用户名: 密码: 验证码:
QT600-3铸铁件表面激光熔覆工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光熔覆是一种新的表面改性技术,可以产生平衡状态下所无法获得的优良组织和性能,能够在普通的钢材上制各出性能优异,且与基体结合强度较高的合金钢表层,在修复因局部磨损而报废的关键零部件方面表现尤为突出。
     本文利用全固态激光器在QT600-3铸铁件表面熔覆铁基和镍基合金粉末的涂层。借助光学显微镜、扫描电镜、X射线衍射仪、显微硬度计等分析仪器,对激光熔覆层的微观组织、合金元素分布、物相结构、横截面硬度分布进行了测试和分析,并对激光熔覆工艺参数进行了优化。研究结果表明:激光功率、扫描速度、送粉速度、光斑直径大小等工艺参数对熔覆层几何形貌及成形质量影响作用极大,激光功率增加,熔覆层的宽度W和厚度H增大,而硬度会有所降低;较慢的扫描速度可以获得较高硬度的熔覆层,熔覆层宽度W和厚度H较大;随着激光送粉速度提高,熔覆层的宽度和厚度均减小;在有效光斑直径范围内,其微小变化对熔覆层尺寸的影响较小;激光熔覆铁基合金粉末的最佳工艺参数为:激光功率P=800W、扫描速度V=6.67mm/s、光斑直径D=2mm、送粉器转速R=300rpm;激光熔覆镍基合金粉末的最佳工艺参数为:激光功率P=900W、扫描速度V=10 mm/s、光斑直径D=2.5mm、送粉器转速R=420rpm。铁基合金激光熔覆区为胞状晶和树枝晶结构,组织均匀致密,Fe、Cr等元素在熔覆层与母材间发生了相互扩散,形成了良好的冶金结合,并有硬质点弥散分布,使得涂层硬度大幅度提高,其硬度大约为基体硬度(250~300HV0.2)的2.6倍。在理想的工艺参数范围内,采用镍基合金粉末进行激光熔覆同样也可以得到良好的熔覆层。
     本文还对激光熔覆过程中产生的成分污染、裂纹、气孔、边缘塌陷和氧化与烧蚀等缺陷形成的原因进行了初步分析,并根据缺陷形成的原因提出了相应的预防措施,为激光熔覆技术在汽车模具修复方面的广泛应用提供了技术保障。
Laser cladding, which can bring excellent surfacial structure and properties of the parts, is a new surface modification technology,. It can be used to prepare high-performance alloy-steel surface which has super properties and high bonding strength with the base metal based on the simple steel. Especially, the technology plays a critical role in repairing the local parts which invalidated easily due to concentrated wear.
     Solid-state laser was adopted to prepare iron-based and nickel-based alloy powder coating on the surface of nodular cast iron QT600-3. Optical microscope, scanning electronic microscope (SEM), X-ray diffraction (XRD), transmission electronic microscope (TEM) and microhardness testing machine were utilized to analyze the microstructure, distribution of alloying agent, metallic phase structure and cross-sectional hardness distribution of the coating respectively. The results showed that:laser power, scanning speed, powder conveyer rotation speed and spot diameter have large effects on the shape and quality of the coating. The width W and height H of the cladding layer wereincreased with the increase of the laser power, but the hardness decreasesd. The higher the scanning speed was the superior the hardness of the cladding layer was. Similarly, with the higher scanning speed, the values of the width and height of the cladding layer were improved. However, the values of the width and height of the cladding layer were decreased with the powder conveyer rotation increasing. In addition, the effect is undetectable if the spot diameter value is in the effective range. the optimum processing parameter of iron-based alloy powder coating was:laser power P=800 W, scanning speed V=6.67 mm/s, spot diameter D=2 mm, powder conveyer rotation speed (powder feeding speed) R=300 rpm; that of nickel-based alloy powder coating was:laser power P=900 W, scanning speed V=10 mm/s, spot diameter D=2.5 mm, powder conveyer rotataion speed R=420 rpm. The microstructure of laser clad coating consisted of cystiform crystal and dendrite was homogeneous and free of pore. The elements Fe and Cr in coating and substrate near the interface diffuse from one side to the other, so that metallurgical bonding is formed between the coating and the substrate. The hardness of the coating is improved up to 2.6 times of the substrate because of the hard spots dispersing in the coating. In an ideal range of processing parameters, fine coating can be obtained in nickel-based alloy powder laser cladding.
     Besides, in this study the reasons for the formation of cracks, porosities, inclusions, segregation and fringe concavity in laser cladding layer were investigated, and solutions were addressed to avoid these defects, which can also provide technic support of laser cladding in the application of repairing auto mould.
引文
[1]左铁钏.21世纪的先进制造:激光技术与工程.北京:科学出版社,2007,169-173
    [2]关振中.激光加工工艺手册.北京:中国计量出版社,2007,1-13,304-307
    [3]徐滨士,刘世参.表面工程新技术.北京:国防工业出版社,2002,178-189
    [4]董世运,马运哲,徐滨士等.激光熔覆材料研究现状.材料导报,2006,20(6):5-13
    [5]李春彦,张松,康煜平等.综述激光熔覆材料的若干问题.激光杂志,2002,23(3):5-9
    [6]曾大文,谢长生.激光熔覆温度场和流场数值模拟研究现状和发展趋势.材料科学与工程,1997,15(4):1-8
    [7]张平,马琳,赵军军等.激光熔覆数值模拟过程中的热源模型.中国表面工程,2006,19(z1):161-164
    [8]杨楠,杨洗陈.激光熔覆中金属粉末粒子与激光相互作用模型.光学学报,2008,29(9):1745-1750
    [9]Qi H, Mazumder J. Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition. Journal of Applied Physics.2006,100:1-11
    [10]邱星武,李刚,任鑫等.扫描速度对激光熔覆Ni基涂层组织性能的影响.稀有金属材料与工程,2009,38(z1):325-328
    [11]董丹阳,张滨,陈岁元等.扫描速度对硅钢表面激光熔覆层组织和硬度的影响.东北大学学报(自然科学版),2008,29(6):849-852
    [12]张海燕,伍春燕,张坚等.激光功率对连续CO2激光制备单壁碳纳米管的影响.中国激光,2004,31(2):241-244
    [13]陈永哲,王存山,李婷等.镁合金表面激光熔覆Ni-Zr-Al合金涂层成分设计与组织性能.中国激光,2009,36(8):1287-1291
    [14]杨永强,文效忠.激光熔覆SiC/不锈钢粉末复合涂层的组织与性能.中国激光,2000,27(10):941-946
    [15]Steen W M. Laser Surface Treatment of Metals. Laser Surface Cladding,1988: 369-387
    [16]Kumar S, Roy S. A parametric study of a blowm powderlaser cladding and alloying Process using a two-dimensional conduction model. Mechanical Engineering scienc,2004,218:703-708
    [17]Kaul R, Ganesh P, Albert S K. Laser cladding of austenitic stainless steel with nickel base hardfacing alloy. Surface Engineering,2003,19(4):268-273
    [18]闫忠琳,叶宏.激光熔覆技术及其在模具中的应用.激光杂志,2006,27(2):73-74
    [19]梁泽芬,季根顺,樊丁等.激光改善不锈钢表面耐蚀性和抗氧化性能的研究进展.材料导报,2009,23(1):67-71
    [20]Duraiselvam M, Galun R, Wesling V, et al. Cavitation erosion resistance of AISI 420 martensitic stainless steel laser-clad with nickel aluminide intermetallic composites and matrix composites with TiC reinforcement[J]. Surface and Coatings Technology.2006,201:1289-1295
    [21]刘其斌,李绍杰.航空发动机叶片铸造缺陷激光熔覆修复的研究.金属热处理,2006,31(3):52-55
    [22]姜伟,胡芳友,韩莉.激光熔覆技术在飞机叶片修复中的应用研究.新技术新工艺,2007(12):57-59
    [23]盛定高.精铸镍基合金涡轮叶片缺陷激光熔覆修复工艺.铸造技术,2009,30(10):1341-1343
    [24]陈国喜,傅卫,袁巨.轧机牌坊激光熔覆修复研究.表面技术,2009,38(6):87-89
    [25]Unocic R R, Dupont J N. Process Efficiency Measurements in the Laser Engineered. Metallurgical and Materials Transactions,2004,35:143-152
    [26]邱星武,李刚,邱玲.激光熔覆技术的发展现状.热处理技术与装备,2009,30(6):6-8
    [27]赵峰.表面工程技术在模具制造中的应用与进展.机械工程与自动化,2009,156(5):189-191
    [28]孙宜华.材料的表面工程技术.中国资源综合利用,2002(11),41-43
    [29]许崇海,肖光春,方斌等.陶瓷模具材料的表面改性技术及应用.稀有金属材料与工程,2007,36:508-511
    [30]刘睿,马向东.模具修复相关技术比较.见:2008年全国模具失效分析及改性技术研讨会论文集.广州:2008,115-117
    [31]王磊,梅雪珍.热喷涂技术在模具行业中的应用.有色金属(冶炼部分),2007(z1):98-100
    [32]樊丁,李强,梁泽芬等.激光熔覆在零部件修复中的应用现状.焊接,2009,(2):30-33
    [33]周飞,贾秀颖,张谦.金属材料与热处理.北京:电子工业出版社,2007, 103-104
    [34]彭超,周笃祥,张国宝等.铸态珠光体球铁实型铸造冲模件的研究与生产.见:中国第二届消失模铸造技术国际会议暨第九届实型(消失模)铸造学术年会论文集.四川:2006,129-134
    [35]李华国,丁钢,王捧柱等.激光熔覆镍基合金涂层及其应用研究.金属热处理,1999,(9):14-117
    [36]孙荣禄,杨贤金.45钢表面激光熔覆NiCrBSi涂层的组织和摩擦磨损性能.材料工程,2005,(8):20-27
    [37]Adak B, Nash P, Chen D. Micro structural characterization of laser cladding of Cu-30Ni. Journal of Material Science,2005,40:2051-2054
    [38]刘月龙,斯松华.激光熔覆铁基合金涂层研究进展.安徽工业大学学报,2005,22(4):348-351
    [39]李胜,曾晓雁,胡乾午.激光熔覆专用铁基合金特点分析及设计思路评述.中国表面工程,2007,20(4):11-15
    [40]Du B, Zou Z, Wang X, et al. Laser cladding of in situ TiB2/Fe composite coating on steel. Applied Surface Science,2008,254:6489-6494
    [41]季霞,周建忠,郭华锋等.同轴送粉激光熔覆件质量影响因素的研究,2007,41:27-31
    [42]张庆茂,钟敏霖,杨森等.送粉式激光熔覆层质量与工艺参数之间的关系.焊接学报,2001,22(4):51-54
    [43]Zhu Q, Wang X, Qu S, et al. Amorphization of Fe38Ni30Si16B14V2 surface layers by laser cladding. Transaction of Nonferrous Metals Society of China, 2008, (18):270-273
    [44]姜伟,胡芳友,黄旭仁.工艺参数对激光熔覆层微观形貌的影响.表面技术,2007,36(4),57-58
    [45]李胜,胡乾午,曾晓雁.激光模式对激光熔覆层质量的影响.激光技术,2005,29(6):667-669
    [46]于永泗,齐民.机械工程材料.大连:大连理工大学出版社,2003,6-7
    [47]Stephenson D J, Nieholls J R. Modeling the influence of surface oxidation on high temperature erosion. Wear,1995,186(1):284-291
    [48]马幼平,许云华.金属凝固原理及技术.北京:冶金工业出版社,2008,72-106
    [49]Jendrzejewski R, Sliwinski G, Krawczuk M, et al. Temperature and stress fields induced during laser cladding. Computers and Structures,2004,82:653-658
    [50]杨森,黄卫东,苏云鹏等.DD2单晶合金激光表面熔凝处理的组织特征及微 观偏析行为.中国激光,2001,28(2):173-175
    [51]Wu X, Chen G. Microstructural features of an iron-based. Journal of Material Science,1999,34:3355-3361
    [52]郝石坚.高铬耐磨铸铁.北京:煤炭工业出版社,1993,214-264
    [53]Gedda H, Kaplan A, Powell J. Melt-Solid Interactions in Laser Cladding and Laser Casting. Metallurgical and Materials Transactions,2005,36:683-689
    [54]李长龙,赵忠魁,王吉岱.铸铁.北京:化学工业出版社,2007,77-82
    [55]Jae D K, Yun P. Melt pool shape and dilution of laser cladding with wire feeding. Journal of Materials Processing Technology,2000,104:284-293
    [56]Xiong Z, Chen G X, Zeng X Y. Effects of process variables on interfacial quality of laserEffects of process variables on interfacial quality of laser cladding on aeroengine blade material GH4133.Journal of Materials Processing Technology, 2009,209:930-936
    [57]黄永俊,曾晓雁,胡乾午等.激光感应复合熔覆的稀释率分析模型及实验研究.应用光学,2008,29(2):248-252
    [58]罗辉,张元彬,唐琳琳.D212焊条堆焊工艺对堆焊层组织性能的影响.热加工工艺,2009,38(21):126-131
    [59]宋光明,吴钢,黄婉娟.单向送粉双向扫描激光熔覆工艺防止裂纹的试验研究.金属热处理,2005,30(5),26-28
    [60]Liu J C, Li L J. Study on cross-section clad profile in coaxial single-pass cladding with a low-power laser. Optics & Laser Technology,2005,37:478-482
    [61]Lin J, Hwang B C. Coaxial laser cladding on an inclined substrate. Optics and Laser Technology,1999,31:571-578
    [62]王新洪,邹增大,曲仕尧.表面熔融凝固强化技术.北京:化学工业出版社,2005,311-321
    [63]王慧萍.关于激光熔覆层开裂问题的探讨.热处理,2008,23(6):24-27
    [64]祝柏林,胡木林,陈俐等.激光熔覆层开裂问题的研究现状.金属热处理,2000,(7):1-4
    [65]丁阳喜,欧阳志明.激光熔覆层裂纹的影响因素.材料研究与应用,2008,2(3):211-214
    [66]Li S, Hu Q W, Zeng X Y. Effect of carbon content on the microstructure and the cracking susceptibility. Applied Surface Science,2005,240:63-67
    [67]黄尚猛.激光熔覆技术防开裂对策探讨.装备制造技术,2007,(11):126-127
    [68]Zhou S F, Zeng X Y, Hu Q W, et al. Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization. Applied Surface Science,2008,255:1646-1653
    [69]Wang F J, Mao H D, Zhang D W, et al. The crack control during laser cladding by adding the stainless steel net in the coating. Applied Surface Science,2009, 255:8846-8854
    [70]Wu X L, Chen G N. Micro structural features of an iron-based laser coating, Journal of Materials Science.1999,34:3355-3361
    [71]毛怀东,张大卫,刘泽福.激光熔覆层网状添加物对裂纹控制的影响.天津大学学报,2008,41(5),553-557
    [72]常明.塑料模具激光精密修复技术的研究:[华南师范大学硕士论文].广州:华南师范大学,2007,41-42
    [73]黄延禄,邹德宁,梁工英等.送粉激光熔覆过程中熔覆轨迹及流场与温度场的数值模拟.稀有金属材料与工程,2003,32(5):330-334
    [74]沈燕娣.激光熔覆工艺基础研究:[上海海事大学硕士论文].上海:上海海事大学,2006,42-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700