用户名: 密码: 验证码:
冷却速度及高压对TiAl金属间化合物组织及相影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用非自耗真空氩弧熔炼炉熔炼合金,研究了冷却速度对Ti-48Al、Ti-48Al-0.2B、Ti-52Al、Ti-52Al-0.2B合金显微组织的影响;利用六面顶压机分别在2GPa和4GPa高压下制备Ti-48Al凝固试样;利用X射线衍射对不同冷却速度下的TiAl金属间化合物及高压下凝固的TiAl金属间化合物相组成进行了分析;采用光学显微镜、扫描电子显微镜、能谱分析仪等分析测试手段分别对常压、高压下合金凝固组织形貌进行了观察。
     X射线衍射分析表明,随着冷却速度的增加,Ti-48Al合金中γ相晶格参数a有减小的趋势,而c值的变化并无规律;使用铜和石墨模具吸铸的Ti-48Al和Ti-48Al0.2B合金试样,其原始α晶粒特别细小,块状转变完全,无α2/γ片层组织或α2单相组织,吸铸后只产生γ单相。随着冷却速度的增加,Ti-52Al和Ti-52Al-0.2B合金晶粒尺寸均有减小的趋势,微量B元素的加入致使片层组织间距变小,且B的细化效果减弱。
     高压下凝固的Ti-48Al合金由α2-Ti3Al和γ-TiAl相组成,随着凝固压力的增大,α2-Ti3Al相含量及片层组织均增多,偏析γ-TiAl相减少,且片层组织中Al含量升高。在不同压力下凝固时,圆形试样边缘的组织和心部的组织均有较大的差异,2GPa下凝固时,边缘部位和心部均为双态组织,但心部偏析γ-TiAl相较边缘部位多;而4GPa下凝固时,试样边缘组织为全片层状组织,心部为双态组织。
     文中最后讨论了压力对Ti-Al合金偏析的影响,随着压力的增大溶质偏析变小。
In this paper, Ti-48Al、Ti-48Al-0.2B、Ti-52Al、Ti-52Al-0.2B alloys were prepared by vacuum non-consumble arc-melting method. The effect of three different kinds of cooling rate on the microstructures of these alloys have been studied. In addition, the samples of Ti-48Al alloys were prepared by solidifying under 2GPa and 4GPa by high pressure cubic press. The phase constitution of the TiAl intermetallics solidified under different cooling rates and high pressure is characterized by X-ray diffraction (XRD). By means of optical microscope, scanning electron microscopy (SEM), energy dispersive X-ray spectroscope (EDX), characters of microstructure and phase composition of alloys, effects of high pressure on solidification processing of alloys solidified under normal and high pressure were investigated respectively.
     X-ray diffraction indicates that with the increasing of cooling rates, crystal parameters (a) ofγ-TiAl phase have the tendency of decreasing, but no definite relation of the change of crystal parameters (c). After solidification in graphite and cuprum mold, the grain size of primaryαin Ti-48Al and Ti-48Al-0.2B is very fine, and it all transforms toγ. After the massive transformation there is no lamellar microstructure orα2-Ti3Al. Wth the increasing of cooling rates, the grain size of Ti-52Al based alloys decreased. And the addition of trace boron leads to the lamellar microstructure increased .When cooling rate increases, the refining effect of B is less evident.
     The microstructure of Ti-48Al solidified under high pressure consists ofα2-Ti3Al andγ-TiAl phase. With the increasing of pressure, the fraction ofα2-Ti3Al phase and lamellar microstructure increasing,γ-TiAl phase decreasing. There exists great discrepancy in the periphertal and core zone of the round samples solidified under pressure. The microstructures of the periphertal and core zone are also duplex when solidified under 2GPa. When the pressure is 4GPa, the periphertal zone is full lamellar microstructure, the core zone duplex microstructure.
     Meanwhile the effect of pressure on the microsegregation of TiAl alloys were analyzed. With the increasing of pressure, the microsegregation decreases. .
引文
1杨炳忻. 21世纪初中国高压科学发展前景.香山科学会议学术讨论会论文集. 2000, (7): 5~7
    2陈晋阳,郑海飞,曾贻善.高压——现代科学的一门新技术.科技导报. 2000, (6): 13~15
    3 W. H. Wang, C. Dong, C. H. Shek. Bulk Metallic Glasses[J]. Materials Science and Engineering R. 2004, (44): 45~89
    4 S. Merkel,H. R. Wenk,P. Gillet et al. Deformation of Polycrystalline Line up to
    30GPa and 1000K [J]. Physics of the Earth and Planetary Interiors. 2004, (145): 239~251
    5 W. Paszkowicz. High-pressure Powder X-Ray Diffraction at the turn of the Centry[J]. Nucleat Instrument and Methods in Physics Research B. 2002, (198): 142~182
    6 S. Emmunauel, F. M. Paul, H. Clivia, et al. Pressure-Induced Transformation inα- andβ-Ge3N4. In Situ Studies by Sychrotoron X-Ray diffraction[J] . Journal of Sold State Chemistry. 2004, (177):299~311
    7李杰.高压下铝硅合金的凝固.燕山大学硕士学位论文. 2005, 11~12
    8 C. M. Ward Close, F. H. Fores. Development in Synthesis of Light Weight Metal. Jom. 1994, 46(1): 28
    9张秋平.γ-TiAl金属间化合物的研发进展.工艺材料. 2007, 59~62
    10 Y. W. Kim, . D. M. Dimiduk. Progress in the Understanding of Gamma Titanium Aluminides [J ]. JOM. 1991, 43 (8):2~47.
    11 J. N.Wang, J. Yang, Q. F. Xia, et al. On the Grain Size Refinement of TiAl Alloys by Cylinic Heat Treatment [J]. Materierals Science and Enginering. 2002, 328~331
    12 H. Takamura, H. Kakuta, A Kamegawa, et al. Crystal Structure of Novel Hydrides in a Mg-Ni-H System Prepared under an Ultra High Pressure. Journal of Alloys and Compounds. 2002, 32:157~161
    13经福谦.我国高压物理研究的若干近期进展.物理. 1993, 153
    14李杰.高压下铝硅合金的凝固.燕山大学硕士学位论文. 2005, 1~2
    15 J. S. Schilling. The Use of High Pressure in Basic Materials and Life Sciences. Hyperfine Interactions. 2000, 128:3~27
    16黄伟军.铁的高压电学及结构相变研究.吉林大学硕士学位论文. 2006, 10
    17 Paul, William. High Pressure in Semiconductor Physics. A Historical Overview. Semiconductors and Semimetals. 1998, 54:2~38
    18 J. C .Jamieson, A. W. Lawson, N. D. Nachtrieb. Rev. Sci. Instrum. 1959,30:1016
    19池元斌.高压物理.吉林大学超硬材料国家重点实验室. 1987, 22
    20张流.地震地质论文集.天津科学技术出版社. 1998, 82
    21 C. T. Michael. Flow Properties of Continental Lithosphere. Tectonophysics. 1987, 136: 27
    22 N. W. Ashcroft. Physics of Solids under High Pressure. North-Holland, Amsterdam. 1981, 155
    23 D. Lockner. The role of Acoustic Emission in the Study of Rock Fracture. Rock Mech. Min. Sci. 1993, 30: 883
    24小川浩史等.食品工业. 1991, (34): 20
    25沈仁权等.基础生物化学.科技出版社. 2005, 256
    26 S. S. James. The Use of High Pressure in Basic and Materials Science. J. Phys. Chem Solids. 1998, 59(4):553~568
    27 H. Takamura, H. Kakuta, A. Kamegawa, et al. Crystal Structure of Novel Hydrides in a Mg-Ni-H System Prepared under an Ultra High Pressure. Journal of Alloys and Compounds. 2002, 32:157~161
    28 G. Demazeau. High Pressure Diamond and Cubic Boron Nitrides Systhesis. Diamond and Related Materials. 1995, 4:284~287
    29 P. F. McMillan. High Pressure Synthesis of Solids. Current in Solid State and Materials Science. 1999, (4):171~178
    30 J. Liang, X. Ma, etc. Formation and Structure of LaNi2 Intermetallic Compound under High Pressure. Intermetallics. 2003, 11:875~878
    31 Y. Méresse, S. Heathman, etc. High Pressure Behaviour of PuBi Studied by X-ray diffraction. Journal of Alloys and Compounds. 1999, 284:65~69
    32 S. Heathman, T. L. Bihan, etc. High Pressure Behaviour of TmTe and EuO. Journal of Alloys and Compounds. 1995, 230:89~93
    33 L. Shenxin, C. Yuanbin, etc. High Pressure Luminescence and Pressure Induced Phase Transition for LiYF4. Journal of Alloys and Compounds. 1997, 255:1~4
    34 B. Noguchi, Y. Yoshimura, H. Iwasaki. X-ray Diffraction Study of the Structural Phase Transition in NaCN under High Pressure. Materials Science and Engineering A. 2001, 312:31~37
    35 V. N. Verbetsky, E. A. Movlaev. Synthesis and Transformation of Hydrides under High quasihy Drostatic Pressures. Journal of Alloys and Compounds.1997, 253-254:38~40
    36 S. K. Bhaumik, C. Divakar, A. K. Singh. Synthesis and Sintering of TiB2 and TiB2-TiC Composite under High Pressure. Materials Science and EngineeringA.2000, 279: 275~281
    37 R. S. Kumar, A. Sekar, N. V. Jaya. Synthesis and High Pressure Studies of the Semiconductor AgBbSe2. Journal of Alloys and Compounds. 1999, 285:48~50
    38李克强,赵忠贤,靳常青.高压在高温超导研究中的应用.物理. 1998, (5): 267
    39秦志成,张云,张富祥.高压淬火直接形成Pd-Si块状纳米晶合金.物理学报. 1995, 220
    40高建卫,张振忠.高压凝固制备块体金属纳米材料研究现状及发展趋势.特种铸造及有色合金. 2004,159
    41李广社. KNb0.77Al0.23O2.77高压相变研究.高压物理学报. 1998, 12(3): 181~189
    42洪瑞金.高温高压下氮化镓陶瓷体的制备.高压物理学报. 2002, 16(4):259~264
    43阿·依·巴迪舍夫(苏).金属和合金在压力下结晶.哈尔滨工业大学出版社. 1987, 5~8
    44 A. E. Batashef. Crystallization of Metals and Alloys at Pressure.Moscow. Moscow Metallurgy Publisher. 1977, 16~25
    45费业泰.误差理论与数据处理.机械工业出版社. 1987, 236~254
    46齐丕骧.挤压铸造.国防工业出版社. 1984, 479501
    47于溪凤,张国志,肖汉杰等.高压凝固亚共晶Al-Si合金的组织变异及生长机制[J].磁疗研究学报. 2000, 14(增刊): 141~144
    48 D. R. Uhlmann. Materials Science Reseach. New York: Phenum Press.2005, 969: 172-179
    49曲迎东,李荣德,袁晓光,李晨曦,向青春.高压作用下合金凝固的研究进展.铸造. 2005, 6: 539~541
    50魏尊杰,王振玲,王宏伟,曹磊. Al-9.6wt%Mg合金高压凝固组织及组织稳定性分析
    51 R. Xu. The Effect of High Pressure on Solidification Microstructure of Al-Ni-Y alloy. Materials Letters. 2005, 59:2818~2820
    52 Y. S. Han, D. H. Kim, H. I. Lee. Effect of Applied Pressure during Solidification on the Microstructure Refinement in an Al-Cu alloy. Scripta Metallurgica et Materialia. 1994, 31(12):1623~1628
    53赵海丽.高压下Al-Ge合金的凝固.燕山大学硕士学位论文. 2005, 23~39
    54 R. Xu, H. Zhao, J. Li, et al. Microstructures of the Eutectic Hypereutectic Al-Ge Alloys Solidified under Different Pressures. Materials Letters. 2006, 60:783~785
    55 M. C. Flimings. Solidification Processing. McGraw-Hill Inc. 1974
    56李文,张瑞林,余瑞璜. Ti-Al系的相图及金属间化合物.材料导报, 1995, 14-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700