用户名: 密码: 验证码:
Si基表面吸附BTO初期粒子的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在激光分子束外延(LMBE)生长BaTiO3(BTO)薄膜过程中,初期多粒子碰撞反应是薄膜形成的关键过程。本文利用密度泛函理论中的广义梯度近似(DFT/GGA),在PW91/DNP水平上分别对BTO原胞的形成机理,以及BTO薄膜形成初期的粒子(以BaO、TiO2和BTO分子为主)在Si基表面的吸附生长过程作了理论研究。所有计算均采用Materials Studio 4.0中的DMol3和CASTEP两个软件包来完成。
     BTO薄膜生长初期存在一个Ba、O、Ti粒子共存的高真空沉积气氛,计算这些粒子碰撞反应机理及其中间体的形成机理后,获得了相应中间体的几何结构、过渡态及反应活化能,并运用前线轨道理论分析了BTO分子形成的机理。研究表明在BTO薄膜生长初期会以TiO2分子为中心,结合BaO分子成核生长,并经由类似于BTO单原胞中的钛酸钡分子结构形成大量的具有钙钛矿结构雏形的BTO原胞。
     对BTO初期粒子(以BaO和TiO2分子为例)在Si基表面吸附生长的研究采用从头计算分子动力学方法。模拟计算得到吸附过程的运动轨迹及每个时刻的能量,并找出每个阶段的吸附能。通过吸附能大小的比较,发现TiO2优先于BaO分子在驰豫的Si基表面发生吸附,说明生长将以TiO2为中心。
     另外,利用Mulliken电荷布局和前线轨道理论分别对BaO分子和TiO2分子在Si基表面的吸附过程作了具体的成键分析,发现BaO分子的吸附过程中,O原子与基底表面的Si原子结合后,Ba—O键发生断裂;而TiO2分子的吸附过程中,Si原子先与其中一个O原子结合,再与Ti原子结合,形成以Ti为中心的稳定四面体结构。这些分析结果都与动力学过程相一致。
     最后,对于BTO分子在Si基表面的吸附情况,我们结合前面研究的BTO原胞形成机理,并对比分析BaO和TiO2分子吸附过程,得出这样的猜测:基底表面Si原子先与BTO分子中的两个O原子吸附,再与Ti原子发生结合,而BTO分子中剩下的一个O原子将在孤电子对的作用下靠近Ba原子,形成类似于金刚体的稳定结构。
Finding out the processes of the microcosmic reactions and particle states in the early growth of BaTiO3 (BTO) thin films is very important for the preparation and control of good structure in the growth of BTO thin films. The precedence reacton processed of Ba, Ti, and O atoms, the formation of BaO and TiO2 molecules, and the microcosmic reaction mechanism underlying the formation of BTO, the BaO and TiO2 molecules adsorption on Si(001) surface have been investigated using a generalized gradient approximation of density functional theory (DFT) at the PE91/DNP level. And the DMol3 and CASTEP package of Materials Studio 4.0 are used for the calculations.
     It was found that BaO, TiO2, and BTO molecules are the primary particle states in the early growth of BTO thin films. As it acts as a combining center, the TiO2 molecule is preferentially formed. Subsequently, BaO molecules combin with this center and then BTO molecule, which is stable and somewhat similar to the BTO unit cell, is constructed. Due to the mechanisms, BTO thin films have been formed.
     The theoretical study of BaO and TiO2 molecules adsorption on Si(001) surface has been investigated using ab initio molecular dynamics method. We also have found the trajectory and energy of every moment in the process. At the time, the adsorption energys of corresponding stage has been calculated.
     By comparison the adsorption energy, we concluded that TiO2 molecule have been adsorbed growth priority than SrO molecule on the Si(001) surface.while TiO2 molecule have been adsorbed growth priority than SrO molecule on the SrO-SrTiO3(100) surface. In this instance, SrO and TiO2 layer are growth alternating layered cycle. The results are well in accordance with experimental.
     At the same time, the bonding process of SrO molecule on the TiO2-SrTiO3(100) surface have been investigated by using Mulliken, highest occupied and lowest unoccupied molecular orbital theory and density of states. Consistent with the results of kinetic studies, it indicated that Sr atoms in SrO molecule combine with O atoms in the surface priority. And then O atoms in SrO molecule combine with Ti in the surface, Sr-O bond was broken in SrO molecule.
     The bonding process of TiO2 molecule on the SrO-SrTiO3(100) surface has been investigated by the same method. Ti atoms in TiO2 molecule combine with O atoms in the surface combine first, and then O atoms in TiO2 molecule combine with Sr atoms in the surface.
     We can see that the final configurations of SrO molecule on the TiO2-SrTiO3(100) and TiO2 molecule on the SrO-SrTiO3(100) surface are similar with structure of SrTiO3 unit cell. It confirms that the model of SrTiO3 early growth is migration of unit cell and layer growth. In addition, the chemical bond of TiO2 and BaO molecules in the adsorption process of Si-based was analyzed respectively by using the Mulliken charge distribution and frontier orbital theory. It was found that in the adsorption process of BaO molecules, O atoms was connected with the Si atoms located on the surface of the substrate. Then Ba-O bond was broken; at the same time, the Si atom first was combined with one O atom, and then combined with the Ti atom, to form a stable Ti-centered tetrahedral structure, which are consistent with the dynamics.
     Finally, for BTO molecules in the adsorption process based on Si-based molecular, by using the BTO formation mechanism, and comparative analysis of BaO and TiO2 molecular adsorption process, it can be concluded that the Si atoms was first connected with the two O atomics which comes from the BTO, and then combined with the Ti atoms, while the remaining elements of a O atom will be influenced by the lone electron pairs near the Ba atom ro form a stable structure which is similar to the diamond.
引文
[1] Valasek J. Piezoelectric and applied phenomena in Rochelle Salt. Phys. Rev., 1920, 15: 537-538
    [2] Valasek J. Piezoelectric and applied phenomena in Rochelle Salt. Phys. Rev., 1921, 17: 475-481
    [3]千福熹.信息材料.天津:天津大学出版社,2000: 469-531
    [4]Kingon Angus I, Streiffer Stephen K. Ferroelectric Film and Devieces. Current Opinion in Solid State & Materials Science. 1999, 4(1): 39-44
    [5]Averty D. J. L, Chartier H, Gundel W., et al. Nanosecond switching of ferroelectric thin films for application to a short-Pulse micro electron emitter. Integrated Ferroelectrics, 1997, 18(l-4 pt 2): 91-99
    [6]Hyunjung S., Kyung-Mee L., Won-kyu M., et al. Application of polarized domains in ferroelectric thin films using scanning probe microscope. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, 47(4): 801-807
    [7]Suu K., Masuda T., Nishioka Y., et al. process stability control of Pb (Zr, Ti) O3 ferroelectric thin film sputtering for FRAM application. IEEE International Symposium on Applications of Ferroelectrics, 1998, 19-22
    [8]Koji A., Eiji F., Yasuhiro S., et al. Application of ferroelectric thin films to Si devices. IEICE Transactions on Electronics, 1994, E77C(3): 392-398
    [9]Robert E, Leuchtner. Applications of ferroelectric thin films grown by the pulsed laser deposition technique. 1994, Anaheim, CA, USA: Publ by IEEE, Piscataway, NJ, USA
    [10]Minoru N., Yoshinori M., Hideki S., et al. Low temperature preparation of Sr0.7Bi2+xTa2O9 thin films on SiO2/Si by pulsed laser deposition for application of metal-ferroelectric-insulator-semiconductor structure. Ferroelectri cs, Letters Section, 1999, 26(1-2): 17-28
    [11]Kabadjova T. D., Atanasov P. A., Tomov R. I., et al. Investigation of the process of PulsedLaser deposition of BaTiO3 ferroelectric thin films for device applications. Proceedings of SPIE-The International Society for Optical Engineering, 1999, 3571: 349-353
    [12]Douglas B. C., Jim S., Horwitz J. M. P., et al. Active microwave device applications of ferroelectric thin films. San Jose, CA, USA: Society of Photo-Optical Instrumentation Engineers,Bellingham,WA, USA, 1995
    [13]Nakao Y. C., Takashi N., Kamisawa A., et al. Study on Pb-based ferroelectric thin films prepared bysol-gel method of memory application. Japanese Journal of Applied Physics, part 1: Regular Papers & Short Notes & Review Papers, 1994, 33(9B): 5265-5267.
    [14]Kim H. G. Research overview and application trend in ferroelectric thin films. Seoul, South Korea: IEEE, Piscataway, NJ, USA. 1997
    [15]Felix A., Miranda F. W., Keuls V., Subramanyam G., et al. Correlation between material Properties of ferroelectric thin films and design Parameters for microwave device application: modeling examples and experimental verification. Integrated Ferroelectrics, 1999, 24(l): 195-214
    [16]Xie D., Ren T. L., Zhang Z. G., et al. Characterization and properties of lanthanum-substitued bismuth titanate ferroelectric thin films for FeRAM application. Beijing, China: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ. United States , 2004, 08855-1331
    [17]Dennis L. P. Microelectromechanical systems based on ferroelectric thin films. Microelectronic Engineering, 1995, 29(1-4): 51-58
    [18]Achard H., Mace H., Peccoud L. Device processing and integration of ferroelectric thin films for memory applications. Microelectronic Engineering, 1995, 29(1-4): 19-28
    [19]邵天奇,任天令,李春晓等.铁电-硅微集成系统.固体电子学研究与进展2002,3: 312-317
    [20]田焕芳,杨槐馨,虞红春等. Si(001)衬底上La0. 9Sr0.1MnO3/SrTiO3外延生长薄膜的界面电子显微学研究.电子显微学报,2006, 25:214-220
    [21]罗文博,张鹰,李金隆等.BaTiO3/Si界面扩散与控制方法研究.功能材料,2005,36:1919-1922
    [22]王丽娜,张青梅,杨文海等.核防护仿真设计(Monte Carlo方法)及其模拟研究.科技信息, 2009,35
    [23]杨春,李言荣.纳米薄膜材料设计与计算机模拟方法.功能材料,2003,3(34):247~249
    [24]P. A. M. Dirac, The principles of quantum mechanics (Clarendon Press, Oxford, 1958). 1
    [25]曾谨言.量子力学.北京:科学出版社,2000
    [26]Thomas H. The Calculation of Atomic Fields. Proc. Camb. Phil. Soc.,1927, 23: 542-548
    [27]Fermi E. Unmethodo satistico par la determinazione di alcune propriet dell atome Accad. Naz. Lincei, 1927, 6: 602-607
    [28]吴兴惠,项金钟.现代材料计算与设计教程.北京:电子工业出版社, 2002:173-190
    [29]Kohn W. Nobel lecture: Electronic structure of matter-wave functions and density functionals. Rev. Mod. Phys. B., 1999, 71 : 1253-1266
    [30]Born M., Huang K. Dynamical Theory of Crystal Lattices, Oxford: Oxford Universities Press, 1954
    [31]Slater J. C. Wave functions in a periodic potential. Phys. Rev., 1937, 51: 846-851
    [32]Levy M. Electron densities in search of Hamiltonians. Phys. Rev. A. ,1982, 26: 1200-1208
    [33]Fock V. N?herungsmethode zur L?sung des quantenmechanischen Mehrk?rperproblems. Z. Phys. 1930, 61: 126-148
    [34]P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev. 1964, 136(3B): 864-871
    [35]W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140(4A): 1133-1138
    [36]Kohn W., Sham L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, A140: 1133-1138
    [37]Slater J. C. A Simplification of the Hartree-Fock Method. Phys. Rev., 1951, 81: 385-390
    [38]R. M. Martin, Electronic structure: basic theory and practical methods. Cambridge: Cambridge University Press, 2004:18
    [39]谢希德,陆栋.固体能带理论.上海:复旦大学出版社, 1998: 18-32
    [40]肖慎修,王崇愚,陈天朗.密度泛函理论的离散变分方法在化学和材料物理学中的应用.北京:科学出版社, 1998: 18
    [41]邓珂.原子团簇和高分辨振转光谱的研究. [博士学位论文].北京:中国科学技术大学, 2001
    [42]袁岚峰.分子、团簇和凝聚态体系中相互作用的计算研究. [博士学位论文].北京:中国科学技术大学, 2001
    [43]Alder B. J., Wainwright T. E. Phase transition for a hardsphere system. The Journal of Chemical Physics, 1957, 27: 1208-1209
    [44]潘勇.基于第一原理研究反应合成AgSnO_2的合成机理与计算模拟. [硕士学位论文].云南:昆明理工大学, 2007
    [45]Alder B. J., Wainwright T. E. Phase transition for a hardsphere system. The Journal of Chemical Physics, 1957, 27: 1208-1209
    [46]Salik J. Monte Carlo Study of Reversible Growth of Clusters on a Surface. Phys. Rev. B., 1985, 32(3):1824-1829
    [47]Kataoka Y., Wittmaack K. Ion-Induced Electron Emission as a Means of Studying Energy and Angle-Dependent Compositional Changes of Solids Bombarded with Reactive Ions II. Nitrogen Bombardment of Silicon. Surf. Sci. 1999, 424(2-3): 299-310
    [48]Yang Y. G., Johnson R. A., Wadley H. N. G. A Monte Carlo Simulation of the Physical Vapor Deposition of Nickel. Acta Materialia, 1997, 45(4): 1455-1468
    [49]Knizhnik A. A., Bagaturyants A. A., Belov I. V. An Integrated Kinetic Monte Carlo Molecular Dynamics Approach for Film Growth Modeling and simulation: ZrO2 Deposition on Si(100)Surface. Computational Materials Science, 2002, 24(1-2): 128-132
    [50]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法(上). 5.北京:科学出版社, 1985, 271-284
    [51]Hohenberg P. and Hohn W. Inhomogeneous Electron Gas. Phys.Rev., 1964, 136B: 864-971
    [52]唐敖庆.量子化学.北京:科学出版社, 1982, 12-112
    [53]杨春. ZnO/α-Al_2O_3(0001)薄膜生长初期的模拟研究. [博士学位论文].四川:电子科技大学, 2004
    [54]赵宇军,姜明,曹佩林.从头计算分子动力学.物理学进展, 1998, 18(1): 47-75
    [55]Grob A. Reactions at surfaces studied by ab initio dynamics calculations. Surf. Sci. Repo., 1998, 32: 291-340
    [56]王佩怡. SrTiO3铁电薄膜同质外延生长初期的理论研究. [硕士学位论文].四川:四川师范大学, 2008
    [57]吴兴惠,项金钟.现代材料计算与设计教程.北京:电子工业出版社, 2002
    [58]陈晓波. ZnO及其合金的结构、电子及光学性质的计算机模拟. [硕士学位论文].哈尔滨:燕山大学, 2007
    [59]许振嘉.近代半导体材料的表面科学基础.北京:北京大学出版社, 2002
    [60]Delley B. Analytic energy derivatives in the numerical local-density-functional approach. J.Chem. Phys., 1991, 94: 7245-7250
    [61]Delley B. An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules. J. Chem. Phys., 1990, 92: 508-517
    [62]Delly B. Fast Calculation of Electrostatics in Crystals and Large Molecules. J. Phys. Chem., 1996, 100: 6107-6110
    [63]Zhu W, Wang C C, Akbar S A, et al. Fast-sintering of Hydrothermally synthesized BaTiO3 powders and their dielectric-properties. J. Mater. Sci., 1997, 32(16): 4303-4307
    [64]Cheng H F, Lin T F, Hu C T, et al. Effect of sintering aids on microstructures and PTCR characteristics of (Sr0.2Ba0.8)TiO3 ceramics. J. Am. Ceram. Soc., 1993, 76(4): 827-832
    [65]翟学良,杨芙丽,明常鑫等.钛酸钡系薄膜的制备方法、性质及应用.无机盐工业. 2004, 36(4): 5-8
    [66]Li Y R, Li J L, Zhu J, et al. Growth dynamics and cell migration in ferroelectric thin films. Appl. Phys. Lett., 2006, 88(15): 152901-152907
    [67]Li Y R, Li J L, Zhang Y, et al. Control of growth mode in SrTiO3 homoepitaxy under 500℃. J. Appl. Phys.,2004, 96(4): 1640-1643
    [68]李言荣,张鹰,邓新武等.超高真空中SrTiO3薄膜同质外延生长的过程研究.真空科学与技术学报, 2004, 24(1): 63-66
    [69]Yang C, Yu Y, Li L C. DFT study of the effect of temperature on ZnO adsorbed onαAl2O3(0001) surface. Chin. J. Chem. Phys., 2006, 19(2): 137-142
    [70]Yang C, Li Y R, Li J S. Ab-initio total energy study of ZnO adsorption on a sapphire(0001) surface. Phys. Rev. B., 2004, 70(4): 45413-45420
    [71]杨春,李言荣,薛卫东等.α–Al2O3(0001)基片表面结构与能量研究.物理学报, 2003, 52(9): 2268-2273
    [72]杨春,李言荣,薛卫东等.α–Al2O3(0001)表面原子缺陷对ZnO吸附影响.物理学报, 2005, 54(5): 2364-2368
    [73]杨春,余毅,李言荣等.温度对ZnO/ Al2O3(0001)界面的吸附、扩散及生长初期模式的影响.物理学报, 2005, 54(12): 5907-5913
    [74]王佩怡,杨春,李来才等. SrTiO3薄膜生长初期Sr,Ti,O原子分子反应机理的理论研究.物理学报, 2008, 57(4): 2340-2346
    [75]林梦海.量子化学计算方法与应用.北京:科学出版社, 2004
    [76]莫依,黎乐民.密度泛函计算条件对结果精度的影响.高等学校化学学报, 2001, 22(1): 81-85
    [77]Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B., 1992, 45(23): 13244-13249
    [78]薛卫东,李言荣,杨春. BaxSr1-xTiO3精细结构的第一性原理研究.化学物理学报, 2005, 18(2): 179-182
    [79]Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys.,1985, 82(1): 299-310
    [80]Halgren T A, Lipscomb W N. The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem. Phys. Lett., 1977, 49(2): 225-232
    [81]Govind N, Petersen M, Fitzgerald G, et al. A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 2003, 28(2): 250-258
    [82]Monnerie L, Lauprêtre F, Halary J L. Investigation of solid-state transitions in linear and crosslinked amorphous polymers. Adv. Polym. Sci., 2005, 187:35-213
    [83]Seeley G, Keyes T. Normal - mode analysis of liquid - state dynamics. J. Chem. Phys., 1989, 91(9): 5581-5586
    [84]Jensen J H, Morokuma K, Gordon M S. Pathways for H2 elimination from ethylene: A theoretical study. J. Chem. Phys., 1994, 100(3): 1981-1987
    [85]Jonsson H. Theoretical studies of atomic-scale processes relevant to crystal growth. Annu. Rev. Phys. Chem., 2000, 51: 623-653
    [86]Fermann J T, Auerbach S M, Modeling proton mobility in acidic zeolite clusters: II. Room temperature tunneling effects from semiclassical rate theory. J. Chem. Phys., 2000, 112(15): 6787-6794
    [87]姚允斌,解涛,高英敏.物理化学手册.上海:上海科学与技术出版社, 1985: 140
    [88]姚允斌,解涛,高英敏.物理化学手册.上海:上海科学与技术出版社, 1985: 107
    [89]赵宇军,姜明,曹佩林.从头计算分子动力学.物理学进展, 1998, 18(1): 47-75
    [90]Grob A. Reactions at surfaces studied by ab initio dynamics calculations. Surf. Sci. Repo., 1998, 32: 291-340
    [91]周明秀,杨春,邓小燕等.Si(001)-SiO2界面结构的理论研究.结构化学. 2006,25:647-652
    [92]Car R, Parrinello M. Unified Approach for Molecular Dynamics and Density-Functional Theory Phys. Rev. Lett. 1985,55:2471-2474
    [93]Perdew J P,Chevary J A,Vosko S H, et al. Atoms,molecules,solids and surfaces:applications of the generalized gradient approximation for exchange and correlation. Phys.Rev.B, 1992, 46:6671-6687
    [94]Imai Y, Mukaida M, Tsunoda T. Calculation of electronic energy and density of state of iron-disilicides using a total-energy pseudopotential method, CASTEP. Thin Solid Films, 2001,381:176-182
    [95]Udagawa M, Niwa M, Sumita I. The initial stages of the thermal oxidation of Si(001) 2x1 surface studied by scanning tunneling microscopy. J. Appl. Phys. 1992,72:6017-6019
    [96]杨冲.硅表面氧吸附、扩散及硅氧团簇形成的理论研究. [硕士学位论文].四川:四川师范大学, 2009
    [97]Chabal Y J, Raghavachari K, Zhang X, et al. Garfunkel E. Silanone (Si=O) on Si(100): intermediate for initial silicon oxidation. Phys. Rev. B. 2002, 66:161315-16318

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700