用户名: 密码: 验证码:
Keggin型钨氧酸盐配合物的合成、结构及其电催化氧化水放氧性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文采用水热合成方法,利用1:11和1:12系列的Keggin型多金属钨氧酸盐阴离子作为建筑单元,获得了九种迄今未见报道的多金属氧酸盐基配合物。采用单晶X-射线分析、元素分析、IR、XRD、TG和CV等技术对配合物的结构和性质进行了表征,并对部分配合物的电催化水产氧的性质进行了初步研究。
     1.以1:11系列的钨氧酸盐阴离子为建筑单元,合成了三种多金属氧酸盐基配合物。[Hpy]_2{[Co(4,4'–Hbpy)_2(H_2O)_2][SiCoW_(11)O_(39)] (1) [Hpy]_2{[Co(4,4'–Hbpy)_2(H_2O)_2][GeCoW_(11)O_(39)] (2) [H_2bpy]_3[SiMnW_(11)O_(39)]·2H_2O (3)配合物1和2互为同构异质体,是由一维Keggin阴离子链[SiCoW_(11)O_(39)]n6n-与配合物片段[Co(4,4'–Hbpy)_2(H_2O)_2]n4n+构成的二维层状结构,层与层之间通过4,4'–bpy配体的相互嵌入形成类似拉链的三维超分子结构;配合物3是由Mn(II)取代的Keggin型多金属钨氧酸盐通过共用端氧形成的一维Z字型链。而且,我们还对配合物1-CPE在0.5 M HAc-NaAc (pH 4.5)缓冲液+1 mM [Ru(bpy)3]~(2+)溶液中的电化学性质做了详细的研究。结果发现,配合物1对电催化水产氧有一定的催化作用。
     2.以Keggin型钨氧酸盐阴离子[SiW_(12)O_(40)]4-为建筑单元,合成了两种2D格子配合物。[{Mn(2,2'–bipy)_2}2{SiW_(12)O_(40)}] (4) [{Co(2,2'–bipy)_2}2{SiW_(12)O_(40)}] (5)配合物4和5互为同构异质体,是由Keggin型钨氧酸盐阴离子[SiW_(12)O_(40)]4-与配合物片段[M(2,2'–bipy)_2]~(2+)(M=Mn/Co)桥连形成的菱形格子结构。
     3.以Keggin型钨氧酸盐阴离子[SiW_(12)O_(40)]4-为建筑单元,与软金属Cu、Ag配合物片段连接,合成了四种配合物。{Cu(4,4'–bipy)3/2·H_2O}2{SiW_(12)O_(40)}·4H_2O (6) [{Ag4(4,4'–bipy)3(2,2'–bipy)_2}{SiW_(12)O_(40)}] (7) [{Ag(py)_2}4{SiW_(12)O_(40)}] (8) [{Ag(4,4'–bipy)}2(Hpy)_2{SiW_(12)O_(40)}] (9)配合物6和7是由Keggin型钨氧酸盐阴离子[SiW_(12)O_(40)]4-与Cu(Ag)–bipy配合物片段构成的一维Z字型链状结构;配合物8和9分别是由配合物片段[{Ag(py)_2}4]4+和[{Ag(4,4'–bipy)}2(Hpy)_2]4+与Keggin型钨氧酸盐阴离子构成的二维层状结构。
In this paper, using series of 1:11 and 1:12 Keggin-Heteropolytungstates anions as building units, we get successfully nine new kinds of unreported polyoxometalate-based organic-inorganic complexes under hydrothermal condition. These complexes are characterized by X-ray single crystal diffractions, elemental analyses, IR, XRD, TG and CV. Some of them are preliminary studied on electrocatalytic oxidation of H_2O to O2.
     1. Using series of 1:11 Keggin anions as building units, three kinds of organic-inorganic complexes were synthesized. [Hpy]_2{[Co(4,4'–Hbpy)_2(H_2O)_2][SiCoW_(11)O_(39)] (1) [Hpy]_2{[Co(4,4'–Hbpy)_2(H_2O)_2][GeCoW_(11)O_(39)] (2) [H_2bpy]3[SiMnW_(11)O_(39)]·2H_2O (3) Complexes 1 and 2 are isomorphic. They exhibit a 2D layered structure constructed from polymeric [XCoW_(11)O_(39)]6- [X=Si(1); X=Ge(2)] chains and [Co(4,4'–Hbpy)_2(H_2O)_2]4+ subunits.
     The 4,4'–bpy molecules of neighboring layers are inserted and overlapped each other, generating a 3D supramolecular structure. In complex 3, the Keggin anions are connected through a common oxygen atom to give a one-dimensional chain. 1-CPEs are active for the electrocatalytic oxidation of H_2O to O2 in 0.5 M sodium acetate buffer (pH 4.5) containing 1 mM [Ru(bpy)3]_2+ solution.
     2. Using Keggin [SiW_(12)O_(40)]4- anions as building units, two new complexes of 2D network structure were synthesized. [{Mn(2,2'–bipy)_2}2{SiW_(12)O_(40)}] (4) [{Co(2,2'–bipy)_2}2{SiW_(12)O_(40)}] (5) Complexes 1 and 2 are isomorphic. They are constructed into a diamond-shaped grid network through bridgeding polyoxometalate cluster {SiW_(12)O_(40)} and {M(2,2'–bipy)_2} fragments.
     3. Using Keggin [SiW_(12)O_(40)]4- anions as building units, four Cu(II) and Ag(I) complexes were synthesized. {Cu(4,4'–bipy)3/2·H_2O}2{SiW_(12)O_(40)}·4H_2O (6) [{Ag4(4,4'–bipy)3(2,2'–bipy)_2}{SiW_(12)O_(40)}] (7) [{Ag(py)_2}4{SiW_(12)O_(40)}] (8) [{Ag(4,4'–bipy)}2(Hpy)_2{SiW_(12)O_(40)}] (9)
     Complexes 6 and 7consist of [SiW_(12)O_(40)]4- anions and Cu(Ag)–bipy complex units, forming a one-dimensional chain structure. Complexes 8 and 9 exhibit a 2D structure constructed from [SiW_(12)O_(40)]4- and [{Ag(py)_2}4]4+ subunits for 8, [{Ag(4,4'–bipy)}2(Hpy)_2]4+ subunits for 9.
引文
[1] Bailar J C, et al. The Chemistry of the Coordination Compounds, Reinhold Publishing Corporation, 1956, 472-482.
    [2] Geletii Y V, Besson C. Structural,Physicochemical,and Reactivity Properties of an All-Inorganic, Highly Active Tetraruthenium Homogeneous Catalyst for Water Oxidation. J. Am. Chem. Soc., 2009, 131:17360–17370.
    [3] Mizumo N, Misono M. Heterogeneous catalysis. Chem. Rev., 1998, 98(1):199-205.
    [4] Geletii Y V, Hill C L et al. Reduction of O2 to Superoxide Anion (O2-) in Water by Heteropolytungstate Cluster-Anions. J. Am. Chem. Soc., 2006, 128:17033-17042.
    [5] Keita B, Abdeljalil E et al. Cooperativity of Copper and Molybdenum Centers in Polyoxometalate-Based Electrocatalysts: Cyclic Voltammetry, EQCM, and AFM Characterization. Langmuir, 2006, 22:10416-10425.
    [6] Kondrachova L, Hahn B P et al. Cathodic Electrodeposition of Mixed Molybdenum Tungsten Oxides from Peroxo-polymolybdotungstate Solutions. Langmuir, 2006, 22:10490-10498.
    [7] Cai T J, Liao Y C et al.Photocatalytic performance of TiO2 catalysts modified by H3PW12O40, ZrO2 and CeO2. J. Environ. Sci., 2009, 21:997–1004.
    [8] Li Z F, Cui R R et al.Structural and property characterization of two new chargetransfer salts based on Keggin ions and ferrocene.J. Mol. Struct., 2009, 920:436–440.
    [9] Limoges B R, Stanis R J et al. Electrocatalyst materials for fuel cells based on the polyoxometalates [PMo(12? n)VnO40](3+ n)? (n = 0–3). Electrochim. Acta., 2005, 50:1169–1179.
    [10] Seo M H, Choi S M et al. A polyoxometalate-deposited Pt/CNT electrocatalyst via chemical synthesis for methanol electrooxidation. J. Power Sources, 2008, 179:81–86.
    [11] Kuo M C, Stanis R J et al. Electrocatalyst materials for fuel cells based on the polyoxometalates—K7 or H7[(P2W17O61)FeIII(H2O)] and Na12 or H12[(P2W15O56)2FeIII4 (H2O)2]. Electrochimica Acta., 2007, 52:2051–2061.
    [12] Yu L Z, Ng W et al. Electrostatically Self-Assembled Polyoxometalates on Molecular-Dye-Functionalized Diamond. J. Am. Chem. Soc., 2009, 131:18293–18298.
    [13] Maeda K, Higashi M et al. Efficient Nonsacrificial Water Splitting through Two-Step Photoexcitation by Visible Light using a Modified Oxynitride as a Hydrogen Evolution Photocatalyst. J. Am. Chem. Soc., 2010, 132:5858–5868.
    [14] Howells A R, Sankarraj A et al. A Diruthenium-Substituted Polyoxometalate as an Electrocatalyst for Oxygen Generation.J. Am. Chem. Soc., 2004, 126:12258-12259.
    [15] Yamase T, Cao X et al. Structure of double Keggin-Ti/W-mixed polyanion [(A-β-GeTi3W9O37)2O3]14? and multielectron-transfer–based photocatalyic H2-generation. J. Mol. Catal. A: Chem., 2007, 262:119–127.
    [16] Guo Y H, Hu C W. Heterogeneous photocatalysis by solid polyoxo- metalates.J. Mol. Catal. A: Chem., 2007, 262:136–148.
    [17] Marc? G, Garc?a-Lopez E, Preparation L. characterization and photocatalytic activity of TiO2 impregnated with the heteropolyacid H3PW12O40: Photo-assisted degradation of 2-propanol in gas–solid regime. Appl. Catal., B: Environmental, 2009, 90:497–506.
    [18] Fujii K, Ono M et al. Photoelectrochemical Properties of the p-n Junction in and near the Surface Depletion Region of n-Type GaN. J. Phys. Chem. C. 2010, 114:22727–22735.
    [19] Geletii Y V, Huang Z Q. Homogeneous Light-Driven Water Oxidation Catalyzed by a Tetraruthenium Complex with All Inorganic Ligands. J. Am. Chem. Soc., 2009, 131:7522–7523.
    [20] Khenkin A M, Kumar D, et al. Characterization of Manganese (V)-Oxo Polyoxometalate Intermediates and Their Properties in Oxygen-Transfer Reactions. J. Am. Chem. Soc., 2006, 128:15451-15460.
    [21] Kholdeeva O A, Timofeeva M N et al. Aerobic Oxidation of Formaldehyde Mediated by a Ce-Containing Polyoxometalate under Mild Conditions. Inorg.Chem., 2005.44:667-672.
    [22] Zhang X M, Zhang C et al. Optical Spectra of a Novel Polyoxometalate Occluded within Modified MCM-41. J. Phys. Chem. B, 2005, 109:19156-19160.
    [23]王恩波,李阳光,鹿颖等.多酸化学概论[M].长春:东北师范大学出版社,2009.
    [24] Uchida S and Mizuno N. Zeotype Ionic Crystal of Cs5[Cr3O(OOCH)6(H2O)3] [α-CoW12O40].7.5H2O with Shape-Selective Adsorption of Water. J. Am. Chem. Soc., 2004, 126:1602-1603.
    [25] Jiang C J, Lesbani A. Channel-Selective Independent Sorption and Collection of Hydrophilic and Hydrophobic Molecules by Cs2[Cr3O(OOCC2H5)6(H2O)3]2[α-SiW12O40] Ionic Crystal. J. Am. Chem. Soc., 2006, 128:14240-14241.
    [26] Yang L, Naruke H et al. A novel organic/inorganic hybrid nanoporous material incorporating Keggin-type polyoxometalates. Inorg. Chem. Commun., 2003, 6:1020–1024.
    [27] Hagrman D, Hagrman P J, and Zubieta J. Solid-State Coordination Chemistry: The Self-Assembly of Microporous Organic_Inorganic Hybrid Frameworks Constructed from Tetrapyridylporphyrin and Bimetallic Oxide Chains or Oxide Clusters. Angew. Chem. Int. Ed., 1999, 38:3165-3168.
    [28] Wang X L, Li Y G et al.Polyoxometalate-Based Porous Framework with Perovskite Topology. Cryst. Growth Des., 2010, 10:4227-4230.
    [29] Tian A X, Ying J, Peng J et al. Using Flexible and Rigid Organic Ligands to Tune Topology Structures Based on Keggin Polyoxometalates. Cryst. Growth Des., 2010, 10:1104-1110.
    [30] Yang H X, Gao S Y et al. pH-Dependent Syntheses and Crystal Structures of a Series of Organic-Inorganic Hybrids Constructed from Keggin or Wells-Dawson Polyoxometalates and Silver Coordination Compounds. Inorg. Chem., 2010, 49:736-744.
    [31] Knaust J M , Inman C and Keller S W. A host–guest complex between a metal-organic cyclotriveratrylene analog and a polyoxometalate: [Cu6(4,7-phenanthroline)8(MeCN)4]2PM12O40 (M = Mo or W).Chem.Commun., 2004, 492-493.
    [32] Wang X L, Hu H L, and Tian A X. Influence of Transition Metal Coordination Nature on the Assembly of Multinuclear Subunits in Polyoxometalates-Based Compounds. Cryst. Growth Des., 2010, 10:4786–4794.
    [33] Wang X L, Bi Y F, Chen B K et al. Self-assembly of organic–inorganic hybrid materials constructed from eight-connected coordination polymer hosts with nanotube channels and polyoxometalate guests as templates. Inorg. Chem., 2008, 47:2442–2448.
    [34] Kong X J, Ren Y P, Zheng P Q et al. Construction of polyoxometalates-based coordination polymers through direct incorporation between polyoxometalates and the voids in a 2D network. Inorg. Chem., 2006, 45:10702–10711.
    [35] Jin H, Qi Y F, Wang E B et a1. Molecular and multidimensional organic-inorganic hybrids based on polyoxometalates and copper coordination polymer with mixed 4,4′-bipyridine and 2,2'-bipyridine ligands. Cryst. Growth. Des., 2006, 6:2693–2698.
    [36] Inman C, Knaust J M, Keller S W. A Polyoxometalate-templated Coordination Polymer: Synthesis and Crystal Structure of [Cu3(4,4’-bpy)5(MeCN)2] PW12W40·2C6H5CN. Chem. Commun., 2002, 2:156-157;
    [37] Wang X L, Lin H Y et al. An unprecedented extended architecture constructed from a 2-D interpenetrating cationic coordination framework templated by SiW12O404– anion. J. Solid State Chem., 2008, 181:556–561.
    [38] Dai L M, You W S, Li Y G et al. A new polyoxometalate-templated Mo/V-oxide-based organic–inorganic hybrid framework with honeycomb-like nanochannels. Chem. Commun., 2009, 2721-2723.
    [39] Li C H, Huang K L et al. Lanthanide-Organic Cation Frameworks with Zeolite Gismondine Topology and Large Cavities from Intersected Channels Templated by Polyoxometalate Counterions. Inorg. Chem., 2009, 48:2010-2017.
    [40] Li Y G, Dai L M et al. A new molybdenum-oxide-based organic–inorganic hybrid framework templated by double-Keggin anions. Chem. Commun., 2007, 2593–2595.
    [41] Zhai Q G, Wu X Y et al. Keggin polyoxometalates-supported assembly of 2D supramolecular isomers: Synthesis, crystal structures and characteristics of two novel hybrid host–guest complexes.Inorg. Chim. Acta., 2007, 360:3484-3492.
    [42] Li M X, Du J, Wang J P et al. Hydrothermal synthesis and crystal structure of a 1D fourfold-chain polyoxometalate-based complex [Cu(4,4-bipy)]2[SiW12O40 {Cu(4,4- bipy)}4]·(OH)2·H2O. Inorg. Chem. Commun., 2007, 10(12):1391–1393.
    [43] Yu R M, Kuang X F et al. Stabilization and immobilization of polyoxometalates in porous coordination polymers through host–guest interactions. Coord. Chem. Rev., 2009, 253:2872–2890.
    [44] Chen Y, Peng J et al. A new high-dimensional architecture constructed from paradodecatungstate and [Cu(2-Hpzc)]2+ complexes.Inorg. Chim. Acta., 2009, 12:1242-1245.
    [45] Ren Y P, Kong X J, Long L S et al. Anion-Dependent Assembly of Cyclic Structure.Cryst. Growth Des., 2006, 6:572-576.
    [46] Felices L S, Vitoria P, et al. Hybrid Inorganic-Metalorganic Compounds Containing Copper(II)-Monosubstituted Keggin Polyanions and Polymeric Copper(I) Complexes. Inorg. Chem., 2006, 45:7748-7757.
    [47] Kortz U, Nellutla S et al. Structure and Magnetism of the Tetra-Copper(II)- Substituted Heteropolyanion [Cu4K2(H2O)8(α-AsW9O33)2]8-.Inorg.Chem., 2004, 43:144-154.
    [48] Li T H, Lu J, Gao S Y, Rong C. Two novel grid networks based on Keggin-type polyoxometalate clusters assembled through weak Cu…O interactions. Inorg. Chem. Commun., 2007, 10(5):551–554.
    [49] Lu J, Xiao F X, Shi L X et al. Synthesis, structure and luminescent property of a new hybrid solid based on Keggin anions and silver-organonitrogen fragments. J. Solid State Chem., 2008, 181(2):313–318.
    [50] Zhang C J, Chen Y G, Pang H J et al. Synthesis and characterization of the highest connected 3Dα-metatungstate POM/TMC hybrid with Ag1…Ag1 interactions. Inorg. Chem. Commun., 2008, 11(7):765-768.
    [51] Lan Y Q, Li S L et al. Construction of different dimensional inorganic–organic hybrid materials based on polyoxometalates and metal–organic units via changing metal ions: from non-covalent interactions to covalent connections. Dalton Trans., 2008, 3824–3835.
    [52] You W S , Wang E B, Xu Y. et al. An alkali metal-crown ether complex supported by a Keggin anion through the three terminal oxygen atoms in a single M3O13 triplet: Synthesis and Characterization of [{Na(dibenzo-18-crown-6)(MeCN)}3PMo12O40]], Inorg.Chem., 2001, 40, 5468-5471.
    [53] Zhao J W, Song Y P et al. Hydrothermal syntheses, crystal structures and properties of 0-D, 1-D and 2-D organic–inorganic hybrid borotungstates constructed from Keggin-type heteropolyanion [a-BW12O40]5- and transition-metal complexes. J. Solid State Chem., 2009, 182:1798–1805.
    [54] Ren Y P, Kong X J et al. Influence of Steric Hindrance of Organic Ligand on the Structure of Keggin-Based Coordination Polymer. Inorg. Chem., 2006, 45:4016-4023.
    [55] Tian A X, Ying J, Peng J et al. Assemblies of Copper Bis(triazole) Coordination Polymers Using the Same Keggin Polyoxometalate Template. Inorg. Chem., 2009, 48:100-110.
    [56] Yan B B, Xu Y, et al. Hydrothermal syntheses and structures of three one-dimensional heteropolytungstates formed by Dawson or Keggin cluster units. J. Chem. Soc.,Dalton Trans., 2001, 2009–2014.
    [57] Li B, Zhao J W, Zheng S T et al. Hydrothermal synthesis and structure of di-copperII-complex substituted monovacant polyoxotungstate with a 1D chain structure. Inorg. Chem. Commun., 2008, 11(10):1288- 1291.
    [58] Wang C L, Liu S X, Xie L H et al. New 3D two-fold interpenetrating polyoxometallate compounds built up of dititanium-substituted Keggin polyoxotungstates and transition metals. Polyhedron, 2007, 26(13):3017–3022.
    [59] Wang H J, You W S, et al. A New 2D Layered Co(II) Complex Based on Monosubstituted Keggin Anions and its Electrocatalytic O2 Evolution. J Clust Sci., 2010, 21:857–865.
    [60] Sadakane M, Dickman M H, Pope M T. Controlled assembly of polyoxometalate chains from lacunarybuilding blocks and lanthanide-cation linkers. Angew. Chem. Int. Ed., 2000, 39(16):2914-2916.
    [61] Galanmascaros J R, Gimenezsaiz C, Triki S et al. A novel chain-like heteropolyanion formed by Keggin units-Synthesis and structure of (ET)8n[PMnW11O39]n·2nH2O. Angew. Chem. Int. Ed., 1995, 34(13):1460-1462.
    [62] Liu H S, Gómez-García C J, Peng J et al. A Co-monosubstituted Keggin polyoxometalate with an antenna ligand and three cobalt(II) chains as counterion. Inorg. Chim. Acta.,2009, 362:1957-1962.
    [63] Gao G G, Li F Y, Xu L, Liu X Z and Yang Y Y, CO2 Coordination by Inorganic Polyoxoanion in Water, J. Am. Chem. Soc., 2008, 130:10838-10839.
    [64] Zhao J W, Zheng S T et al. 0-D and 1-D inorganic-organic composite polyoxotungstates constructed from in-situ generated monocopperII-substituted Keggin polyoxoanions and copperII-organoamine complexes.J. Solid State Chem., 2008, 181:2205-2216.
    [65] Copping R, Gaunt A J et al. Trivalent lanthanide lacunary phosphomolybdate complexes: a structural and spectroscopic study across the series [Ln(PMo11O39)2]11?. Dalton Trans., 2005, 1256-1262.
    [66] Reinoso S,Vitoria P,Lezama L et al. A Novel Organic-Inorganic Hybrid Based on a Dinuclear Copper Complex Supported on a Keggin Polyoxometalate.Inorg. Chem., 2003, 42:3709-3711.
    [67] Han Z G, Zhao Y L et al. Directed Synthesis of a 1D Double-Chain Polyoxometalate Assembly: {[Ag2(bppy)3][Ag(bppy)2][Ag(bppy)]2PW11Co (bppy)O39}·2H2O. Eur. J. Inorg. Chem., 2005, 264_271.
    [68] Lu Y, Wang E B, Li Y G et al. Hydrothermal synthesis and structures of two novel chain-like heteropolymolybdate formed by Keggin cluster units. J. Solid State Chem., 2004, 177:2210-2215.
    [69] Wang J P, Duan X Y, Du X D et al. Electrochemical and magnetic properties of inorganic polymers constructed from Mn(II)/Co(II)-substituted heteropolymoly bdates. Cryst. Growth Des., 2006, 6:2266.
    [70] Lu Y, Xu Y, Wang E B et al. Novel Two-Dimensional Network Constructed from Polyoxomolybdate Chains Linked through Copper-Organonitrogen Coordination Polymer Chains: Hydrothermal Synthesis and Structure of [H2bpy][Cu(4,4’-bpy)]2[HPCuMo11O39]. Cryst. Growth Des., 2005, 5:257-260
    [71]Zhao J W, Han Q X, et al. A CdSO4-like 3-D framework constructed from monosodium substituted Keggin arsenotungstates and copper(II)-ethylenediamine complexes. Inorg. Chem. Commun., 2009, 12:707–710.
    [72] Müller A, Beckmann E, Bgge H et al. Inorganic chemistry goes protein size: a Mo368 nano-hedgehog initiating nanochemistry by symmetry breaking. Angew. Chem. Int. Ed., 2002, 41(7):1162-1167.
    [73] Todea A M, Merca A, B?gge H. Extending the {(Mo)Mo5}12M30 capsule Keplerate sequence: a {Cr30} cluster of S=3/2 metal centers with a {Na(H2O)12} encapsulate. Angew. Chem. Int. Ed., 2007, 46:6106–6110.
    [74] Müller A, Das S K, K?gerler P et al. A new type of supramolecular compound: molybdenum-oxide-based composites consisting of magnetic nanocapsules with encapsulated Keggin-ion electron reservoirs cross-linked to a two-dimensional network. Angew. Chem. Int. Ed., 2000, 39:3413–3417.
    [75] Wassermann K, Dickman M H, Pope M T. Self-assembly of supramolecular polyoxo metalates: the compact, water-soluble heteropolytungstate anion [Ln16As12W148O324 (H2O) 36]76-. Angew. Chem. Int. Ed., 1997, 36(13-14):1445-1448.
    [76] Wu Q, Li Y G et al. Mixed-Valent {Mn14} Aggregate Encapsulated by the Inorganic Polyoxometalate Shell: [MnIII13MnIIO12(PO4)4(PW9O34)4]31-. Inorg. Chem., 2009, 48:1606-1612.
    [77] Klemperer W G, Marquart T A, Yaghi O M. New directions in polyvanadate chemistry: from cages and clusters to baskets, belts, bowls, and barrels. Angew. Chem. Int. Ed., 1992, 31: 49–51.
    [78] Müller A, Rohlfing R, Krickemeyer E et al. Control of the linkage of inorganic fragments of V-O compounds: from cluster shells as carcerands via cluster aggregaes to solid-state structures. Angew. Chem. Int. Ed., 1993, 32:909–912.
    [79] Nyman M, Bonhomme F, Alam T M et al. [SiNb12O40]16- and [GeNb12O40]16-: highly charged Keggin ions with sticky surfaces. Angew. Chem. Int. Ed., 2004, 43:2787–2792.
    [80] Zhang Z M, Yao S, Li Y G et al. Protein-sized chiral Fe168 cages with NbO-type topology[J]. J. Am. Chem. Soc., 2009, 131:14600–14601.
    [81] Sha J Q, Wang C, Peng J et al. [Cu(4,4'-bipy)]2[H4P2W18O62].2H2O: The first three-dimensional framework based on saturated Wells–Dawson POMs modified by multi-track Cu–N coordination polymeric chains. Inorg. Chem. Commun., 2007, 10:1321–1324.
    [82] Weiner H, Lunk H J et al. Synthesis, Crystal Structure, and Solution Stability of Keggin-Type Heteropolytungstates (NH4)6NiII0.5[α-FeIIIO4W11O30NiIIO5(OH2)].nH2O, (NH4)7Zn0.5[α-ZnO4W11O30ZnO5(OH2)] .nH2O, and (NH4)7NiII0.5[α-ZnO4W11O30NiIIO5(OH2)] .nH2O (n≈18). Inorg. Chem., 2005, 44:7751-7761.
    [83] Zhao X Y, Liang D D, Liu S X et al. Two dawson–templated three–dimensional metal-organic frameworks based on oxalate-bridged binuclear cobalt(II)/nickel(II) SBUs and bpy linkers. Inorg. Chem., 2008, 47:7133–7138.
    [84] Liu S X, Xie L H, Gao B et al. An organic-inorganic hybrid material constructed from a three-dimensional coordination complex cationic framework and entrapped hexadecavanadate clusters. Chem. Commun., 2005, 5023–5025.
    [85] Sun C Y, Liu S X, Liang D D et al. Highly stable crystalline catalysts based on a microporous metal-organic framework and polyoxometalates. J. Am. Chem. Soc., 2009, 131: 1883–1888.
    [86] Jin H, Qi Y F, Wang E B et al. A Novel Copper (I) Halide Framework Templated by Organic–Inorganic Hybrid Polyoxometalate Chains Formed In Situ: A New Route for the Design and Synthesis of Porous Frameworks. Eur. J. Inorg. Chem., 2006, 4541–4545.
    [87] Felices L S, Vitoria P et al. Hybrid Inorganic-Metalorganic Compounds Containing Copper(II)-Monosubstituted Keggin Polyanions and Polymeric Copper(I) Complexes. Inorg. Chem., 2006, 45:7748-7757.
    [88] Kortz U, Nellutla S et al. Structure and Magnetism of the Tetra-Copper(II)- Substituted Heteropolyanion [Cu4K2(H2O)8(α-AsW9O33)2]8-. Inorg.Chem., 2004, 43:144-154.
    [89] Bi L H and Kortz U. Synthesis and Structure of the Pentacopper(II) Substituted Tungstosilicate [Cu5(OH)4(H2O)2(A-α-SiW9O33)2]10-. Inorg. Chem., 2004, 43:7961-7962.
    [90] Sartorel A, Carraro M et al. Polyoxometalate Embedding of a Tetraruthenium(IV)-oxo-core by Template-Directed Metalation of [γ-SiW10O36]8-: A Totally Inorganic Oxygen-Evolving Catalyst. J. Am. Chem. Soc., 2008, 130:5006–5007.
    [91] Orlandi M, Argazzi R et al. Ruthenium polyoxometalate water splitting catalyst: very fast hole scavenging from photogenerated oxidants. Chem. Commun., 2010, 46:3152–3154.
    [92] Sartorel A, Carraro M et al. Polyoxometalate Embedding of a Tetraruthenium (IV)–oxo -core by Template-Directed Metalation of [γ-SiW10O36]8-: A Totally Inorganic Oxygen-Evolving Catalyst. J. Am. Chem. Soc., 2008, 130:5006–5007.
    [93] Geletii Y V, Botar B et al. An All-Inorganic,Stable,and Highly Active Tetraruthenium Homogeneous Catalyst for Water Oxidation. Angew. Chem. Int. Ed., 2008, 47:3896-3899.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700