用户名: 密码: 验证码:
KrF激光微细加工Al_2O_3陶瓷机理及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核主泵是核电站的核心设备之一,并且是我国核电设备中最后一个完全依靠进口的设备。核主泵密封环的制造工艺是核主泵自主制造技术的瓶颈。陶瓷具有优异的力学、热学、化学特性,是制造密封环的常用材料。但陶瓷的极大脆性和超高硬度使传统的加工技术无能为力,而激光加工技术具有加工质量好、精度高、加工形状可以自由设定的特点,使其在硬脆材料的微细加工上优势明显。因此,陶瓷的激光微细加工技术成为解决密封环制造难题的重要途径之一。
     本文采用准分子激光实现Al2O3陶瓷的微细刻蚀加工。在深入分析目前陶瓷激光微细加工技术的研究现状及存在问题的基础上,对准分子激光刻蚀陶瓷的材料去除机理和加工工艺展开了较深入的研究。主要研究的内容和结论如下:
     (1)通过分析准分子激光光束特性和Al2O3陶瓷物理化学性质以及它们相互作用的特点,研究了刻蚀过程中发生的物理现象。针对刻蚀量随能量密度增加而下降的问题,定性分析了等离子体羽辉在刻蚀过程中的作用。通过建立热传导模型,以解析计算的方法求得了KrF激光刻蚀Al2O3陶瓷材料的刻蚀阈值。得出如下结论:
     (2)Al2O3陶瓷在光热和光化学作用的共同作用下得以去除,其中光热作用起主导作用。去除的材料直接以爆炸的形式汽化去除。等离子体羽辉对激光单点脉冲刻蚀陶瓷几乎没有影响。
     (3)根据光束发散度、稳定性和整个光束截面上能量分布三个方面的设计要求,通过分析准分子激光光束在介质中的传播规律,对光路进行了优化设计。明确了准分子激光微细加工Al2O3陶瓷试验平台搭建过程中所要注意的问题,提出了平台搭建的总体方案和光路调试方法,并对试验平台进行搭建和调试,所搭建的试验平台满足试验要求。
     (4)利用搭建的准分子激光微细加工平台,进行了KrF激光刻蚀Al2O3陶瓷的工艺试验。研究了刻蚀量和表面粗糙度随激光的能量密度、脉冲数、脉冲重复频率的变化规律,确定出最佳的工艺参数。
     (5)通过分析比较刻蚀前后的陶瓷片表面形貌可知,刻蚀孔底部均匀、平坦,而刻蚀边缘存在烧蚀痕迹。主要原因是KrF光斑能量分布不均匀,中心能量高于边缘且均匀性好于边缘,且不呈高斯分布,为近高帽形分布。这一现象与通过温度场分析预测的KrF激光刻蚀Al2O3陶瓷的结果一致,即直接以材料爆炸形式汽化去除。
Nuclear main pump is one of the core equipment of nuclear power plants, and is the last device depending entirely on the imports. Seal ring manufacturing process has been the greatest bottleneck in the manufacturing technology of nuclear main pump. With excellent mechanical, thermal, chemical properties, ceramics are commonly materials used in manufacturing rings. But the great brittleness and ultrahigh hardness makes ceramics difficult machined materials for traditional processing techniques. Laser has obvious advantages in ceramics micro-machining, as its good processing quality, high accuracy and processing characteristics of the shape can be freely set. Therefore, laser micro-machining of ceramics technology is one of the key techniques to solve the sealing ring manufacturing.
     In this paper, we use the excimer laser to etch Al2O3 ceramics. Based on the in-depth analysis of current status and problems of laser micro-machining technology, the removal mechanism of ceramic materials and processes were researched deeply. The main contents are as follows:
     (1) The characteristics of mechanism of excimer laser etching were summarized. By analyzing the excimer laser beam characteristics and the physical properties of Al2O3 ceramics, the physical phenomena occurring in etching process were studied. For the problem of etching amount decreased with increase of energy density, the role of plasma plume in the etching process was analyzed qualitatively. During the etching process, both photothermy and photochemical action work in removing materials, but photothermy plays a leading role. And the ceramic materials were removed in the form of explosive vapor. The plasma plume almost has no influence on the ceramics single-pulse etching process.
     (2) By analysis of excimer laser beam basic characteristics, the transmission properties, the excimer laser beam propagation rule in the medium and the design requirements on the aspects of beam divergences degree, stability and energy distribution respectively, a light path optimization design is proposed. And problems presented in setting up the platform were settled. The overall scheme of the platform and optical path debugging method were proposed.
     (3) Using excimer laser micro-machining platform, some technological tests were carried out. And the changing rule of etching amount and surface roughness with the laser energy density, pulse number, pulse repetition frequency were studied. A set of optimum process parameters were achieved from experimental results.
     (4) By comparing the surface topography between original and etched ceramics, the bottom is smoother and flatter than the edge of the etching hole. The ablation trace on the edge of the etching hole showed that the energy distribution of facula was uneven. And the distribution form of the facula is not a Gaussian but a hat shapes. The phenomenon that ceramic materials were removed in the form of explosive vapor agreed well with theoretical prediction results.
引文
[1]彭俊,俞军.世界核电现状和发展趋势简介[J].核安全,2007(4):56-58.
    [2]蔡龙,张丽平.浅谈压水堆核电站主泵[J].水泵技术,2007(4):1-5.
    [3]卢东,袁宗久,王延合,程晓阳.浅谈压水堆核电站主泵的设计、运行和维护[J].水泵技术,1999(3):14-18.
    [4]温鸿钧.我国核电发展的重要里程碑——浅析《核电中长期发展规划(2005-2020年)》的发布[J].中国核工业.2008(1):16-17.
    [5]秦武,李志鹏,沈宗沼,靳卫华.核反应堆冷却剂循环泵的现状及发展[J].水泵技术,2007(03):1-6.
    [6]MARTINSON A. R. Design, development and testing of large-diameter, high-pressure seals for nuclear-reactor, primary coolant pump-a challenge to the pump manufacture [J]. Journal of the society of tribologists and lubrication engineers.1980, 36(5):325-335.
    [7]EHRHARD MAYER. Performance of rotating high duty nuclear seals. Journal of the society of tribologists and lubrication engineers [J]. Journal of the society of tribologists and lubrication engineers.1989,45(5):275-286.
    [8]LEBECK J. FERREIRA P M, The design and testing of a wavy-tilt-dam mechanical face seal [J]. Journal of the society of tribologists and lubrication engineers.1989, 45(5):322-329.
    [9]MARS I J. A. Development of a 9 inch (228mm) nuclear primary coolant seal [J]. Journal of the society of tribologists and lubrication engineers.1989,45(5):311-320.
    [10]ALAN O. LEBECK. Hydrodynamic lubrication in wavy contacting face seals-a two dimensional model [J]. Transactions of the ASME.1981,103(11):578-586.
    [11]舒梅,张景玉,廖隆源.核电站主泵质量保证及核安全文化[J].东方电机,2006(2):62-67.
    [12]朱武斌,郭志军.氧化铝陶瓷的发展与应用[J].陶瓷,2003(1):5-8.
    [13]刘维良.先进陶瓷工艺学(第1版)[M].武汉:武汉理工大学出版社,2004:166-167.
    [14]罗玉长.氧化铝精细陶瓷的发展概况[J].轻金属,1995(8):5-11.
    [15]孙康宁,尹衍升,李爱民.金属间化合物/陶瓷基复合材料[M].北京:机械工业出版社,2002:22-25.
    [16]倪文.矿物材料导论[M].北京:科学出版社,1999:73-76.
    [17]张瑞林.固体与分子经验电子理论[M].长春:吉林科学技术出版社,1993:309-311.
    [18]谭训彦,王昕,尹衍升等.α-Al2O3的晶体结构与价电子结构[J].中国有色金属学报2002(21):18-23.
    [19]张金升,张银燕等.陶瓷材料显微结构及性能[M].北京:化学工业出版社,2007,250-251.
    [20]祝宝军,肖汉宁,陶颖,裴立宅.碳化硼陶瓷活化烧结技术进展[J].硬质合金,2004,21(2):116-120.
    [21]刘永红.非导电超硬材料电加工新技术及其机理探索研究[D].哈尔滨工业大学,2000.
    [22]汲丛平.A1203陶瓷的激光铣削试验研究[D].大连理工大学,2006.
    [23]CAO FENGGUO. A Study of Polishing conductive-Ceramics with a Complex Technology of Spark Ultrasonic [J]. ISEM,1989(9):742-751.
    [24]李企芳.难加工材料的加工技术[M].北京:北京科学技术出版社,1992:9-10.
    [25]郭春丽.陶瓷零件的加工方法.陶瓷,2006(3):21-2.
    [26]李淑玉.工程陶瓷电火花加工工艺.机械工艺师,2000(4):16-17.
    [27]PEI Z J, FERREIRA P M, HASELKORN M. Plastic flow in rotary ultrasonic machining of ceramics[J]. Journal of Materials Processing Technology,1995(48):771-777.
    [28]张勤河,景辉,孙家林.超声波加工工程陶瓷的研究.电加工,1998(1):19-23.
    [29]袁根福,曾晓雁.Al2O3,陶瓷激光铣削试验研究[J].中国激光,2003,30(5):467-470.
    [30]张安峰,朱刚咸,周志敏,卢秉恒.CO2、Nd:YAG和准分子激光熔覆特性的比较[J].金属热处理,2008,33(6):14-18.
    [31]BASTING D, PIPPERT K, STAMM U. History and future prospects of excimer laser technology [J]. RIKEN REVIEW.2002,24:314-322.
    [32]R. SRINIVASAN, W. J. LEIGH. Ablative photodecomposition:action of far-ultraviolet (193 nm) laser radiation on poly(ethylene terephthalate) films[J]. Chem. Soc,1982, 104(24),6784-6785.
    [33]GARRISON, BARBARA J, SRINIVASAN R. Laser ablation of organic polymers:Microscopic models for photochemical and thermal processes [J]. Applied Physics.1985, 57(8):2909-2914.
    [34]H. K. TONSHOFF, D. HESSE, J. MOMMSEN. Micromachining Using Excimer Lasers[J]. Manufacturing Technology,1993,42(1):247-251.
    [35]GLOOR S, PIMENOV SM, OBRAZTSOVA ED. Laser ablation of diamond films in various atmospheres [J]. Diamond and Related Materials,1998,7(25):607-611.
    [36]BELLOSI A, DAURELIO G, CHITA G, SCITI D, ALLEGRETTI D, GUERRINI F.UV laser ablation of alumina ring faces for mechanical seal applications[J].Applied Physics A: Materials Science & Processing.1999,69(7):539-542.
    [37]CAPPELLI E, ORLANDO S, SCITI D, MONTOZZI M, PANDOLFI L. Ceramic surface modifications induced by pulsed laser treatment[J]. Appl. Surf. Sci.2000(154):682-688.
    [38]TSENG A, CHEN YT, MA K J. Fabrication of high-aspect-ratio microstructures using excimer lase r[J]. Optics and Lasers in Engineering.2004,41(6):827-847.
    [39]CHOI K H, MEIJER J, MASUZAWA T, Kim D. H. Excimer laser micromachining for 3D microstructure[J]. J. Mater. Process. Technol.2004,149(3):561-566.
    [40]LEE Y. C, WU C. Y. Excimer laser micromachining of aspheric micro lenses with precise surface profile control and optimal focusing capability [J]. Optics and Lasers in Engineering.2007,45(1):116-125.
    [41]OLIVEIRIA V, VILAR R. KrF pulsed laser ablation of polyimide. Applied Physics A: Materials Science & Processing.2008,92(4):957-961.
    [42]王立鼎,沈蓓军.KrF准分子激光直接消融深层光刻紫外光刻胶实验研究[J].功能材料与器件学报.1998,4(2):126-130.
    [43]李呈德,万盈.实用型准分子激光微细加工机制[J].光学精密工程.1999,7(1):79-84.
    [44]李呈德,万盈,陈涛,左铁钏.准分子激光投影直刻微加工制作微机械[J].中国科学2001,31(1):13-18.
    [45]江超,王又青.248nm KrF准分子激光精密加工Al2O3的实验研究[J].激光杂志.2002,23(2):59-61.
    [46]朱效立,王伟,刘世炳,陈涛,左铁钏.KrF激光刻蚀PMMA若干现象的分析[C].大珩先生九十华诞文集暨中国光学学会2004年学术大会论文集,2004.
    [47]刘莹、温诗铸.不同材料的准分子激光微细加工机制[J].机械科学与技术,2005,24(1):62-65.
    [48]郭纪林,刘莹,蔡升勇,李小兵,余桂英.准分子激光加工与研磨加工Al2O3陶瓷表面形貌的比较[J].南昌大学学报,2007,29(1):9-11.
    [49]龙芋宏,熊良才,史铁林.水辅助准分子激光微加工硅的实验研究[J].激光技术,2006,30(6):567-569.
    [50]D. VONDERLINDER D, SOKOLOWSKI-TINTENK, BIALKOWSKI J. Laser-solid interaction in the femto-second time regime, APPI. Surf. Sei.1997,109-110.
    [51]刘恩科,朱秉升,罗晋生,等.半导体物理学[M],长沙:国防工业出版社,1989.
    [52]钱晓峰,陈涛,郭商勇.准分子激光加工PMMA生物芯片片基的实验究[J].微纳电子技术,2006,43(1):47-49.
    [53]陆建,倪晓武.高功率激光与材料相互作用机理研究进展.激光技术,1996,20(3):181-184.
    [54]PAN C H. Yang.248 nm excimer laser drilling PI film for nozzle plate application [J]. Advanced Manufacturing Technology,2007,34(9):889-897.
    [55]王成,曾晓燕.Al2O3陶瓷的激光三维雕刻实验研究[J].激光技术,2007,31(1),18-21.
    [56]方昆凡,工程材料手册:非金属卷[M],北京:北京出版社,2002.
    [57]BRANNON J. H, LANKARD J. R. BAISE A. I, BURNS F, KAUFMAN J. Excimer laser etching of polyimide [J]. Applied Physics,1985,58(5):2036-2043.
    [58]项仕标.激光点火原理与实践[M].西安:黄河水利出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700