用户名: 密码: 验证码:
Akt1及其异构体在心脏发育过程中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Akt/蛋白激酶B (PKB)是AGC kinase家族(包括PKA, PKG以及PKC)中的一个亚家族。在哺乳动物中,Akt/PKB家族包含三个成员(isoform)分别称为Akt1/PKBa, Akt2/PKBβ和Akt3/PKByo它们被处于不同染色体上的不同的基因编码。尽管3个异构体蛋白间有很高的同源性和类似的结构域,但是通过遗传学研究发现他们的在发育和生理学功能上的作用并不一致。通过联合敲除Akt1和Akt2、Akt1和Akt3、或者Akt2和Akt3的研究,发现3个基因在发育和生理学功能上的作用有叠加效应。P13K-PDK1-Akt (P13K, phosphoinositide-3 kinase; PDK1, phosphoinositide-dependent protein kinase)信号通路在多种生物学过程中发挥着非常重要的作用,包括细胞生存、增殖、代谢和器官发育过程。
     以前的研究发现全身性Akt1敲除的小鼠出生后表现出较高的死亡率,但是死亡的原因一直没有被阐明。本论文中的研究结果发现了出生后1天的Akt1敲除小鼠表现出明显的心脏发育缺陷的表型,主要包括心脏房间隔缺损(Atrial Spetal Defect, ASD)、室间隔缺损(Ventricular Spetal Defect, VSD)和心室肌厚度变薄。运用心脏B超进行心脏功能学研究,发现Akt1敲除小鼠在出生后2天,表现出明显的心脏功能下降。这些结果表明Akt1敲除小鼠出生后高死亡率可能是由于心脏的表型引起的。进一步研究发现Akt1敲除的小鼠心肌细胞增殖明显降低,心脏室间隔中的毛细血管密度明显减少。
     机制研究表明,Akt1敲除的小鼠从胚胎期12.5天到出生1天的心脏均表现出p38活性的升高,和以前的报道p38的活性和心脏的增殖成负相关的结果相一致。通过遗传学的手段,把Akt1敲除小鼠和p38a敲除小鼠交配,发现p38a缺失一半后可以挽救Akt1敲除小鼠出生后死亡率高、心脏发育缺陷和心肌细胞增殖减少的表型。
     由于Akt1和p38α的缺失都可能造成胎盘的发育缺陷,而胎盘发育缺陷也是导致心脏发育缺陷和功能改变的因素之一,所以为了排除胎盘的影响,我们制作了Akt1心脏特异性敲除的小鼠(使用Mesp1-cre小鼠,心脏祖细胞中特异性表达Cre重组酶)。蛋白水平分析表明敲除的效率并不完全。组织学分析结果表明,部分Akt1心脏特异性敲除的小鼠也表现出了心脏发育缺陷。这些结果显示心脏中残留的少量Akt可能也能够部分维持心脏的发育和功能。
     以前的研究表明3个Akt异构体之间有功能叠加的效应,所以我们分析了Akt1F/F:Mesp1-cre+/-;Akt3-/-小鼠,发现了这种基因型的小鼠大约死于胚胎期第14.5天(E14.5),所有死亡的小鼠均表现出明显的心脏发育缺陷和较薄的心肌壁。
     综合以上我们的研究结果表明,Akt1及其异构体Akt3在维持正常心脏发育和功能上发挥着重要的作用,并且这种作用是有基因剂量依赖性的。
Mammals have three Akt/PKB (protein kinase B) isoforms, termed Akt1/PKBa, Akt2/PKBβ, and Akt3/PKBy (hereafter collectively referred to as Akt), that are encoded by three distinct genes localized on different chromosomes. Although the three Akt proteins share high homology and display similar domain structures, mouse genetic studies have demonstrated that they play overlapping but distinct roles in development and physiology. The P13K-PDK1-PKB/Akt (P13K, phosphoinositide-3 kinase; PDK1, phosphoinositide-dependent protein kinase) signaling pathway plays critical roles in a variety of biological processes, including cell survival, growth and proliferation, metabolism and organogenesis.
     Akt1-deficient mice have a high rate of neonatal mortality with an unknown cause. Here, we report that histological analysis revealed that Akt1-deficient embryos and newborns have heart defects and a decreased rate of cell proliferation. In addition, echocardiography demonstrated that the heart function of these mice is decreased. Further investigation revealed that the Akt1 deficiency caused substantial activation of p38MAPK in the heart. Breeding the Akt1-deficient mice to mice that are heterozygous for a null p38a gene partially rescued the heart defects, significantly decreased post-natal mortality, and restored normal patterns of cardiomyocytes proliferation.
     Because both the intrauterine environment and the fetal-maternal interface are critical for fetal development and growth, the placental defects need to be separated from those observed in the heart in this study. This separation was accomplished using a cardiac-specific knockout for Akt1. Unexpectedly, the/Mesp1-Cre-mediated, cardiac-specific Akt1 knockout mice appeared normal. Further analysis showed that Akt1 was present at very low levels in the Akt1F/F;Mesp1-Cre+/- mice hearts. This low level was enough to maintain a partial role in the functioning of the heart.
     Previous study indicated that other Akt isoforms exhibit gene dosage effects relative to Akt1, and we determined that Akt1F/F;Mesp1-Cre+/-;Akt3homo mice had an embryonic lethal phenotype. Further analysis showed that the Akt1F/F;Mesp1-Cre+/-;Akt3homo mice die at about embryonic day 14.5 (E14.5). By E14.5, all Akt1F/F;Mesp1-Cre+/-;Akt3homo mice at E14.5 have congenital heart defects and a thinner myocardium. Cardiac cell proliferation was significantly decreased, which may contribute to the congenital heart defects and thinner myocardium.
     In conclusion, these results suggest that Akt isoforms play an important role in heart development, potentially in a dosage-dependent manner. Thus, the roles of the Akt isoforms need to be further studied.
引文
Anderson, R., Webb, S., Brown, N., Lamers, W. and Moorman, A. (2003). Development of the heart:(2) Septation of the atriums and ventricles. British Medical Journal 89,949.
    Bruneau, B. G. (2002). Transcriptional regulation of vertebrate cardiac morphogenesis. Circulation Research 90,509-19.
    Bruneau, B. G. (2008). The developmental genetics of congenital heart disease. Nature 451, 943-8.
    Cai, C., Martin, J., Sun, Y., Cui, L., Wang, L., Ouyang, K., Yang, L., Bu, L., Liang, X. and Zhang, X. (2008). A myocardial lineage derives from Tbx18 epicardial cells. Nature 454,104-108.
    Christoffels, V., Habets, P., Franco, D., Campione, M., de Jong, F., Lamers, W., Bao, Z., Palmer, S., Biben, C. and Harvey, R. (2000a). Chamber formation and morphogenesis in the developing mammalian heart. Developmental Biology 223,266-278.
    Christoffels, V., Keijser, A., Houweling, A., Clout, D. and Moorman, A. (2000b). Patterning the embryonic heart:identification of five mouse Iroquois homeobox genes in the developing heart. Developmental Biology 224,263-274.
    Clark, K. L., Yutzey, K. E. and Benson, D. W. (2006). Transcription factors and congenital heart defects. Annu Rev Physio/68,97-121.
    Cohen, E. D., Wang, Z., Lepore, J. J., Lu, M. M., Taketo, M. M., Epstein, D. J. and Morrisey, E. E. (2007). Wnt/beta-catenin signaling promotes expansion of lsl-1-positive cardiac progenitor cells through regulation of FGF signaling. The Journal of clinical investigation 117,1794-804.
    Epstein, J. A. and Buck, C. A. (2000). Transcriptional regulation of cardiac development: implications for congenital heart disease and DiGeorge syndrome. Pediatr Res 48,717-24.
    Harvey, R. (2002). Patterning the vertebrate heart. Nat. Rev. Genet.3,544-56.
    Harvey, R. P., Meilhac, S. M. and Buckingham, M. E. (2009). Landmarks and lineages in the developing heart. Circulation Research 104,1235-7.
    Heineke, J. and Molkentin, J. (2006). Regulation of cardiac hypertrophy by intracellular signaling pathways. Nat Rev Mol Cell Biol.7,589-600
    Kathiriya, I. S. and Srivastava, D. (2001). Left-right asymmetry and cardiac looping: implications for cardiac development and congenital heart disease. Am J Med Genet 97,271-9.
    Kwon, C., Qian, L., Cheng, P., Nigam, V., Arnold, J. and Srivastava, D. (2009). A regulatory pathway involving Notch1/beta-catenin/lsl1 determines cardiac progenitor cell fate. Nat Cell Biol 11,951-7.
    Lamers, W. and Moorman, A. (2002). Cardiac septation:a late contribution of the embryonic primary myocardium to heart morphogenesis. Circulation Research 91,93.
    Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., Ferguson, T. B., Ford, E., Furie, K., Gillespie, C. et al. (2009). Heart Disease and Stroke Statistics--2010 Update. A Report From the American Heart Association. Circulation.
    Martin-Puig, S., Wang, Z. and Chien, K. R. (2008). Lives of a heart cell:tracing the origins of cardiac progenitors. Cell Stem Cell 2,320-31.
    Olson, E. N. (2004). A decade of discoveries in cardiac biology. Nat Med 10,467-74.
    Olson, E. N. (2006). Gene Regulatory Networks in the Evolution and Development of the Heart. Science 313,1922-1927.
    Olson, E. N. and Schneider, M. D. (2003). Sizing up the heart:development redux in disease. Genes & Development 17,1937-56.
    Posch, M. G., Perrot, A., Berger, F. and Ozcelik, C. (2010). Molecular genetics of congenital atrial septal defects. Clin Res Cardiol 99,137-47.
    Prall, O. W. J., Menon, M. K., Solloway, M. J., Watanabe, Y., Zaffran, S., Bajolle, F., Biben, C., McBride, J. J., Robertson, B. R., Chaulet, H. et al. (2007). An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell 128,947-59.
    Purandare, S. M., Ware, S. M., Kwan, K. M., Gebbia, M., Bassi, M. T., Deng, J. M., Vogel, H., Behringer, R. R., Belmont, J. W. and Casey, B. (2002). A complex syndrome of left-right axis, central nervous system and axial skeleton defects in Zic3 mutant mice. Development 129,2293-302.
    Schroen, B. and Heymans, S. (2009). MicroRNAs and beyond:the heart reveals its treasures. Hypertension 54,1189-94.
    Srivastava, D. (2004). Heart disease:an ongoing genetic battle? Nature 429,819-22.
    Srivastava, D. (2006a). Genetic regulation of cardiogenesis and congenital heart disease. Annual review of pathology 1,199-213.
    Srivastava, D. (2006b). Making or Breaking the Heart:From Lineage Determination to Morphogenesis. Cell 126,1037-1048.
    Srivastava, D. and Olson, E. N. (2000). A genetic blueprint for cardiac development. Nature 407,221-6.
    Thum, T., Catalucci, D. and Bauersachs, J. (2008). MicroRNAs:novel regulators in cardiac development and disease. Cardiovascular Research 79,562-70.
    van Rooij, E. and Olson, E. N. (2007). MicroRNAs:powerful new regulators of heart disease and provocative therapeutic targets. The Journal of clinical investigation 117,2369-76.
    Yi, B. A., Wernet, O. and Chien, K. R. (2010). Pregenerative medicine:developmental paradigms in the biology of cardiovascular regeneration. The Journal of clinical investigation 120,20-8.
    Zhou, B., Ma, Q., Rajagopal, S., Wu, S., Domian, I., Rivera-Feliciano, J., Jiang, D., von Gise, A., Ikeda, S. and Chien, K. (2008). Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454,109-113.
    Aoki, M., Batista, O., Bellacosa, A., Tsichlis, P. and Vogt, P. (1998). The akt kinase: molecular determinants of oncogenicity. Proceedings of the National Academy of Sciences of the United States of America 95,14950.
    Beh, J., Shi, W., Levine, M., Davidson, B. and Christiaen, L. (2007). FoxF is essential for FGF-induced migration of heart progenitor cells in the ascidian Ciona intestinalis. Development 134,3297.
    Bondue, A., Lapouge, G., Paulissen, C., Semeraro, .C, lacovino, M., Kyba, M. and Blanpain, C. (2008). Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell 3,69-84.
    Brazil, D., Yang, Z. and Hemmings, B. (2004). Advances in protein kinase B signalling: AKTion on multiple fronts. Trends in Biochemical Sciences 29,233-242.
    Bruneau, B. (2002). Transcriptional Regulation of Vertebrate Cardiac Morphogenesis. Circulation Research 90,509-519.
    Bruneau, B. (2008). The developmental genetics of congenital heart disease. NATURE 7181, 943-948.
    Buzzi, F., Xu, L., Zuellig, R. A., Boller, S. B., Spinas, G. A., Hynx, D., Chang, Z., Yang, Z., Hemmings, B. A., Tschopp, O. et al. (2010). Differential Effects of Protein Kinase B/Akt Isoforms on Glucose Homeostasis and Islet Mass. Molecular and Cellular Biology 30,601-612.
    CarE, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., Bang, M., Segnalini, P., Gu, Y. and Dalton, N. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature medicine 13,613-618.
    Ceci, M., Gallo, P., Santonastasi, M., Grimaldi, S., Latronico, M., Pitisci, A., Missol-Kolka, E., Scimia, M., Catalucci, D. and Hilfiker-Kleiner, D. (2007). Cardiac-specific overexpression of E40K active Akt prevents pressure overload-induced heart failure in mice by increasing angiogenesis and reducing apoptosis. Cell death and differentiation 14,1060.
    Chen, W., Xu, P., Gottlob, K., Chen, M., Sokol, K., Shiyanova, T., Roninson, I., Weng, W., Suzuki, R. and Tobe, K. (2001). Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes & Development 15,2203-2208.
    Cho, H., Mu, J., Kim, J., Thorvaldsen, J., Chu, Q., Crenshaw Ⅲ, E., Kaestner, K., Bartolomei, M., Shulman, G. and Birnbaum, M. (2001a). Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBbeta). Science 292,1728.
    Cho, H., Thorvaldsen, J., Chu, Q., Feng, F. and Birnbaum, M. (2001b). Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem 276,38349-52.
    Christiaen, L., Davidson, B., Kawashima, T., Powell, W., Nolla, H., Vranizan, K. and Levine, M. (2008). The transcription/migration interface in heart precursors of Ciona intestinalis. Science 320,1349.
    Condorelli, G., Drusco, A., Stassi, G., Bellacosa, A., Roncarati, R., laccarino, G., Russo, M., Gu, Y., Dalton, N. and Chung, C. (2002). Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proceedings of the National Academy of Sciences 99, 12333-12338.
    Cook, S., Matsui, T., Li, L. and Rosenzweig, A. (2002). Transcriptional Effects of Chronic Akt Activation in the Heart. Journal of Biological Chemistry 277,22528-22533.
    Datta, S., Brunet, A. and Greenberg, M. (1999). Cellular survival:a play in three Akts. Genes & Development 13,2905-2927.
    David, R., Brenner, C., Stieber, J., Schwarz, F., Brunner, S., Vollmer, M., Mentele, E., Mller-H?cker, J., Kitajima, S. and Lickert, H. (2008). MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling. Nature cell biology 10,338-345.
    Davidson, B. (2007). Ciona intestinalis as a model for cardiac development. Seminars in cell & developmental biology 18,16-26.
    DeBosch, B., Sambandam, N., Weinheimer, C., Courtois, M. and Muslin, A. (2006a). Akt2 regulates cardiac metabolism and cardiomyocyte survival. Journal of Biological Chemistry 281,32841-32851.
    DeBosch, B., Treskov, I., Lupu, T., Weinheimer, C., Kovacs, A., Courtois, M. and Muslin, A. (2006b). Akt1 is required for physiological cardiac growth. Circulation 113,2097.
    Degtyarev, M., De MaziEre, A., Klumperman, J. and Lin, K. (2009). Autophagy, an Achilles' heel AKTing against cancer? Autophagy 5,415.
    Dummler, B. and Hemmings, B. (2007). Physiological roles of PKB/Akt isoforms in development and disease. BIOCHEMICAL SOCIETY TRANSACTIONS 35,231-235.
    Dummler, B., Tschopp, O., Hynx, D., Yang, Z., Dirnhofer, S. and Hemmings, B. (2006a). Life with a single isoform of Akt:mice lacking Akt2 and Akt3 are viable but display impaired glucose homeostasis and growth deficiencies. Molecular and Cellular Biology 26,8042-8051.
    Dummler, B., Tschopp, O., Hynx, D., Yang, Z.-Z., Dirnhofer, S. and Hemmings, B. A. (2006b). Life with a single isoform of Akt:mice lacking Akt2 and Akt3 are viable but display impaired glucose homeostasis and growth deficiencies. Molecular and Cellular Biology 26, 8042-51.
    Feng, Q., Di, R., Tao, F., Chang, Z., Lu, S., Fan, W., Shan, C., Li, X. and Yang, Z. (2010). PDK1 regulates vascular remodeling and promotes epithelial-mesenchymal transition in cardiac development. Molecular and Cellular Biology 30,3711-21.
    Focuses, W. and Contact, N. (2003). Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. The EMBO Journal 22,4666-4676.
    Fujio, Y., Nguyen, T., Wencker, D., Kitsis, R. N. and Walsh, K. (2000). Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 101,660-7.
    Gao, F., Gao, E., Yue, T., Ohlstein, E., Lopez, B., Christopher, T. and Ma, X. (2002). Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion:the roles of P13-kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation 105, 1497-1502.
    Hamada, K., Sasaki, T., Koni, P., Natsui, M., Kishimoto, H., Sasaki, J., Yajima, N., Horie, Y., Hasegawa, G. and Naito, M. (2005). The PTEN/P13K pathway governs normal vascular development and tumor angiogenesis. Genes & Development 19,2054.
    Haq, S., Choukroun, G., Kang, Z., Ranu, H., Matsui, T., Rosenzweig, A., Molkentin, J., Alessandrini, A., Woodgett, J. and Hajjar, R. (2000). Glycogen synthase kinase-3{beta} is a negative regulator of cardiomyocyte hypertrophy. Journal of Cell Biology 151,117.
    HARVEY, R. (2002). Patterning the vertebrate heart. Nature Reviews Genetics 3,544-556.
    Heineke, J. and Molkentin, J. (2006). Regulation of cardiac hypertrophy by intracellular signalling pathways. Nature Review Molecular Cell Biology 7,589-600.
    Hill, J. and Olson, E. (2008). Cardiac Plasticity. New England Journal of Medicine 358,1370-1380.
    Hunter, J. and Chien, K. (1999). Signaling Pathways for Cardiac Hypertrophy and Failure. New England Journal of Medicine 341,1276-1283.
    Inuzuka, Y., Okuda, J., Kawashima, T., Kato, T., Niizuma, S., Tamaki, Y., Iwanaga, Y., Yoshida, Y., Kosugi, R., Watanabe-Maeda, K. et al. (2009). Suppression of phosphoinositide 3-kinase prevents cardiac aging in mice. Circulation 120,1695-703.
    Ito, K., Akazawa, H., Tamagawa, M., Furukawa, K., Ogawa, W., Yasuda, N., Kudo, Y., Liao, C., Yamamoto, R., Sato, T. et al. (2009). PDK1 coordinates survival pathways and {beta}-adrenergic response in the heart. Proc Natl Acad Sci USA.
    Jonassen, A., Sack, M., Mjos, O. and Yellon, D. (2001). Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circulation Research 89,1191-1198.
    Kovacic, S., Soltys, C., Barr, A., Shiojima, I., Walsh, K. and Dyck, J. (2003). Akt Activity Negatively Regulates Phosphorylation of AMP-activated Protein Kinase in the Heart. Journal of Biological Chemistry 278,39422-39427.
    Laplante, M. and Sabatini, D. (2009). mTOR signaling at a glance. Journal of Cell Science 122,3589-3594.
    Lavine, K., Yu, K., White, A., Zhang, X., Smith, C., Partanen, J. and Ornitz, D. (2005). Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo. Developmental cell 8,85-95.
    Lawlor, M., Mora, A., Ashby, P., Williams, M., Murray-Tait, V., Malone, L., Prescott, A., Lucocq, J. and Alessi, D. (2002). Essential role of PDK1 in regulating cell size and development in mice. The EMBO Journal 21,3728-3738.
    Levine, B. and Yuan, J. (2005). Autophagy in cell death:an innocent convict? Journal of Clinical Investigation 115,2679-2688.
    Li, H., Kedar, V., Zhang, C., McDonough, H., Arya, R., Wang, D. and Patterson, C. (2004). Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. Journal of Clinical Investigation 114,1058-1071.
    Lindsley, R., Gill, J., Murphy, T., Langer, E., Cai, M., Mashayekhi, M., Wang, W., Niwa, N., Nerbonne, J. and Kyba, M. (2008). Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. Cell Stem Cell 3,55-68.
    Luscher, T., Steffel, J., Eberli, F., Joner, M., Nakazawa, G., Tanner, F. and Virmani, R. (2007). Drug-eluting stent and coronary thrombosis:biological mechanisms and clinical implications. Circulation 115,1051.
    Mangi, A., Noiseux, N., Kong, D., He, H., Rezvani, M., Ingwall, J. and Dzau, V. (2003). Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nature medicine 9,1195-1201.
    Matsui, T., Li, L., Wu, J., Cook, S., Nagoshi, T., Picard, M., Liao, R. and Rosenzweig, A. (2002). Phenotypic Spectrum Caused by Transgenic Overexpression of Activated Akt in the Heart. Journal of Biological Chemistry 277,22896-22901.
    Mora, A., Komander, D., van Aalten, D. and Alessi, D. (2004). PDK1, the master regulator of AGC kinase signal transduction. Seminarin Cell and Developmental Biology 15,161-170.
    O'Neill, B. and Abel, E. (2005). Akt1 in the cardiovascular system:friend or foe? Journal of Clinical Investigation 115,2059-2064.
    Olson, E. and Schneider, M. (2003). Sizing up the heart:development redux in disease. Genes & Development 17,1937-1956.
    Oudit, G., Kassiri, Z., Zhou, J., Liu, Q., Liu, P., Backx, P., Dawood, F., Crackower, M., Scholey, J. and Penninger, J. (2008). Loss of PTEN attenuates the development of pathological hypertrophy and heart failure in response to biomechanical stress. Cardiovascular research 78,505.
    Peng, X., Xu, P., Chen, M., Hahn-Windgassen, A., Skeen, J., Jacobs, J., Sundararajan, D., Chen, W., Crawford, S. and Coleman, K. (2003). Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes & Development 17,1352-1365.
    Rothermel, B. and Hill, J. (2008). Autophagy in load-induced heart disease. Circulation Research 103,1363.
    Sarbassov, D., Guertin, D., Ali, S. and Sabatini, D. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307,1098.
    Shioi, T., McMullen, J., Kang, P., Douglas, P., Obata, T., Franke, T., Cantley, L. and Izumo, S. (2002). Akt/Protein Kinase B Promotes Organ Growth in Transgenic Mice. Molecular and Cellular Biology 22,2799-2809.
    Shiojima, I., Sato, K., Izumiya, Y., Schiekofer, S., Ito, M., Liao, R., Colucci, W. and Walsh, K. (2005). Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. Journal of Clinical Investigation 115,2108-2118.
    Shiojima, I. and Walsh, K. (2006). Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes & Development 20,3347-3365.
    Skeen, J. E., Bhaskar, P. T., Chen, C.-C., Chen, W. S., Peng, X.-d., Nogueira, V., Hahn-Windgassen, A., Kiyokawa, H. and Hay, N. (2006). Akt deficiency impairs normal cell proliferation and suppresses oncogenesis in a p53-independent and mTORC1-dependent manner. Cancer Cell 10,269-80.
    Stambolic, V., Suzuki, A., De la Pompa, J., Brothers, G., Mirtsos, C., Sasaki, T., Ruland, J., Penninger, J., Siderovski, D. and Mak, T. (1998). Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95,29-39.
    Staveley, B., Ruel, L., Jin, J., Stambolic, V., Mastronardi, F., Heitzler, P., Woodgett, J. and Manoukian, A. (1998). Genetic analysis of protein kinase B (AKT) in Drosophila. Current Biology 8,599-603.
    Tschopp, O., Yang, Z.-Z., Brodbeck, D., Dummler, B. A., Hemmings-Mieszczak, M., Watanabe, T., Michaelis, T., Frahm, J. and Hemmings, B. A. (2005). Essential role of protein kinase B gamma (PKB gamma/Akt3) in postnatal brain development but not in glucose homeostasis. Development 132,2943-54.
    Tsujita, Y., Muraski, J., Shiraishi, I., Kato, T., Kajstura, J., Anversa, P. and Sussman, M. (2006). Nuclear targeting of Akt antagonizes aspects of cardiomyocyte hypertrophy. Proceedings of the National Academy of Sciences 103,11946.
    Wan, X., Harkavy, B., Shen, N., Grohar, P. and Helman, L. (2006). Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 26, 1932-1940.
    Woodgett, J. (2005). Recent advances in the protein kinase B signaling pathway. Current opinion in cell biology 17,150-157.
    Yang, Z., Tschopp, O., Baudry, A., Dummler, B., Hynx, D. and Hemmings, B. (2004a). Physiological functions of protein kinase B/Akt. BIOCHEMICAL SOCIETY TRANSACTIONS 32,350-354.
    Yang, Z., Tschopp, O., Hemmings-Mieszczak, M., Feng, J., Brodbeck, D., Perentes, E. and Hemmings, B. (2003). Protein Kinase Ba/Akt1 Regulates Placental Development and Fetal Growth. Journal of Biological Chemistry 278,32124-32131.
    Yang, Z., Tschopp, O., N, D.-P., Bruder, E., Baudry, A., Dummler, B., Wahli, W. and Hemmings, B. (2005). Dosage-Dependent Effects of Akt1/Protein Kinase Bα (PKBα) and Akt3/PKBγ on Thymus, Skin, and Cardiovascular and Nervous System Development in Mice. Molecular and Cellular Biology 25,10407-10418.
    Yang, Z.-Z., Tschopp, O., Baudry, A., Dummler, B., Hynx, D. and Hemmings, B. A. (2004b). Physiological functions of protein kinase B/Akt. Biochem Soc Trans 32,350-4.
    Ackah, E., Yu, J., Zoellner, S., Iwakiri, Y., Skurk, C., Shibata, R., Ouchi, N., Easton, R. M., Galasso, G., Birnbaum, M. J. et al. (2005). Akt1/protein kinase Balpha is critical for ischemic and VEGF-mediated angiogenesis. Journal of Clinical Investigation 115,2119-27.
    Adams, R., Porras, A., Alonso, G., Jones, M., Vintersten, K., Panelli, S., Valladares, A., Perez, L., Klein, R. and Nebreda, A. (2000). Essential Role of p38a MAP Kinase in Placental but Not Embryonic Cardiovascular Development. Mol Cell 6,109-116.
    Bi, L., Okabe, I., Bernard, D. and Nussbaum, R. (2002). Early embryonic lethality in mice deficient in the p110beta catalytic subunit of PI 3-kinase. Mamm. Genome 13,169-172.
    Bi, L., Okabe, I., Bernard, D., Wynshaw-Boris, A. and Nussbaum, R. (1999). Proliferative Defect and Embryonic Lethality in Mice Homozygous for a Deletion in the p110a Subunit of Phosphoinositide 3-Kinase. J. Biol. Chem.274,10963-10968.
    Borger, D. and Essig, D. (1998). Induction of HSP 32 gene in hypoxic cardiomyocytes is attenuated by treatment with N-acetyl-L-cysteine. Am J Physiol Heart Circ Physiol 274, 965-973.
    Brazil, D., Yang, Z. and Hemmings, B. (2004). Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29,233-242.
    Cho, H., Mu, J., Kim, J., Thorvaldsen, J., Chu, Q., Crenshaw Ⅲ, E., Kaestner, K., Bartolomei, M., Shulman, G. and Birnbaum, M. (2001a). Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBbeta). Science 292,1728.
    Cho, H., Thorvaldsen, J., Chu, Q., Feng, F. and Birnbaum, M. (2001b). Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem 276,38349-38352.
    Dummler, B. and Hemmings, B. (2007). Physiological roles of PKB/Akt isoforms in development and disease. Biochem. Soc. Trans.35,231-235.
    Engel, F. B., Hsieh, P. C. H., Lee, R. T. and Keating, M. T. (2006). FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Sci USA 103,15546-15551.
    Engel, F. B., Schebesta, M., Duong, M. T., Lu, G., Ren, S., Madwed, J. B., Jiang, H., Wang, Y. and Keating, M. T. (2005). p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes & Dev.19,1175-1187.
    Johnson, G. L. and Lapadat, R. (2002). Mitogen-Activated Protein Kinase Pathways Mediated by ERK, JNK, and p38 Protein Kinases. Science 298,1911-1912.
    Kim, A., Khursigara, G., Sun, X., Franke, T. and Chao, M. (2001). Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol 21,893-901.
    Lawlor, M., Mora, A., Ashby, P., Williams, M., Murray-Tait, V., Malone, L., Prescott, A., Lucocq, J. and Alessi, D. (2002). Essential role of PDK1 in regulating cell size and development in mice. EMBO J.21,3728-3738.
    Liao, Y. and Hung, M. (2003). Regulation of the Activity of p38 Mitogen-Activated Protein Kinase by Akt in Cancer and Adenoviral Protein E1 A-Mediated Sensitization to Apoptosis. Mol Cell Biol,6836-6848.
    Liu, J., Baker, J., Perkins, A., Robertson, E. and Efstratiadis, A. (1993). Mice carrying null mutations of the genes encoding insulin-like growth factor I(lgf-1) and type 1 IGF receptor(lgf 1 r). Cell(Cambridge) 75,59-72.
    Mora, A., Komander, D., van Aalten, D. and Alessi, D. (2004). PDK1, the master regulator of AGC kinase signal transduction. Semin. Cell Dev. Biol.15,161-170.
    Mudgett, J., Ding, J., Guh-Siesel, L., Chartrain, N., Yang, L., Gopal, S. and Shen, M. (2000a). Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proc Natl Acad Sci USA 97,10454-10459.
    Okkenhaug, K. and Vanhaesebroeck, B. (2003). P13K-signalling in B-and T-cells:insights from gene-targeted mice. Biochem. Soc. Trans.31,270-274.
    Tamura, K., Sudo, T., Senftleben, U., Dadak, A., Johnson, R. and Karin, M. (2000). Requirement for p38 [alpha] in Erythropoietin Expression::A Role for Stress Kinases in Erythropoiesis. Cell 102,221-231.
    Tobiume, K., Matsuzawa, A., Takahashi, T., Nishitoh, H., Morita, K., Takeda, K., Minowa, O., Miyazono, K., Noda, T. and Ichijo, H. (2001). ASK 1 is required for sustained activations of JNK/p 38 MAP kinases and apoptosis. EMBO reports 2,222-228.
    Tschopp, O., Yang, Z.-Z., Brodbeck, D., Dummler, B. A., Hemmings-Mieszczak, M., Watanabe, T., Michaelis, T., Frahm, J. and Hemmings, B. A. (2005). Essential role of protein kinase B gamma (PKB gamma/Akt3) in postnatal brain development but not in glucose homeostasis. Development 132,2943-54.
    Wang, Y. (2007). Mitogen-Activated Protein Kinases in Heart Development and Diseases. Circulation 116,1413-1423.
    Woodgett, J. (2005). Recent advances in the protein kinase B signaling pathway. Curr. Opin. Cell Biol.17,150-157.
    Yang, Z.-Z., Tschopp, O., Baudry, A., Dummler, B., Hynx, D. and Hemmings, B. A. (2004). Physiological functions of protein kinase B/Akt. Biochem Soc Trans 32,350-354.
    Yang, Z.-Z., Tschopp, O., Hemmings-Mieszczak, M., Feng, J., Brodbeck, D., Perentes, E. and Hemmings, B. A. (2003a). Protein kinase B alpha/Akt1 regulates placental development and fetal growth. J Biol Chem 278,32124-31.
    Zeisberg, E., Ma, Q., Juraszek, A., Moses, K., Schwartz, R., Izumo, S. and Pu, W. (2005). Morphogenesis of the right ventricle requires myocardial expression of Gata4. J Clin Invest 115,1522-1531.
    Zhou, B., Ma, Q., Kong, S., Hu, Y., Campbell, P., McGowan, F., Ackerman, K., Wu, B., Tevosian, S. and Pu, W. (2009). Fog2 is critical for cardiac function and maintenance of coronary vasculature in the adult mouse heart. J Clin Invest 119,1462-1476.
    Baschat, A. (2004). Fetal responses to placental insufficiency:an update. BJOG:an international journal of obstetrics and gynaecology 111,1031.
    Chen, J.-F., Murchison, E. P., Tang, R., Callis, T. E., Tatsuguchi, M., Deng,Z., Rojas, M., Hammond, S. M., Schneider, M. D., Selzman, C. H. et al. (2008). Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci USA 105, 2111-6.
    Gagnon, R. (2003). Placental insufficiency and its consequences. European Journal of Obstetrics and Gynecology 110,99-107.
    Herrler, A., von Rango, U. and Beier, H. (2003). Embryo-maternal signalling:how the embryo starts talking to its mother to accomplish implantation. Reproductive BioMedicine Online 6,244-256.
    Kwon, C., Qian, L., Cheng, P., Nigam, V., Arnold, J. and Srivastava, D. (2009). A regulatory pathway involving Notch 1/beta-catenin/lsl1 determines cardiac progenitor cell fate. Nat Cell Bion 11,951-7.
    Lakso, M., Sauer, B., Mosinger, B., Lee, E. J., Manning, R. W., Yu, S. H., Mulder, K. L. and Westphal, H. (1992). Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci USA 89,6232-6.
    Lee, E. C., Yu, D., Martinez de Velasco, J., Tessarollo, L., Swing, D. A., Court, D. L., Jenkins, N. A. and Copeland, N. G. (2001). A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73,56-65.
    Qi, X., Yang, G., Yang, L., Lan, Y., Weng, T., Wang, J., Wu, Z., Xu, J., Gao, X. and Yang, X. (2007). Essential role of Smad4 in maintaining cardiomyocyte proliferation during murine embryonic heart development. Dev Biol 311,136-46.
    Regnault, T., Galan, H., Parker, T. and Anthony, R. (2002). Placental development in normal and compromised pregnanciesoa review. Placenta 23,119-129.
    Saga, Y., Miyagawa-Tomita, S., Takagi, A., Kitajima, S., Miyazaki, J. i. and Inoue, T. (1999). MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126,3437-47.
    Shenker, L., Reed, K., Anderson, C. and Borjon, N. (1991). Significance of oligohydramnios complicating pregnancy. American journal of obstetrics and gynecology 164, 1597.
    Vintzileos, A., Campbell, W., Nochimson, D. and Weinbaum, P. (1985). Degree of oligohydramnios and pregnancy outcome in patients with premature rupture of the membranes. Obstetrics & Gynecology 66,162.
    Yang, Z.-Z., Tschopp, O., Di-Poi, N., Bruder, E., Baudry, A., Diimmler, B., Wahli, W. and Hemmings, B. A. (2005). Dosage-dependent effects of Akt1/protein kinase Balpha (PKBalpha) and Akt3/PKBgamma on thymus, skin, and cardiovascular and nervous system development in mice. Molecular and Cellular Biology 25,10407-18.
    Yang, Z.-Z., Tschopp, O., Hemmings-Mieszczak, M., Feng, J., Brodbeck, D., Perentes, E. and Hemmings, B. A. (2003a). Protein kinase B alpha/Akt1 regulates placental development and fetal growth. J Biol Chem 278,32124-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700