用户名: 密码: 验证码:
镁锂合金微弧氧化耐蚀性能及成膜过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微弧氧化技术对镁锂合金耐蚀性能的提高具有重要意义,但是合金的成分对微弧氧化膜层耐蚀性能及其成膜过程有重要的影响。本课题针对此问题,利用微弧氧化技术,在Mg-6.5%Li合金、Mg-11%Li合金和Mg-14%Li合金表面原位制备陶瓷膜层,并对膜层的耐蚀性能及成膜过程进行了研究。
     利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电子能谱仪(EDS)、X-射线光电子能谱仪(XPS)等测试手段,分析膜层的物相及元素组成,观察陶瓷膜层表面及截面形貌。利用电涡流测厚仪测量膜层厚度;利用CHI604电化学测试仪和Princeton Applied Reseach VMP3电化学工作站研究陶瓷膜的耐腐蚀性能。利用电感耦合等离子体质谱(ICP-MS)观察成膜过程中锂元素的熔出。
     在硅酸盐体系下,通过电解液各成分浓度范围的考察,确定了一组对三种基体均能稳定成膜的工艺,比较了该工艺下三种基体所得膜层的耐蚀性能。在5g/LNa_2SO_4溶液中浸泡96h后的开路电位显示,镁锂合金微弧氧化膜的腐蚀过程分为二个阶段:膜层的腐蚀阶段及基体腐蚀阶段;在Tafel曲线中,膜层的耐蚀性能较基体提高了两个数量级;通过交流阻抗谱测试,发现Mg-6.5%Li合金微弧氧化膜层耐蚀性能最高,Mg-11%Li合金的次之,Mg-14%Li合金的最差。
     通过对三种基体微弧氧化成膜过程的观察,分析了电压的变化、膜层厚度、表面形貌、表面元素成分、阻抗谱变化对成膜过程的影响,阐述了三种基体微弧氧化的成膜过程,总结了不同锂含量镁锂合金微弧氧化过程可能的反应方程式及锂元素对成膜过程的影响。三种基体微弧氧化过程基本一致,均主要经历三个阶段:第一阶段为阳极氧化阶段,Mg元素含量快速下降,O、F、Si元素含量快速上升,无法观察到微孔;第二阶段为氧化镁生成阶段,此时各元素含量趋于稳定,主要含有MgO晶相,膜层表面微孔逐渐增大;与第二阶段有所不同,第三阶段形成了由MgO和Mg_2SiO_4为主的混合膜层,并且在成膜后期膜层表面出现微裂纹。Mg-6.5%Li合金和Mg-11%Li合金在成膜过程中锂离子熔出量逐渐增加,Mg-14%Li合金只在成膜初期存在锂离子的大量熔出;锂元素的存在对镁锂合金微弧氧化的膜层结构影响不大。
Microarc oxidation (MAO) is a very meaningful technology for the enhancement of corrosion resistance of Mg-Li alloy. It is the component of alloy that has great influence on the corrosion resistant performance of MAO coating and on the growth process of MAO. In this paper, the electrolyte technique and growth process of MAO were studied on Mg-6.5%Li alloy, Mg-11%Li alloy and Mg-14%Li alloy respectively, which was due to the little understanding on MAO of magnesium-lithium alloy. In-situ preparation of MAO coating was applied, and the corrosion performance and mechanism of the MAO coating formation were studied.
     X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectrometer (XPS) were applied for conforming phase and elemental composition of the ceramic coatings, respectively. Scanning electron microscopy (SEM) was employed to observe surface and section morphology. Ectric eddy current thickness gauge was used to calculate thicknesses of the ceramic coatings. Corrosion resistance of the ceramic coatings was evaluated by CHI604 and VMP3 electrochemical workstation. Also, inductively coupled plasma mass spectrometry (ICP-MS) was applied to confirm the precipitation of lithium in the process of coating formation.
     Concentration range of different components in the silicate electrolyte was studied, and a set of stable technology was selected for a further study of corrosion resistance and growth process. Immersion experiment showed that corrosion of the ceramic coatings on Mg-Li alloy underwent two stages: corrosion in the coating and corrosion in the subtract. Tafel curves showed that corrosion resistance of the ceramic coatings were two magnitudes lower than alloys without any treatment; and EIS tests showed that corrosion resistance of the ceramic coating on Mg-6.5%Li alloy was the best, and that on Mg-14%Li alloy was the worst.
     Growth process of the ceramic coatings on three kinds of alloy were studied, and the influential factors such as voltage curve, coating thickness, surface morphology, surface elements, and change of impendence were analyzed. The process of MAO coating was illustrated. The probable formulas of MAO process on alloy with various Li content were deduced, and the effect of Li on formation of MAO coating was concluded. The results showed that MAO process of the three alloys were almost similar, which underwent three stages: anode oxidation stage, formation of oxide films, and formation of film contained oxide and silicate. During the first stage-the anode oxidation stage, content of Mg decreased rapidly while the content of F, O, and Si increased speedily. Besides, no micropore could be observed. During the second stage- the formation of oxide films, content of all elements in the surface of coating were stable, also, the micropores enlarged and MgO crystallized. During the third stage - formation of films contained oxide and silicate, the films were mainly consisted of MgO and Mg_2SiO_4 crystallized phases, and owned microcracks in the surface, which distinctied with the second stage. It also showed that content of separated lithium ascended in the throughout reaction of Mg-6.5%Li alloy and Mg-11%Li alloy, while it amounted to the maximum content in the first stage of reaction on Mg-14%Li alloy. Therefore, there was little effect of lithium on the MAO process.
引文
1赵武壮.我国锂资源的开发与应用.世界有色金属. 2008, 4: 38~40
    2宋光铃.镁合金腐蚀与防护.化学工业出版社. 2006: 1~19
    3乐启炽,崔建忠,李红斌等. Mg-Li合金研究最新进展及其应用.材料导报. 2003, 17(12): 1~8
    4蒋斌,张丁菲,彭建等. Mg-Li超轻合金的研究与应用.材料导报. 2005, 19(5): 38~41
    5乐启炽,崔建中. Mg-Li合金的过去、现在和未来.宇航材料工艺. 1997, 2: 1~6
    6牛中毅,景晓燕. Mg-xLi-3Al-2Zn-0.7Re合金的显微组织及力学性能.化学工程师. 2007, 136(1): 50~51
    7 Shi Zhong, Liu Meilin, Devang Naik. Electrochemical properties of Li-Mg alloy electrodes for lithium batteries. Power Source. 2001, 92: 70~80
    8薛文斌,邓志威等. ZM5镁合金微等离子体氧化膜的生长规律.金属热处理. 1998, 19(3): 42~45
    9 Wenbin Xue, Zhiwei Deng, Ruyi Chen. Growth regularity of ceramic coatings formed by microarc oxidation on Al-Cu-Mg alloy. Thin Solid Films. 2000, 372: 114~117
    10 H.F. Guo, M.Z. An. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance. Applied Surface Science. 2005, 241:229~238
    11 Hongping Duan, Chuanwei Yan, Fuhui Wang. Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution. Electrochimica Acta. 2007, 52: 5002~5009
    12曹富荣,崔建忠.超轻Mg-8Li合金超塑性力学性能的研究.稀有金属材料与工程. 1997, 26(2): 27~30
    13曹富荣,崔建忠,温景林.超轻Mg-Li合金熔铸工艺与轧制温度的研究.轻合金加工技术. 1999, 9: 35~37
    14沙桂英,徐永波,韩恩厚.高速冲击载荷下Mg-Li合金的动态裂纹扩展行为.航空材料学报. 2005, 5: 50~53
    15马春江,张荻. Mg-Li基复合材料.稀有技术材料与工程. 1998, 27(3): 125~129
    16 Ma Chun-jiang, Zhang Di, Qin Ji-ning. Mechanical properties and dampingcapacity of Mg-Li-Al alloys. The Chinese Journal of Nonferrous Metals. 2000 (Suppl. 1): 10~14
    17刘滨,张密林. Ce对Mg-Li-Al合金组织及力学性能的影响.特种铸造及有色合金. 2007, 27(5): 29~31
    18 G. L. Song, Andrej Atrens. Corrosion Mechanisms of Magnesium Alloys. Adv Eng Mater. 1999, 1(1): 11~33
    19霍宏伟,李瑛,王赫男等.镁合金的腐蚀与防护.材料导报. 2001, 15(7): 25~27
    20 Lihui Yang, Milin Zhang, Junging Li. Stannate conversation coatings on Mg-8Li alloy. Journal of Alloys and Compounds. 2009,471(1~2): 197~200
    21 J. E. Gray, B. Luan. Protective coatings on magnesium and its alloys--a critical review. Journal of Alloys and Compounds. 2002, 336: 88~113
    22韩玉昌,周铁涛,刘培英. Mg -13L i-5Zn合金化学镀镍研究.材料保护. 2006, 10: 38~40
    23高福麒,高斌,高翔.镁锂合金表面镍磷合金化处理的研究.表面技术. 2007, 36(6):59~61
    24 K.T. Rie, J. Whole. Plasma-CVD of TiCN and ZrCN films on light metals. Surface and Coatings Technology. 1999: 226~229
    25 N. Yamauchi, N. Ueda , A. Okamoto etc. DLC coating on Mg–Li alloy. Surface & Coatings Technology. 2007, 201: 4913~4918
    26 Eda H, Kobayashi T , Sahashi M. The 10th Inter Workshop on Rare Earth Magnets and Their Applications. Kyoto: 1989. 357~359
    27 Li JF, Zheng ZQ, Li SC. Preparation and galvanic anodizing of a Mg-Li alloy. Materials science and Engineering. 2006, 1-2: 233~240
    28张华,姚广春,王淑兰等.镁锂合金无铬转化膜的制备工艺研究.特种铸造及有色合金. 2007, 27(12): 917~919
    29施玲玲,徐用军,李康等. Mg-Li合金微弧氧化陶瓷膜的制备及其耐蚀性能.材料研究学报. 2009, 23(2): 220~224
    30 Xu Yongjun, Li Kang, Yao Zhongping. Micro-arc oxidation coatings on Mg-Li alloy,Rare metals. 2009, 28(2):160~163
    31徐用军,李康,姜兆华等.镁锂合金表面陶瓷膜的制备及其耐点蚀性能,材料热处理学报.
    32薛文斌,邓志威,来永春等.有色金属表面微弧氧化技术评述.金属热处理, 2000, 1: 1~3
    33 van T B, Brown S D, Wirtz G. P. Mechanism of Anodic Spark Deposition. Am. Ceram. Soc. Bull.1977, 56(6): 563~566
    34 Krysmann W, Kurze P, Dittrich K H, etc. Process Characteristics and Parameters of Anodic Oxidation by Spark Discharge (ANOF). Cryst. Res. Techo.. 1984, 19(7): 973~979
    35夏天.镁合金微弧氧化陶瓷层的结合强度及其致密度的研究.西安理工大学硕士论文. 2005: 44~50
    36房大然.镁合金微弧氧化工艺与膜层性能的研究.天津大学硕士论文. 2003: 45~52
    37蒋百灵,吴建国,张淑芬等.镁合金微弧氧化陶瓷层生长过程及微观结构的研究.材料热处理学报. 2002, 23(1): 5~7
    38陈显明,罗承萍,刘江文等.镁合金微弧氧化膜层形成过程探讨.中国表面工程. 2006, 19(5): 14~21
    39 Limin Chang. Growth regularity of ceramic coating on magnesium alloy by plasma electrolytic oxidation. Journal of Alloys and Compounds. 2009, 468: 462~465
    40张淑芬,张先锋,蒋百灵.镁合金微弧氧化陶瓷层形成及生长过程的研究.中国表面工程. 2004, (1): 35~38
    41蒋百灵,张先锋.镁合金微弧氧化陶瓷层的生长过程及其耐蚀性.中国腐蚀与防护学报. 2005, 25(2): 97~101
    42 S. Verdier, M. Boinet, S. Maximovitch. Formation, structure and composition of anodic films on AM60 magnesium alloy obtained by DC plasma anodizing. Corrosion Science. 2005, (47): 1429~1444
    43王燕华.镁合金微弧氧化膜的形成过程及腐蚀行为研究.中国科学院博士学位论文. 2005: 84~99
    44 Yanhua Wang, Jia Wang, Jibiao Zhang. Effect of spark discharge on the anodic coatings on magnesiume alloy. Materials Letters. 2006, (60): 474-478
    45 Changzheng Wang, Dong Zhang, Yongfeng Jiang. Growth process and wear resistance for ceramic coatings formed on the Al-Cu-Mg alloy by micro-arc oxidation. Applied Surface Science. 2006, (253): 674~678
    46 Jun Lianga, Baogang Guoa, Jun Tiana. Effects of NaAlO2 on structure and corrosion resistance of microarc oxidation coatings formed on AM60B magnesium alloy in phosphate–KOH electrolyte. Surface & Coatings Technology. 2005, (199): 121~126
    47 Fei Chen, Hai Zhou, Bin Yao.Corrosion resistance property of the ceramic coating obtained through microarc oxidation on the AZ31 magnesium alloy surfaces. Surface & Coatings Technology. 2007, (201): 4905~4908.
    48 Qizhou Cai, Lishi Wang, Bokang. WeiElectrochemical performance of microarcoxidation films formed on AZ91D magnesium alloy in silicate and phosphate electrolytes. Surface & Coatings Technology. 2006, (200): 3727~3733
    49翟彦博,钱翰城,张金彬等. AZ31B镁合金微等离子体氧化陶瓷膜耐腐蚀性研究.表面技术. 2005, 34(2): 35~41
    50 Yong K. Lee, Kangsoo Lee, Taeho Jung. Study on microarc oxidation of AZ31B magnesium alloy in alkaline metal silicate solution. Electrochemistry Communications. 2008, 10(11):1716~1719
    51蒋百灵,张先锋.不同电导率溶液中镁合金微弧氧化陶瓷层的生长规律及耐蚀性.稀有金属材料与工程. 2005, 34(3): 393~395
    52刘元刚,张巍,李久青等.镁合金微弧氧化膜结构及耐蚀性的初步研究.材料保护. 2004, 37(1): 17~19
    53 C.E. Barchiche, E. Rocca, C. Juers. Corrosion resistance of plasma-anodized AZ91D magnesium alloy by electrochemical methods. Electrochimica Acta. 2007, (53): 417~425
    54 Gaia Ballerini, Ugo Bardi, Roberto Bignucolo. About some corrosion mechanisms of AZ91D magnesium alloy. Corrosion Science [J]. 2005, 47: 2173~2184
    55李康.镁锂合金微弧氧化陶瓷膜制备及其耐腐蚀性能.哈尔滨工业大学硕士学位论文. 2008: 12~15
    56 Jian Chen, Jianqiu Wang, Enhou Han. AC impedance spectroscopy study of the corrosion behavior of an AZ91 magnesium alloy in 0.1M sodium sulfate solution. Electrochimica Acta. 2007(52): 3299~3309
    57 Hongfei Guo, Maozhong An. Effect of surfactants on surface morphology of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation. Thin Solid Films. 2006, (500): 186~189
    58王建羲.超轻镁锂合金开发.工业材料杂志. 1991, 184: 133

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700