction of turbulent skin friction by microbubbles. Physics of Fluids,1984,27(2):356-363.
    [9]纪永波.磁减阻技术研究[J].石油工业.1994,4(5):46-48.
    [10]赵利安,许振良.沉降性浆体管道减阻的研究进展[J].管道技术与设备.2006(5):4
    [11]田军,薛群基.平板上低表面能涂层的水筒减阻研究[J].科学通报.1996,41(18):1667-1669.
    [12]Carpenter PW. Status of transition delay using compliant walls. In:Bushnell DM, Hefner JN(eds)Viscous drag reduction in boundary layers. Progress in astronautics and aeronautics,1990,123. AIAA, Washington.
    [13]Walsh MJ. Turbulent Boundary Layer Drag Reduction Using Riblets. AIAAPaper.1982: 82-0169.
    [14]王晋军,兰世隆,苗福友.沟槽面湍流边界层减阻特性研究[J].空气动力学报.2001,42(4):1-4.
    [15]Jin-Jun Wang, Shi-long Lan, Guang Chen. Experimental Study on the Turbulent Boundary Layer. Fluid Dynamics Research.2000,27:217-219.
    [16]Bearman P W, Harvey J K. Control of Circular Cylinder Flow by the Use of Dimples. AIAA J,1993,31:1753-1756.
    [17]杨弘炜,高歌.一种新型边界层控制技术应用于湍流减阻的实验研究[J].航空学报.1997,18(4):455-457.125.[18] Bacher E V, Smith C R. A combined visualization-anemometry study of the turbulent drag reducing mechanisms of triangular micro-groove surface modifications AIAA, 1985,85-0548.
    [19]S._J. Lee, S._H. Lee. Flow field analysis of turbulent boundary layer over ariblet surface. Experiment in Fluids.2001,30:153-166.
    [20]Robinson S K. Coherent motions in the turbulent boundary layer. Annual Review of Fluid Mechanics.1991,23:601-639.
    [21]Starling L, Choi K S. Nonlinerar laminar turbulent transition over riblets. In Proceedings of the Laminar Flow work shop, Queen Mary and Westifield College, London,1997.
    [22]Bechert DW, Bartenwerfer M, Hoppe G. Turbulent drag reduction by nonplanar surfaces-a survey on the research at TU/DLR Berlin. Structure of Turbulence and Drag Reduction IUTAM Symposium Zurich/Switzerland,1989:525-523.
    [23]徐中,赵军,徐文骥等,凹坑形非光滑表面的减阻性能分析[J].航空精密制造技术.2009,45(1):33-38
    [24]张德远,韩鑫等.生物体表形貌直接复制制备仿生功能表面研究[C].中国农业机械学会2008年学术年会论文集.479-482
    [25]张赫男,李翔,陈博等.仿鲨鱼体表结构的生物非光滑减阻表面制造[C].中国机械工程学会年会,北京,2005:1-5.
    [26]齐彦昌,马成勇等.激光雕刻非光滑表面的微观组织和性能研究[J].材料热处理学报.27(3):108-111.
    [27]KRALCHEVSKY P A, PAUNOV V N, WANOV I B, et al. Capillary meniscus interaction between colloidal particles attached to a liquid-fluid Interface. Colloid Interface Sci.,1992,151:79—94.
    [28]刘梅,张建刚等.界面张力驱动的微粒自组装研究[J].仪表技术与传感器.2006(6):14-17.
    [29]田甜,骆志刚等蒸发诱导自组装仿生合成高有序度三维六方介孔氧化硅薄膜[J].功能材料.10(37):1653-1656.
    [30]张先如,孙嘉等.PEG在微波诱导下对高岭石插层及剥片的研究[J].无机化学学报.2005,21(9):1321-1326.
    [31]韩世瑞,刘雪宁等.超声化学法制备高岭土/二甲亚砜插层复合物的研究[J].广州化学.2003,28(3):11-15.
    [32]王宏志,李炜群,李强等。高分子网络凝胶法制备纳米α-Al2O3粉体[J].无机材料学报,2000,15(2):356-359.
    [33]曾桂生,邹建平等.硅烷类偶联剂KH-570对T-ZnOw表面的改性研究[J].功能材料.2010,3(41):410-413.
    [34]唐黎明,郭伟,周其痒.聚氨酯/聚丙烯酸酯复合涂料的新进展[J].高分子通报.1996,12(4):243-246.
    [35]黎永津,夏正斌,涂伟萍等!高性能双组分丙烯酸聚氨酯涂料的研制[J].华南理工大学学报.2000,7(28):116-120
    [36]王国建.新型丙烯酸聚氨酯涂料研究[J].化学建材.1996,6:253-256.
    [37]Weiss K D. Paint and coatings:a mature industry in transition. Prog. Polym. Sci., 1997,22:203-213.
    [38]余永生,魏庆鼎.疏水性材料减阻特性实验研究[J].实验流体力学.2005,19(2):60-66.
    [39]王柯,宋保维,潘光.条纹沟槽表面水下航行器减阻实验研究[J].力学与实践.2005,27(2):18-21.
    [40]张学俊,王丽娟,田军.树脂涂层对原油输送管道的壁面减阻作用[J].石油炼制与化工.2001,32(3):57-61.
    [41]陈敏恒等.化工原理(第二版)[M],北京:化学工业出版社,1999.
    [42]孙家峰,周燕等.压差流阻测试装置研制及涂层减流阻作用研究[J].润滑与密封.2006,7:120-122.
    [43]FLUENT帮助手册.2002.
    [44]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    [45]王福军.计算流体动力学分析[M].清华大学出版社,2004.
    [46]陈汉平.计算流体力学[M].北京:水利电力出版社,1995年,第一版.
    [47]张成纯.旋成体仿生非光滑表面流场控制减阻研究[D](博士论文).长春:吉林大学,2007.
    [48]高迅,刘翠容.工程流体力学实验[M].成都:西南交通大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700