用户名: 密码: 验证码:
氧化铟、银纳米材料的制备及其在氯酚和汞离子检测方面的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要探讨了利用液相化学法对氧化铟及银纳米结构材料的控制合成。分别从材料制备和表征、形成机制以及性质研究三个方面进行了论述,内容涉及双表面活性剂辅助下亚稳相(corundum-type structure)In_2O_3多级结构的制备、形成机制以及气敏性质;不同形貌的银纳米颗粒的合成及其在汞离子识别方面的应用;以及银掺杂二氧化钛在光催化方面的应用。通过以功能为导向的纳米结构材料的控制合成和性能方面的研究,探索纳米材料的尺寸、形貌等参数对器件应用方面的影响。具体归纳如下:
     1.亚稳相In_2O_3多级结构的制备及其气敏性能测试
     将InCl_3·4H_2O溶于正庚烷中,以十二胺和油酸为添加剂,在220℃反应一定时间得到正交晶系InOOH前驱体,然后在常压下对其进行退火处理,InOOH脱水并相转变为六方相In_2O_3多级结构。双表面活性剂对多级结构的形成起了重要作用,在反应最初阶段,由于静电相互作用和疏水链之间的排斥力,阴离子表面活性剂油酸和阳离子表面活性剂十二胺混合后会形成双分子膜。在溶剂热条件下,随着温度的升高和压力的增大,InOOH纳米晶不断成核。表面活性剂和InOOH纳米晶[001]方向形成强的氢键,从而导致了晶粒的一维生长。因此,在双表面活性剂的作用下,颗粒沿着[001]方向定向聚集,形成了InOOH纳米线,纳米线非定向聚集形成稻草捆状多级结构。随着反应时间的延长,纳米线之间二次成核并生长,InOOH多级结构不断分支,新的分支再作为下一级末端继续分叉,使得活性成核点以级数的方式快速增加,经过几级分叉扩增,InOOH逐渐由稻草捆状变为哑铃形,最终生长为毛线球状。十二胺单独存在的条件下,对产品的形貌没有任何调控作用,这可能与十二胺与生长中的InOOH晶面的结合力弱有关系。此外十二胺可以提供In~(3+)水解所必需的碱性环境,与氢氧化钠等强碱导致快速水解不同,十二胺作为路易斯碱,可提供一个极弱的碱性环境,这有助于In~(3+)的水解温和平缓的进行,对产物的形貌起了关键的作用。
     该多级结构对2-氯苯酚气体具有快速敏感的传感性能。当2-氯苯酚气体浓度低至5ppm时也具有明显的感应信号,响应和恢复时间分别为55s和47s。多级结构In_2O_3传感器在280℃条件下对苯、甲苯、三氯甲烷、二氯甲烷、氨气均没有任何响应,电阻值几乎没有变化。
     2.不同形貌纳米银的合成及其在汞离子检测方面的应用
     银的纳米颗粒是在可溶性淀粉溶液中通过AgNO_3和NaBH_4的还原反应得到。所得银溶胶为鲜艳的黄色,其紫外可见吸收光谱显示出银纳米颗粒的吸收峰位于400nm左右的可见光区。根据朗伯-比尔定律A=Kbc计算,该银纳米粒子在400nm处的摩尔吸收系数为1.3×10~5 M~(-1)·cm~(-1),可满足比色法检测的需求。利用单质银和汞离子之间能够发生氧化还原反应的原理,室温下,在制备的银纳米粒子中添加不同浓度的Hg~(2+),进行紫外可见吸收光谱检测。随着加入汞离子浓度不断增大,银溶胶的吸光度逐渐减小。这是由于随着反应的不断进行,银颗粒不断被消耗,其浓度逐渐减小,因此吸收峰的强度逐渐降低。银纳米粒子的吸光度和加入的Hg~(2+)浓度呈良好的线性关系,其回归方程为A=1.41-5.75×10~(-4)c(A为吸光度,c为Hg~(2+)浓度),线性相关系数为R=0.9984。根据Mie理论和金属自由电子论的Drude模型,对银溶胶的吸光度和浓度之间呈现线性关系进行了公式推导。该方法对Hg~(2+)显示出良好的选择性,Na~+、K~+、Ba~(2+)、Mg~(2+)、Ca~(2+)、Fe~(3+)和Cd~(2+)等不会造成较大干扰,实现了在水相中Hg~(2+)的检测。
     利用硼氢化钠和抗坏血酸两种还原剂的合理搭配,在阴离子双链表面活性剂NaAOT的作用下,成功制备了规则纳米银三角片。随着加入Hg~(2+)的浓度逐渐增大,银纳米片逐渐由三角形变为截顶的三角,再变为圆片。银三角片和汞离子反应后溶液的最大吸收峰位置的改变量Δλ和Hg~(2+)浓度在50ppb-550ppb范围内呈良好的线性关系。
     3.Ag@TiO_2复合空心球的制备及其光催化性能研究
     以碳纳米球为模板和还原剂,制备了C@Ag复合结构,碳球表面由于具有还原性基团,可以还原Ag~+,从而实现Ag纳米颗粒的表面原位沉积。利用钛酸四丁酯的缓慢均匀水解反应常温下对C@Ag进行包覆,碳球表面丰富的羟基有利于钛酸四丁酯的水解,因此水解产物均匀包覆在碳球表面。随后在500℃下焙烧去掉碳球模板,成功合成了Ag@TiO_2空心复合结构,通过改变AgNO_3的浓度,可控制银的负载量。研究发现银的存在有助于光生电子-空穴的快速分离,Ag的Fermi能级低于TiO_2,在每处Ag与纳米TiO_2连接位点形成了肖特基势垒(Schottkybarriers)。Ag能捕获纳米TiO_2产生的光生电子,使光生空穴向TiO_2纳米粒子表面移动,使TiO_2带多余的正电荷,这不但增大了TiO_2纳米粒子表面对带负电的-OH以及亚甲基蓝的吸附;而且纳米TiO_2表面光生空穴(h~+)浓度提高,有助于光生空穴迅速、有效地与粒子界面吸附OH~-作用,生成·OH,从而提高了其光催化性能。
This paper is focused on the controlled synthesis of indium oxide nanostructures through liquid-phase chemistry routes.Investigations are based on three aspects: controlled synthesis,formation mechanism,properties and applications.The contents mainly include metastable corundum-type In_2O_3 of hierarchical nanostructured preparation,size-controlling,formation mechanism and gas-sensing properties, morphosynthesis of Ag nanoparticles and Hg~(2+) Recognition in Aqueous Media, intending to study the intrinsic controlling mechanism of the nanocrystal formation and their effects on the devices' applications.
     1.Catanionic-surfactant-controlled morphosynthesis and gas-sensing properties of corundum-type In_2O_3
     InCl_3-4H_2O was dissolved in heptane,oleic acid and laurylamine were used as the additives.After the solution was heated at 220℃for a setting time,orthorhombic InOOH is separated by centrifugation,indium oxyhydroxide dehydrated to form indium oxides hierarchical nanostructure upon heating.On the basis of the reaction conditions,it is believed that the InOOH wire-bundles in this study are formed mainly via the following sequence.At the initial stage,catanionic-surfactant was obtained by mixing laurylamine and oleic acid,which can induce bilayers due to the electrostatic and hydrophobic interactions.With the increased temperature and pressure,nucleation and growth of the InOOH crystals occur under solvothermal conditions.The surfactants will interact strongly with InOOH crystals by forming hydrogen bonds along the[001]direction,which in turn help one-dimentional growth and prevent side-ripening.Thus,with the assistance of catanionic-surfactant,bundle-like morphology based on nanowires was obtained.Finally,dumbbell-like hierarchical InOOH nanostructures were generated through the outward bending the nanowires by secondary nucleation and growth of new nanowires in each space among the as-grown bundle-like nanostructures.The results suggested that laurylamine alone had no effect on the crystal morphologies of InOOH,possibly due to the weak interaction between laurylamine and growing InOOH crystals.But laurylamine provided the necessary alkaline environment for the hydrolyzing of In~(3+) as well as promote the preferential growth of different crystal planes with the coexistence of oleic acid.
     Novel gas sensors based on the corundum-type In_2O_3 hierarchical nanostructures exhibited high response and selectivity to 2-chlorophenol at 280℃with a detection limit of about 5 ppm.The response of the sensor to other gases,such as benzene, toluene,CHCl_3,CH_2Cl_2,and ammonia under the operating temperature of 280℃was totally insensitive.So the sensor based on corundum-type In_2O_3 hierarchical structures shows an obvious advantage in selective detection of 2-chlorophenol.
     2.Synthesis of Ag Nanoparticles and Hg~(2+) Recognition in Aqueous Media
     The silver nanoparticles were obtained through a reduction reaction of silver nitrate with NaBH_4 in the presence of starch.It showed a characteristic peak centered at 400 nm in the visible light area.Calculated according to the Lambert-Beer's law,the extinction coefficients of the as-prepared silver nanoparticles is about 1.39104 M~(-1) cm~(-1)(at 400 nm),which can meet the demand of colorimetric sensing detection.The sensitivity of silver nanoparticles toward Hg~(2+) was identified by UV-vis absorption spectra in this work.The sensing begins by adding an aliquot of an aqueous solution of Hg~(2+) at a designated concentration to a solution of the Ag nanoparticles at room temperature.Various concentrations of Hg~(2+) from one stock solution were tested.The absorbance peak of the Ag nanoparticles could be depressed with the increased concentration of Hg~(2+) ion.A linear relationship(y=1.41-5.75×10~(-4)x,R~2=0.9984),stands between the absorbance intensity of the Ag nanoparticles and concentration of Hg~(2+) ion over the range from 10 ppb to 1 ppm at the absorption of 390 nm.The limit of quantification,at a signal-to noise ratio of 3,was down to 5 ppb.the selectivity of this system for Hg~(2+) has been evaluated through testing the response of the assay to various environmentally relevant metal ions,including Hg~(2+),Na~+,K~+,Ba~(2+),Mg~(2+),Ca~(2+), Fe~(3+) at a concentration of 10~(-4) M.Only the Hg~(2+) sample shows a significant fading relative to that of the blank.The facile synthesis,high stability and high water solubility of the starch-stabilized Ag nanoparticle probes allow a reliable assay performed in aqueous environments.
     3.Hollow Ag/TiO_2 Nanocomposites with Enhanced Photocatalytic Activity
     Carbonaceous microspheres,which serve as the templates,are first prepared from saccharide starting materials by dehydration under hydrothermal conditions.The surface of the spheres is hydrophilic,being functionalized with C=O groups,silver were loaded onto their surfaces by room-temperature surface reduction.The polysaccharide-like hydrophilic surface of the spheres,bearing hydroxyl roups(-OH), favored the hydrolysis of tetrabutyltitanate.Thus,a shell of TiO_2 precursor formed on the surface.The Fermi level of silver is lower than TiO_2,so a Schottky barrier formed at the metal-semiconductor interface.Investigation dicated that optimized amount of Ag deposits not only acted as electron sinks to enhance the eparation of photoinduced electrons from holes,but also elevated the amount of the surface hydroxyl,leading o the formation of more hydroxyl radicals(·OH) and then the higher photodegradation efficiency to MB solutions.
引文
[1]Feynman,R.P.Science,1991,254,1300.
    [2]华彤文等译,R.布里斯罗[美]著.化学的今天和明天[M].科学出版社,1998:7-10.
    [3]Klein,D.L.;Roth,R.A.;Lim,K.L.A single-electron transistor made from a cadmium selenide nanocrystal[J].Nature,1997,389(6652):699-701.
    [4]Alivisatos,A.P.Semiconductor clusters,nanocrystals,and quantumn dots[J].Science,1996,271(5251):933-937.
    [5]Hu,J.T.;T.W.Odom;Lieber,C.M.Chemistry and physics in one dimension:Synthesis and properties of nanowires and nanotubes[J].Acc.Chem.Res.,1999,32(5):435-445.
    [6]Xia,Y.N.;P.D.Yang.Chemistry and physics of nanowires[J].Adv.Mater.,2003,15(5):351-352.
    [7]朱静.纳米材料与器件[M].北京:清华大学出版社,2003.
    [8]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001:16-19.
    [9]Brringer,R.;Gleiter,H.;Klein,H.P.;Marquit,P.Nanocrystalline materials an approach to a novel solid structure with gas-like disorder[J].Phys.Lett.,1984,102(8):365-369.
    [10]Alivisatos A.P.Semiconductor clusters,nanocrystals,and quantum dots[J].Science 1996,271:933-937.
    [11]Dai H.J.Carbon nanotubes:Synthesis,integration,and properties[J].Accounts.Chem.Res.2002,35:1035-1044.
    [12]Huynh W.U.;Dittmer J.J.;Alivisatos A.P.Hybrid nanorod-polymer solar cells[J].Science 2002,295:2425-2427.
    [13]Farady,M.Phil.Trans.R.Soc.Lond.1857,147,1451.
    [14]Peng,Z.A.;Peng,X.G.Formation of High-Quality CdTe,CdSe,and CdS Nanocrystals Using CdO as Precursor[J].J.Am.Chem.Soc.,2001,123(1):183-184.
    [15]L.H.Qu;Peng,Z.A.;Peng,X.G.Alternative Routes toward High Quality CdSe Nanocrystals[J].Nano Lett.,2001,1(6):333-337.
    [16]Deng,Z.T.;Cao,L.;Tang,F.Q.;Zou,B.S.A New Route to Zinc-Blende CdSe Nanocrystals:Mechanism and Synthesis[J].J.Phys.Chem.B,2005,109(35):16671-16675.
    [17]Sapra,S.;Rogach,A.L.;Feldmann,J.Phosphine-free synthesis of monodisperse CdSe nanocrystals in olive oil[J]. J. Mater. Chem., 2006,16: 3391-3395.
    [18] Liu, J.-H.; Fan, J.-B.; Gu, Z.; Cui, J.; Xu, X.-B.; Liang, Z.-W.; Luo, S.-L.; Zhu, M.-Q. Green Chemistry for Large-Scale Synthesis of Semiconductor Quantum Dots[J]. Langmuir, 2008,24(10): 5241-5244.
    [19] Rajh, T.; MiCiC, O. I.; Nozik, A. J.Synthesis and Characterization of Surface-Modified Colloidal CdTe Quantum Dots[J]. J. Phys. Chem., 1993, 97(46): 11999-12003.
    [20] Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; Kornowski, A.; Eychmulller, A.; Weller., H. Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes[J]. J. Phys. Chem. B, 2002, 106(29): 7177-7185.
    [21] Feng, S.; Xu., R. New materials in hydrothermal synthesis[J]. Acc. Chem. Res., 2001, 34(3): 239-247.
    [22] Zhang, H.; Wang, L. P.; Xiong, H. M.; Hu, L. H.; Yang, B.; Li, W. Hydrothermal synthesis for high quality CdTe QDs[J]. Adv. Mater., 2003, 15(20): 1712-1715.
    [23] Guo, J.; Yang, W. L.; C. C. Wang. Systematic Study of the Photoluminescence Dependence of Thiol-Capped CdTe Nanocrystals on the Reaction Conditions[J]. J. Phys. Chem. B, 2005,109(37): 17467-17473.
    [24] Cao, X. D.; Li, C. M.; Ba, H. F.; Bao, Q. L.; Dong., H. Fabrication of Strongly Fluorescent Quantum Dot-Polymer Composite in Aqueous Solution[J]. Chem. Mater., 2007,19(15): 3773-3779.
    [25] Mitchell, G. P.; Mirkin, C. A.; Letsinger, R. L. Programmed assembly of DNA functionalized quantum dots[J]. J. Am. Chem. Soc., 1999,121(35): 8122-8123.
    [26] Han, M. Y.; Gao, X. H.; Su, J. Z. Quantum dot tagged microbeads for multiplexed optical coding of biomolecules[J]. Nat Biotechnol, 2001,19(7): 631-635.
    [27] Caroff, P.; Paranthoen, C.; Platz, C. High-gain and low-threshold InAs quantum dot lasers on InP [J]. Appl. Phys. Lett., 2005, 87(24): 243107.
    [28] Chan, Y.; Steckel, J. S.; Snee, P. T. Blue semiconductor nanocrystal laser [J]. Appl. Phys. Lett., 2005, 86(7): 073102.
    [29] Darugar, Q.; Qian, W.; El-sayed, M. A. Observation of optical gain in solution of CdS quantum dots at room temperature in the blue region[J]. Appl. Phys. Lett., 2006, 88(26): 261108.
    [30] Lacoste, T. D.; Michalet, X.; Pinaud, F.; Chemla, D. S.; Alivisatos, A. P.; Weiss, S. Ultra high-resolution Multicolor Colocalization of Single Fluorescent Probes[J]. Proc. Natl. Acad. Sci. U. S. A, 2000, 97(17): 9461- 9466.
    
    [31] Klarreich, E. Biologists Join the Ddots[J]. Nature, 2001, 413(6855): 450-452.
    [32] Jaiswal, J. k.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Long- term Multiple Color Imaging.of Live Cells Using Quantum Dot Bioconjugates[J]. Nature Biotechnology, 2003, 21(1): 47-51.
    [33] Michalet, X.; Pinnaud, F.; Lacoste, T. D. Properties of Fluorescent Semiconductor Nanocrystals and their Application to Biological Labeling[J]. Single Mol., 2001, 2(4): 261-276.
    [34] Chen, B.; Zhong, P. A new determining method of copper(II) ions at ng ml~(-1) levels based on quenching of the water-soluble nanocrystals fluorescence[J]. Anal Bioanal Chem, 2005, 381(4): 986-992.
    [35] Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242-246.
    [36] Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Single-nanowire electrically driven lasers[J]. Nature, 2003,421: 241-245.
    [37] Law, M.; Sirbuly, D. J.; Johnson, J. C.; Goldberger, J.; Saykally, R. J.; Yang, P. D. Nanoribbon waveguides for subwavelength photonics integration[J]. Science, 2004, 305(5688): 1269-1273.
    [38] Li L. S.; Walda J.; Manna L.; Alivisatos A. P. Semiconductor nanorod liquid crystals[J]. Nano.Lett 2002, 2(6): 557-560.
    [39] Lee, J.-H., Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sens. Actuators B 2009,140(1): 319-336.
    [40] Jana, N. R.; Gearheart, L.; Murphy, C. J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template[J]. Adv. Mater. 2001, 13(18): 1389-1393.
    [41] Zhang, Y. J.; Zhang, Y.; Wang, Z. H.; Li, D.; Cui, T. Y.; Liu, W.; Zhang, Z. D. Controlled synthesis of cobalt flowerlike architectures by a facile hydro-thermal route[J]. Eur. J. Inorg. Chem. 2008, 17: 2733-2738.
    [42] Yang, J.; Li, C.; Quan, Z.; Zhang, C.; Yang, P.; Li, Y.; Yu, C.; Lin, J. Self- assembled 3D flowerlike Lu_2O_3 and Lu_2O_3 : Ln~(3+) (Ln = Eu, Tb, Dy, Pr, Sm, Er, Ho, Tm) microarchitectures: Ethylene glycol-mediated hydrothermal synthesis and luminescent properties[J]. J. Phys. Chem. C 2008, 112(33): 12777-12785.
    [43] Zheng, Y. H.; Cheng, Y.; Wang, Y. S.; Zhou, L. H.; Bao, F.; Jia, C. Metastable gamma-MnS hierarchical architectures: Synthesis, characterization, and growth mechanism[J]. J. Phys. Chem. B 2006, 110(16): 8284-8288.
    [44] Gorai, S.; Ganguli, D.; Chaudhuri, S. Synthesis of copper sulfides of varying morphologies and stoichiometries controlled by chelating and nonchelating solvents in a solvothermal process[J]. Cryst. Growth Des. 2005, 5(3): 875-877.
    [45] Gou, X. L.; Cheng, F. Y.; Shi, Y. H.; Zhang, L.; Peng, S. J.; Chen, J.; Shen, P. W. Shape-controlled synthesis of ternary chalcogenide ZnIn_2S_4 and CuIn(S, Se)_2 nano-/microstructures via facile solution route[J]. J. Am.Chem.Soc. 2006, 128(22):7222 -7229.
    [46] Shang, X.; Lu, W.; Yue, B.; Zhang, L.; Ni, J.; Lv, Y.; Feng, Y. Synthesis of Three-Dimensional Hierarchical Dendrites of NdOHCO_3 via a Facile Hydro- thermal Method[J]. Cryst. Growth Des. 2009, 9(3): 1415-1420.
    [47] Yang, H.; Wu, X. L.; Cao, M. H.; Guo, Y. G. Solvothermal Synthesis of LiFePO_4 Hierarchically Dumbbell-Like Microstructures by Nanoplate Self- Assembly and Their Application as a Cathode Material in Lithium-Ion Batteries[J]. J. Phys. Chem. C 2009,113(8): 3345-3351.
    [48] Ye L.; Guo W.; Yang Y.; Du Y.; Yi Xie. Directing the Architecture of Various MoS2 Hierarchical Hollow Cages through the Controllable Synthesis of Surfactant/Molybdate Composite Precursors [J]. Chem. Mater., 2007, 19(25):6331-6337.
    [49] Lu Q.; Zeng H.; Wang Z.; Cao X.; Zhang L. Design of Sb_2S_3 nanorod-bundles: imperfect oriented attachment[J]. Nanotechnology 2006,17: 2098-2104.
    [50] Yao, Z.; Zhu, X.; Wu, C.; Zhang, X.; Xie, Y. Fabrication of micrometer-scaled hierarchical tubular structures of CuS assembled by nanoflake-built microspheres using an in situ formed Cu(I) complex as a self-sacrificed template[J]. Cryst. Growth Des. 2007, 7(7): 1256-1261.
    
    [51] Shang, X.; Lu, W.; Yue, B.; Zhang, L.; Ni, J.; Lv, Y.; Feng, Y. Synthesis of Three-Dimensional Hierarchical Dendrites of NdOHCO_3 via a Facile Hydro- thermal Method[J]. Cryst. Growth Des. 2009, 9(3): 1415-1420.
    [52] Tsuji, M.; Hashimoto, M.; Nishizawa, Y.; Kubokawa, M.; Tsuji, T. Microwave-Assisted Synthesis of Metallic Nanostructures in Solution[J]. Chem. Eur. J. 2005, 11(2): 440-452.
    [53] Wang D.; Jin S.; Wu Y.; Liber C. M. Large-Scale Hierarchical Organization of Nanowire Arrays for Integrated Nanosystems[J]. Nano Lett., 2003, 3, 1255-1259.
    
    [54] Zhu P.; Zhang J.; Wu Z.; Zhang Z. Microwave-Assisted Synthesis of Various ZnO Hierarchical Nanostructures:Effects of Heating Parameters of Microwave Oven[J].Cryst.Growth Des.,2008,8(9):3148-3153.
    [55]Polshettiwar,V.;Baruwati,B.;Varma,R.S.Self-Assembly of Metal Oxides into Three-Dimensional Nanostructures:Synthesis and Application in Catalysis[J].ACS Nano 2009,3(3):728-736.
    [56]Dallinger,D.;Kappe,C.O.Microwave-assisted synthesis in water as solvent[J].Chem.Rev.2007,107(6):2563-2591.
    [57]徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社.1999,440-454.
    [58]Waterhouse,G.I.N.;Metson,J.B.;Idriss,H.Physical and Optical Properties of Inverse Opal CeO_2 Photonic Crystals[J].Chem.Mater.2008,20(3):1183-1190.
    [59]Li,C.;Qi,L.Bioinspired Fabrication of 3D Ordered Macroporous Single Crystals of Calcite from a Transient Amorphous Phase[J].Angew.Chem.Int.Ed.2008,47(13):2388-2393.
    [60]Schroden,R.C.;AI-Daous,M.;Stein,A.Self-Modification of Spontaneous Emission by Inverse Opal Silica Photonic Crystals[J].Chem.Mater.2001,13(9):2945-2950.
    [61]Waterhouse,G.I.N.;Waterland,M.R.Opal and inverse opal photonic crystals:Fabrication and characterization[J].Polyhedron,2007,26(2):356-368.
    [62]Yuan,R.S.;Fu,X.Z.;Wang,X.C.;Liu,P.;Wu,L.;Xu,Y.M.;Wang,X.X.;Wang,Z.Y.Template synthesis of hollow metal oxide fibers with hierarchical architecture[J].Chem.Mater.2006,18(19):4700-4705.
    [63]Luo Y.;Lee S.K.;Hofmeister H.;Steinhart M.;G(o|¨)sele U.Pt Nanoshell Tubes by Template Wetting[J].Nano Lett.2004,4(1):143-147.
    [64]Liang,Z.;Susha,A.;Caruso,F.Gold Nanoparticle-Based Core-Shell and Hollow Spheres and Ordered Assemblies Thereof[J].Chem.Mater.2003,15(16):3176-3183.
    [65]Caruso,F.;Shi,X.;Caruso,R.A.;Susha,A.Hollow titania spheres fromlayered precursor deposition on sacrificial colloidal core particles[J].Adv.Mater.2001,13(10):740-744.
    [66]Hyodo,T.;Sasahara,K.;Y.Shimizu;Egashira,M.Preparation of macroporous SnO_2films using PMMA microspheres and their sensing properties to NOx and H_2[J].Sens.Actuators B 2005,106(2):580-590.
    [67]Tan,Y.;C.Li;Wang,Y.;Tang,J.;Ouyang,X.Fast-response and high sensitivity gas sensors based on SnO_2 hollow spheres[J].Thin Solid Films 2008,516(21): 7840-7843.
    [68] Zhang, J.; S.Wang; Y.Wang; Y.Wang; Zhu, B.; Xia, H.; Guo, X.; Zhang, S.; Huang, W.; Wu, S. NO_2 sensing performance of SnO_2 hollow-sphere sensor[J]. Sens. Actuators B 2009, 135(2): 610-617.
    [69] Li, X.L.; Lou, T. J.; Sun, X. M.; Li, Y. D. Highly sensitive WO_3 hollow-sphere gas sensors[J]. Inorg. Chem. 2004,43(17): 5442-5449.
    [70] Caruso, F.; Spasova, M.; Susha, A.; Giersig, M.; Caruso, R. A. Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach[J]. Chem. Mater. 2001, 13(1): 109-116.
    [71] Zhang, Y.; Shi, E. W.; Chen, Z. Z.; Xiao, B. Fabrication of ZnO hollow nanospheres and "jingle bell" shaped nanospheres[J]. Mater. Lett. 2008, 62(8): 1435-1437.
    
    [72] Zhong, L. S.; Hu, J. S.; Liang, H. P.; Cao, A. M.; Song, W. G.; Wan, L. J. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment[J]. Adv. Mater. 2006,18(18): 2426-2431.
    [73] Zhu, J.; Zhang, T. S.; Ma, J.; Tay, B. Y. Fabrication of porous/hollow tin(IV) oxide skeletons from polypeptide mediated self-assembly[J]. J. Mater. Res. 2007, 22(9): 2448-2453.
    [74] Zhang, G. J.; Shen, Z. R.; Liu, M.; Guo, C. H.; Sun, P. C.; Yuan, Z. Y.; Li, B. H.; Ding, D. T.; Chen, T. H. Synthesis and characterization of mesoporous ceria with hierarchical nanoarchitecture controlled by amino acids[J]. J. Phys. Chem. B 2006, 110(51): 25782-25790.
    
    [75] Naka, K. Topics in Current Chemistry[M]. Springer Berlin, 2006, 264:1-62.
    [76] Busch, S.; Dolhaine, H.; DuChesne, A.; Heinz, S.; Hochrein, O.; Laeri, F.; Podebrad, O.; Vietze, U.; Weiland, T.; Kniep, R. Eur. J. Inorg. Chem., 1999,10, 1643
    [77] Kniep, R.; Busch, S. Biomimetic Growth and Self-Assembly of Fluorapatite Aggregates by Diffusion into Denatured Collagen Matrices [J]. Angew. Chem., Int. Ed, 1996, 35(22): 2624-2626.
    [78] Gao, Y. X.; Yu, S. H.; Guo, X. H. Double hydrophilic block copolymer controled growth and self-assembly of CaCO_3 Muitilayered structures at Air/water interface [J]. Langmuir, 2006, 22(14): 6125-6129.
    [79] Guo, X. H.; Yu, S. H. Controlled Mineralization of Barium Carbonate Crystals in a Mixed Solvent and at Air/Solution Using a Double Hydrophilic Block Copolymer as Crystal[J]. Cryst. Growth Des. 2007, 7(2): 354-359.
    [80] Qin, L.; Xu, J.; Dong, X.; Pan, Q.; Cheng, Z.; Xiang, Q.; Li, F. The template-free synthesis of square-shaped SnO_2 nanowires: the temperature effect and acetone gas sensors[J]. Nanotechnology, 2008, 19, 185705.
    [81] Zhang, N.; Yu, K.; Li, Q.; Zhu, Z.Q.; Wan, Q. Room-temperature high-sensitivity H_2S gas sensor based on dendritic ZnO nanostructures with macroscale in appearance[J]. J. Appl. Phys. 2008,108, 104305.
    [82] Ponzoni, A.; Comini, E.; Sberveglieri, G.; Zhou, J.; Deng, S. Z.; Xu, N. S.; Ding, Y. Wang, Z. L. Ultrasensitive and highly selective gas sensors using threedimensional tungsten oxide nanowire networks[J]. Appl. Phys. Lett. 2006, 88, 203101.
    [83] Gou, X.; Wang, G.; Kong, X.; Wexler, D.; Horvat, J.; Yang, J.; Park, J. Flutelike porous hematite nanorods and branched nanostructures: synthesis, characterization and application for gas-sensing[J]. Chem. Eur. J. 2008,14, 5996-6002.
    [84] Kim, H.-R.; Choi, K.-I.; Lee, J.-H.; Akbar, S. A. Highly sensitive and ultra-fast responding gas sensors using self-assembled hierarchical SnO_2 spheres[J]. Sens. Actuators B 2009, 136, 138-143.
    [85] Choi, K.-I.; Kim, H.-R.; Lee, J.-H. Enhanced CO sensing characteristics of hierarchical and hollowIn_2O_3 microspheres[J]. Sens. Actuators B. 2009,138,497-503.
    
    [86] Seo, W. S.; Jo, H. H.; Lee, K.; Park, J. T. Preparation and Optical Properties of Highly Crystalline, Colloidal, and Size-controlled Indium Oxide Nanoparticles[J]. Adv Mater. 2003,15(10): 795-797.
    [87] Narayanaswamy, A.; Xu, H.; Pradhan, N.; Kim, M.; Peng, X. Formation of Nearly Monodisperse I_2O_3 Nanodots and Oriented-Attached Nanoflowers: Hydrolysis and Alcoholysis vis Pyrolysis[J]. J. Am. Chem. Soc. 2006, 128(31): 10310-10319.
    [88] Liu, Q.; Lu, W.; Ma, A.; Tang, J.; Lin, J.; Fang, J. Study of Quasi-Monodisperse In_2O_3 Nanocrystals: Synthesis and Optical Determination[J]. J. Am. Chem. Soc. 2005,127(15): 5276-5277.
    
    [89] Lee, C. H.; Kim, M; Kim, T.; Kim, A.; Paek, J.; Lee, J. W.; Choi, S. Y; Kim, K.; Park, J.-B.; Lee, K. Ambient Pressure Syntheses of Size-Controlled Corundum-type In_2O_3 Nanocubes[J]. J. Am. Chem. Soc. 2006, 128(29): 9326-9327.
    [90] Tang Q.; Zhou W.J.; Zhang W. Size-controllable growth of single crystal In(OH)_3 and In_2O_3 nanocubes[J]. Cryst. Growth Des. 2005, 5(1): 147-150.
    [91] Zheng W. P.; Zu R. D.; Zhong L. W. Nanobelts of Semiconducting Oxides[J]. Science, 2001,291(5510): 1947-1949.
    [92] Yu, D.; Yu, S. H; Zhang, S.; Zuo, J.; Wang, D.; Qian, Y. Metastable Hexagonal In_2O_3 Nanofibers Templated from InOOH Nanofibers under Ambient Pressure [J]. Adv. Funct. Mater. 2003,13(6): 497-501.
    
    [93] Chen, C. L.; Chen, D. R.; Jiao, X. L.; Wang, C. Q. Ultrathin corundum- type In_2O_3 nanotubes derived from orthorhombic InOOH: synthesis and formation mechanism[J]. Chem. Commun. 2006: 4632-4634.
    [94] Nguyen, P.; Ng H.T.; Yamada T. Direct integration of metal oxide nanowire in Vertical field-effect transistor[J]. Nano. Lett., 2004, 4(4): 651-657.
    [95] Li, C.; Zhang, D. H.; Han, S. Diameter-controlled of single-crystalline In_2O_3 nanowires and their electronic Properties[J]. Adv. Mater., 2003, 15(2): 143-146.
    
    [96] Zheng, M. J.; Zhang, L. D.; Li, G. H. Ordered indium-oxide nanowire arrays and their photoluminescence properties[J]. Appl. Phys. Lett., 2001, 79(6): 839-841.
    [97] Lao, J.; Huang, J.; Wang D.; Ren Z. Self-Assembled In_2O_3 Nanocrystal Chains and Nanowire Networks[J]. Adv. Mater., 2004, 16(1): 65-69.
    
    [98] Curreli, M.; Li, C.; Sun, Y.; Lei, B.; Gundersen, M. A.; Thompson, M. E.; Zhou, C. Selective Functionalization of In_2O_3 Nanowire Mat Devices for Biosensing Applications[J]. J. Am. Chem. Soc.2005,127(19): 6922-6923.
    [99] Li, Y. B.; Bando, Y.; Golberg, D. Single-crystalline In_O2_3 nanotubes filled with In[J]. Adv. Mater. 2003,15(7): 581-585.
    
    [100] Yang, J.; Lin, C. K.; Wang, Z. L.; Lin, J. In(OH)_3 and In_2O_3 nanorod bundles and spheres: Microemulsion-mediated hydrothermal synthesis and luminescence properties[J]. Inorg. Chem. 2006,45(22): 8973-8979.
    
    [101] Dong, H.; Chen, Z.; Sun, L.; Zhou, L.; Yanjing Ling; Yu, C.; Tan, H. H.; Jagadish, C.; Shen, X. Nanosheets-Based Rhombohedral In_2O_3 3D Hierarchical Microspheres: Synthesis, Growth Mechanism, and Optical Properties[J]. J. Phys. Chem. C 2009, 113(24): 10511-10516
    
    [102] Zhao, P. T.; Huang, T.; Huang, K. X. Fabrication of indium sulfide hollow spheres and their conversion to indium oxide hollow spheres consisting of multipore nanoflakes[J]. J. Phys. Chem. C 2007, 111(35): 12890-12897.
    
    [103] Zhu, H.; Wang, X.; Wang, Z. J.; Yang, C.; Yang, F.; Yang, X. R. Self- assembled 3D microflowery In(OH)_3 architecture and its conversion to In_2O_3[J]. J. Phys. Chem. C 2008,112(39): 15285-15292.
    
    [104] Wang C.; Chen D.; Jiao X. Lotus-Root-Like In_2O_3 Nano- structures: Fabrication, Characterization, and Photoluminescence Properties [J]. J. Phys. Chem. C 2007, 111(36): 13398-13403.
    [105] Sberveglieri, G.; Groppelli, S.; Coccoli, G. Radio frequency magnetron sputtering growth and characterization of indium-tin oxide(ITO) thin films for NO_2 gas sensors[J]. Sens. Actuators, 1988, B15: 235-242.
    [106] Gurlo, A.; Ivanovskaya, M.; Barsan, N. Grain size control in nanocrystalline In_2O_3 semic-onductor gas sensors[J]. Sens. Actuators B, 1997,44:327-333.
    [107] Jiao, Z.; Wu, M. H; Gu, J. Z. The gas sensing characteristics of ITO thin film prepared by sol-gel method[J]. Sens. Actuators, 2003, B94-.216-221.
    [108] Gurlo, A.; Barsan, N.; Wermar, U. Polycrystalline well-shaped blocks of indium oxide obtained by the sol-gel method and their gas sensing properties[J]. Chem. Mater., 2003,15(23): 4377-4383.
    [109] Epifani. M.; Capone. S.; Rella. R. In_2O_3 thin films obtained through a chemical complexation based sol-gel process and their application as gas sensor devices [J]. J. Sol- Gel Sci. Technol., 2003,26: 741-744.
    [110] Ivanovskaya, M.; Gurlo, A.; Bogdanov, P. Mechanism of O_3 and NO_2 detection and selectivity of In_2O_3 sensors[J].Sens. Actuators, 2001, B77:264-267.
    
    [111] Belysheva, T. V.; Kazachkov, E. A.; Gutman, E. E. Gas sensing properties of In_2O_3 and Audoped films for detecting carbon monoxide in air[J]. J. Anal. Chem., 2001, 56(7): 676-678.
    [112] Yamaura, H.; Jinkawa, T.; Tamaki, J. Indium oxide-based gas sensor for selectivedetection of CO[J]. Sensors and Actuators, 1996, B36: 325-332.
    [113] Yamaura, H.; Jinkawa, T.; Tamaki, J. Highly selective CO sensor using indium oxide doubly promoted by cobalt oxide and gold[J]. J. Electrochem. Soc., 1997, 144(6): L158-L160.
    [114] Shukla, S.; Seal, S.; Ludwig, L. Nanocrystalline indium oxide-doped tin oxide thin film as low temperature hydrogen sensor[J]. Sens. Actuators, 2004, B97:256-265.
    [115] Chung, W.Y. Gas sensing properties of spin-coated indium oxide film on various substrates[J]. J. Mater. Sci.: Mater. Electron., 2001, 12: 591-596.
    [116] Epifani, M.; Capone, S.; Rella, R. In_2O_3 thin films obtained through a chemical complexation based sol-gel process and their application as gas sensor devices [J]. J. Sol- Gel Sci. Technol, 2003, 26: 741-744.
    [117] Kim, B. C.; Kim, J. Y.; Lee D. D. Effects of crystal structure on gas sensing properties of nanocrystalline ITO thick films[J]. Sens. Actuators, 2003, B89:180-186.
    [118] Takao, Y.; Miyazaki, K.; Shimizu, Y. High ammonia sensitive semiconductor gas sensors with double-layer structure and interface electrodes [J]. J. Electrochem Soc., 1994,141(4):1028-1034.
    [119] Benitez, F.; Beltran-Heredia, J.; Acero, J. L.; Javier Rubio, F. Contribution of free radicals to chlorophenols decomposition by several advanced oxidation processes [J]. Chemosphere 2000,41(8): 1271-1277.
    [120] Hamdaoui, O.; Naflrechoux, E. Sonochemical and photosonochemical d egradation of 4-chlorophenol in aqueous media[J]. Ultrasonics Sonochemistry 2008, 15(6): 981-987.
    [121] Shi, Y.; Chen, M.; Sarangaopani, M. Microwave-assisted headspace controlled temperature liquid phase microextraction of chlorophenols from aqueous samples for gas chromatography electron capture detection[J]. J. Chromatogr. A, 2008, 1207(1-2):130-135.
    [122] Peng, J.; Liu, J.; Hu, X. Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid chromatography [J]. J. Chromatogr. A, 2007, 1139(2):165-170.
    [123] Brioude, A; Pileni, M. P J. Silver Nanodisks: Optical Properties Study Using the Discrete Dipole Approximation Method[J]. Phys. Chem. B 2005, 109(49): 23371- 23377.
    [124] Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G., Photoinduced Conversion of Silver Nanospheres to Nanoprisms[J]. Science, 2001, 294(5548): 1901-1903.
    [125] Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J]. Nature Phys. Sci., 1973,241: 20-22.
    [126] Raveendran, P.; Fu, J. Wallen, L. Completely "Green" Synthesis and Stabilization of Metal Nanoparticles[J]. J. Am. Chem. Soc, 2003,125(46): 13940-13941.
    [127] Raveendran, P.; Fua, J.; Wallen. S. L. A simple and "green" method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles[J].Green Chem., 2006, 8: 34-38.
    [128] Shen, C.; Hui, C.; Yang, T.; Xiao, C.; Tian, J.; Bao, L.; Chen, S.; Ding, H.; Gao, H. Monodisperse Noble-Metal Nanoparticles and Their Surface Enhanced Raman Scattering Properties[J]. Chem. Mater. 2008, 20(22): 6939-6944.
    [129] Lin, X. Z.; Teng, X.; Yang, H. Direct Synthesis of Narrowly Dispersed Silver Nanoparticles Using a Single-Source Precursor[J]. Langmuir 2003, 19(24): 10081-10085.
    [130] Yamamoto, M.; Nakamoto, M. Novel preparation of monodispersed silver nanoparticles via amine adducts derived from insoluble silver myristate in tertiary alkylamine[J].J.Mater.Chem.,2003,13:2064-2065.
    [131]李德刚,陈恢豪,赵世勇等.相转移方法制备银纳米粒子单层膜[J].化学学报,2002,60(3):408-412.
    [132]Chen,Y.;Wang,X.,Novel phase-transfer preparation of monodisperse silver and gold nanoparticles at room temperature[J].Mater.Lett.2008,62(15):2215-2218.
    [133]Sun,Y.;Xia,Y.Triangular Nanoplates of Silver:Synthesis,Characterization,and Use as Sacrificial Templates For Generating Triangular Nanorings of Gold[J].Adv.Mater.2003,15(9):695-699.
    [134]Song,J.;Chu,Y.;Liu,Y.;Li,L.;Sun,W.Room-temperature controllable fabrication of silver nanoplates reduced by aniline[J].Chem.Commun.,2008:1223-1225.
    [135]Yang,J.;Lu,L.;Wang,H.;Shi,W.;Zhang,H.,Glycyl Glycine Templating Synthesis of Single-Crystal Silver Nanoplates[J].Cryst.Growth Des.2006,6(9):2155-2158.
    [136]Zhang,Q.;Ge,J.;Pham,T.;Goebl,J.;Lu,Y.H.Z.;Yin,Y.Reconstruction of Silver Nanoplates by UV Irradiation:Tailored Optical Properties and Enhanced Stability[J].Angew.Chem.2009,121(19):3568-3571.
    [137]Haes,A.J.;Van,Duyne R.P.A Nanoscale Optical Biosensor:Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles[J].J.Am.Chem.Soc.2002,124(35):10596-10604.
    [138]Haynes,C.L.;McFarland,A.D.;Smith,M.T.;Hulteen J.C.;Van Duyne R.P.Angle-Resolved Nanosphere Lithography:Manipulation of Nanoparticle Size,Shape,and Interparticle Spacing[J].J.Phys.Chem.B.2002,106(8):1898-1902.
    [139]Jana,N.R.;Gearheart,L.;Murphy,C.J.Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio[J].Chem.Commun.,2001:617-618.
    [140]Pietrobon,B.;McEachran,M.;Kitaev,V.Synthesis of Size-Controlled Faceted Pentagonal Silver Nanorods with Tunable Plasmonic Properties and Self-Assembly of These Nanorods[J].ACS Nano,2009,3(1):21-26.
    [141]廖学红,朱俊杰,邱晓峰,赵小宁,陈洪渊.类球形和树枝状纳米银的超声电化学制备[J].南京大学学报,2002,38(1):119-123.
    [142]Knag,Z.H.;Wang,E.B.;Lian,S.Y.;Mao,B.;Chen,L.;Xu,L.Surfactant-assisted electrochemical method for dendritic silver nanocrystals with advanced structure[J].Mater.Lett.,2005,59(18):2289-2291.
    [143] Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoParticles[J]. Science, 2002,298(5601): 2176-2179.
    [144] Kim, F.; Connor, S. Song; Kuykendall, T.; Yang, P. D. Platonic gold nanocrystals[J]. Angew. Chem. Inter. E., 2004,43(28): 3673-3677.
    [145] Wang, C. Y.; Fang, J. Y.; He, J. B.; Zhou W. L.; Stokes K. L. Morphology control of the produced Ag nanoparticles by soft-template technique[J]. J. Coll. Inter. Sci., 2003, 260(2): 440-442.
    [146] Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics[J]. Angew. Chem. Int. Ed. 2009,48:60-103.
    [147] Zemna, E. J.; Sehatz, G. C. An accurate electron theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium[J]. J. Phys.Chem. 1987, 91, 634-643.
    [148] Jensen, T. R.; Duval Malinsky, M.; Haynes, C. L.; Van Duyne, R. P. NanosphereLithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles[J]. J. Phys. Chem. B 2000,104(45): 10549-10556.
    [149] Duval Malinsky, M.; Kelly, L.; Schatz, G. C.; Van Duyne, R. P. Nanosphere Lithography: Effect of Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles [J]. J. Phys. Chem. B 2001,105(12): 2343-2350.
    [150] Duval Malinsky, M.; Kelly, L.; Schatz, G. C.; Van Duyne, R. P. Chain LengthDependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers[J]. J. Am. Chem. Soc., 2001,123(7): 1471-1482.
    [151] Fleischmann, M.; Hendra, P. J.; Mcquillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chem. Phy. Lett., 1974, 26(2): 163-166.
    [152] Jeanmaire, D. L.; Van, Duyne, R. P. Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. J. Electroanal. Chem. 1977, 84(1): 1-20.
    [153] Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode[J]. J. Am. Chem. Soc. 1977, 99(15): 5215-5217.
    [154] Bertoline, J. R.; Temperini, M. L. A.; Sala, O. Sers effect of hexamethylenetetramine adsorbed on a silver electrode[J]. J. Mol. Struct., 1988,178(8): 113-120.
    [155] Von, Raben K. U.; Chang R. K. Wavelength dependence of surface-enhanced Raman scattering from silver colloids with adsorbed cyanide complexes, sulfite and pyridine[J].J.Phys.Chem.,1984,88(22):5290-5296.
    [156]Lakowicz,J.Radiative,R.Decay Engineering:Biophysical and Biomedical Applications[J].Anal.Biochem.,2001,298(1):1-24.
    [157]吕凤婷,郑海荣,房喻.表面增强荧光研究进展[J].化学进展,2007,19(2):256-266.
    [158]Nagy,A.;Mestl,G.High temperature partial oxidation reactions over silver catalysts.Appl.Catal.A,1999,188(1):337-353.
    [159]Pestryakov,A.N.;Lunin,V.V.;Devochkin,A.N.Selective oxidation of alcohols over foam-metal catalysts[J].Appl.Catal.A,2002,227(1):125-130.
    [160]Xie,Y.;Ding,K.;Liu,Z.;Tao,R.;Sun,Z.;Zhang,H.;An,G.In Situ Controllable Loading of Ultrafine Noble Metal Particles on Titania[J].J.Am.Chem.Soc.,2009,131(19):6648-6649.
    [161]Alt,V.;Bechert,T.;Steinrucke,P.An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement[J].Biomaterials,2004,25(18):4383-4391.
    [162]Jeon,H.J.;Yi,S.X.;Oh,S.G.Preparation and antibacterial effects of Ag-SiO_2 thin films by sol-gel method[J].Biomaterials,2003,24(27):4921-4928.
    [163]周全法,刘维桥,尚通明等.贵金属纳米材料[M].北京:化学工业出版社.2007:182-186.
    [164]Terabe,K.;Hasegawa,T.;Nakayama,T.;Aono,M.Quantized conductance atomic switch[J].Nature,2005,433:47-50.
    [165]中国大百科全书出版社编辑部.中国大百科全书[M].环境科学.北京:中国大百科全书出版社,1983.
    [166]Yoon,S.;Albers,A.E.;Wong,A.P.;Chang,C.J.Screening Mercury Levels in Fish with a Selective Fluorescent Chemosensor[J].J.Am.Chem.Soc.,2005,127(46):16030-16031.
    [167]Wang,J.;Liu,B.Highly sensitive and selective detection of Hg~(2+) in aqueous solution with mercury-specific DNA and Sybr Green[J].Chem.Commun.,2008,39:4759-4761.
    [168]Chen,B.;Yu,Y.;Zhou,Z.;Zhong,P.Synthesis of Novel Nanocrystals as Fluorescent Sensors for Hg~(2+) Ions[J].Chem.Lett.2004,33(12):1608-1609.
    [169]Zhu,C.;Li,L.;Fang,F.;Chen,J.;Wu,Y.Functional InP Nanocrystals as Novel Near-infrared Fluorescent Sensors for Mercury Ions[J].Chem.Lett.2005,34(7):898-899.
    [170]Duan,J.;Song,L.;Zhan,J.One-pot Synthesis of Highly Luminescent CdTe Quantum Dots by Microwave Irradiation Reduction and their Hg~(2+)-Sensitive Properties[J].Nano Research,2009,2,67-76.
    [171]Huang,C.-C.;Chang,H.-T.Selective Gold-Nanoparticle-Based "Turn-On"Fluorescent Sensors for Detection of Mercury(Ⅱ) in Aqueous Solution[J].Anal.Chem.2006,78(24):8332-8338.
    [172]Gopala Krishna Darbha;Ray,A.;Ray,P.C.Gold Nanoparticle-Based Miniaturized Nanomaterial Surface Energy Transfer Probe for Rapid and Ultrasensitive Detection of Mercury in Soil,Water,and Fish[J].ACS Nano,2007,1(3):208-214.
    [173]Darbha,G.K.;Singh,A.K.;Rai,U.S.;Yu,E.;Yu,H.;Ray,P.C.Selective Detection of Mercury(Ⅱ) Ion Using Nonlinear Optical Properties of Gold Nanoparticles[J].J.Am.Chem.Soc.,2008,130(25):8038-8043.
    [174]Lee,J.S.;Han,M.S.;Mirkin,C.A.Colorimetric Detection of Mercuric Ion(Hg~(2+)) in Aqueous Media using DNA-Functionalized Gold Nanoparticles[J].Angew.Chem.Int.Ed.2007,46(22):4093-4096.
    [175]Rex,M.;Hernandez,F.E.;Campiglia,A.D.Pushing the Limits of Mercury Sensors with Gold Nanorods[J].Anal.Chem.,2006,78(2):445-451.
    [176]Huang,C.C.;Yang,Z.;Lee,K.H.;Chang,H.T.Synthesis of Highly Fluorescent Gold Nanoparticles for Sensing Mercury(Ⅱ)[J].Angew.Chem.Int.Ed.,2007,46(36):6824-6828.
    [177]Tao,A.;Kim,F.;Hess,C.;Goldberger,J.;He,R.;Sun,Y.;Xia,Y.;Yang.P.D.Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy[J].Nano Lett.2003,3(9):1229-1233.
    [178]Shanmukh,S.;Jones,L.;Driskell,J.;Zhao,Y.P.;Dluhy,R.;Tripp.R.A.Rapid and Sensitive Detection of Respiratory Virus Molecular Signatures Using a Silver Nanorod Array SERS Substrate[J].Nano Lett.2006,6(11):2630-2636.
    [179]Haynes,C.L.;Van Duyne,R.P.Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy[J].J.Phys.Chem B 2003,107(30):7426-7433.
    [180]Hashimoto,N.;Hashimoto,T.;Teranishi,T.;Nasu,H.;Kamiya,K.Cycle performance of sol-gel optical sensor based on localized surface plasmon resonance of silver particles[J].Sens.Actuators,B 2006,113(1):382-388.
    [181] Hutter, E.; Fendler, J. H.; Roy, D. Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1, 6-Hexanedithiol[J]. J. Phys. Chem. B 2001, 105(45): 11159-11168.
    [1]Prasad,K.R;Kegs,K;Miurapp,N.Electrochemical Deposition of Nanostructured Indium Oxide:High-Performance Electrode Material for Redox Supercapacitors[J].Chem.Mater.2004,16(10):1845-1847.
    [2]Epifani,M.;Siciliano,P.;Gurlo,A.;Barsan,N.;Weimar,U.Ambient Pressure Synthesis of Corundum-Type In_2O_3[J],J.Am.Chem.Soc.2004,126(13):4078-4079.
    [3]Gurlo,A.;lvanovskaya,M;Barsan,N.;Weimar,U.Corundum-type indium(Ⅲ) oxide:formation under ambient conditions in Fe_2O_3-In_2O_3 system[J].Inorg.Chem.Commun.2003,6(5):569-572
    [4]Gurlo,A.;Barsan,N;Weimar,U.;Ivanovskaya,M.;Taurino,A.;Siciliano,P.Polycrystalline Well-Shaped Blocks of Indium Oxide Obtained by the Sol-Gel Method and Their Gas-Sensing Properties[J].Chem.Mater.2003,15(23):4377-4383.
    [5]Gurlo,A.;Kroll,P.;Pdedel,R.Metastability of Corundum-Type In_2O_3[J].Chem.Eur.J.2008,14:3306-3310
    [6]Yu,D.;Yu,S.H;Zhang,S.;Zuo,J.;Wang,D.;Qian,Y.Metastable Hexagonal In_2O_3Nanofibers Templated from InOOH Nanofibers under Ambient Pressure[J].Adv.Funct.Mater.2003,13(6):497-501.
    [7]Yu,D.;Wang,D.;Qian,Y.Synthesis of metastable hexagonal In_2O_3 nanocrystals by a precursor-dehydration route under ambient pressure[J].J.Solid State Chem.2004,177(4):1230-1234.
    [8]Huang,J;Gao,L.Synthesis and Characterization of Porous Single-Crystal-Like In_2O_3Nanostructures Via a Solvothermal-Annealing Route[J].J.Am.Ceram.Soc.,2006,89(2):724-727.
    [9]Lee,C.H.;Kim,M;Kim,T.;Kim,A.;Paek,J.;Lee,J.W.;Choi,S.Y;Kim,K.;Park,J.-B.;Lee,K.Ambient Pressure Syntheses of Size-Controlled Corundum-type In_2O_3Nanocubes[J].J.Am.Chem.Soc.2006,128(29):9326-9327.
    [10]Zhuang,Z.B.;Peng,Q.;Liu,J.F.;Wang,X.;Li,Y.D.Indium Hydroxides,Oxyhydroxides,and Oxides Nanocrystals Series[J].Inorg.Chem.2007,46(13):5179-5188.
    [11]Liu,Q.;Lu,W.;Ma,A.;Tang,J.;Lin,J.;Fang,J.Study of Quasi-Monodisperse In_2O_3Nanocrystals:Synthesis and Optical Determination[J].J.Am.Chem.Soc.2005,127(15):5276-5277.
    [12]Dong,H.;Chen,Z.;Sun,L.;Zhou,L.;Yanjing Ling;Yu,C.;Tan,H.H.;Jagadish,C.; Shen, X. Nanosheets-Based Rhombohedral In_2O_3 3D Hierarchical Microspheres: Synthesis, Growth Mechanism, and Optical Properties[J]. J. Phys. Chem. C 2009, 113(24): 10511-10516
    [13] Xu, J. Q.; Chen, Y. P.; Pan, Q. Y.; Xiang, Q.; Cheng, Z. X.; Dong X. W. A new route for preparing corundum-type In_2O_3 nanorods used as gas-sensing materials [J]. Nanotechnology 2007,18: 115615.
    [14] Chen, C. L.; Chen, D. R.; Jiao, X. L.; Wang, C. Q. Ultrathin corundum- type In_2O_3 nanotubes derived from orthorhombic InOOH: synthesis and formation mechanism[J]. Chem. Commun. 2006: 4632-4634.
    [15] Liu, Y.; Koep, E.; Liu, M. A Highly Sensitive and Fast-Responding SnO_2 Sensor Fabricated by Combustion Chemical Vapor Deposition[J]. Chem. Mater. 2005, 17(15): 3997-4000.
    [16] Ivanov, P.; Llobet, E.; Vilanova, X.; Brezmes, J.; Hubalek, J.; Correig, X. Development of high sensitivity ethanol gas sensors based on Pt-doped SnO_2 surfaces[J]. Sens. Actuators B 2004, 99(2): 201-206.
    [17] Qi, P.; Vermesh, O.; Grecu, M.; Javey, A.; Wang, Q.; Dai, H. Toward Large Arays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection[J]. Nano Lett. 2003, 3, 347-351.
    [18] Li, J.; Lu, Y; Ye, Q.; Cinke, M.; Han, J.; Meyyappan, M. Carbon Nanotube Sensors for Gas and Organic Vapor Detection[J]. Nano Lett. 2003, 3(3): 929-933.
    [19] Huang, J.; Matsunaga, N.; Shimanoe, K;Yamazoe, N.; Kunitake, T. Nanotubular SnO_2 Templated by Cellulose Fibers: Synthesis and Gas Sensing[J]. Chem. Mater. 2005, 17(13): 3513-3518.
    
    [20] Bekyarova, E.; Davis, M.; Burch, T.; Itkis, M. E.; Zhao, B.; Sunshine, S.; Haddon, R. C. Chemically Functionalized Single-Walled Carbon Nanotubes as Ammonia Sensors[J]. J. Phys. Chem. B 2004, 108(51): 19717-19720.
    [21] Kolmakov, A.; Zhang, Y; Cheng, G; Moskovits, M. Detection of CO and O_2 Using Tin Oxide Nanowire Sensors Adv Mater. 2003, 15(12): 997-1000.
    [22] Zhang, D.; Li, C.; Liu, X.; Han, S.; Tang, T.; Zhou, C. Doping dependent NH_3 sensing of indium oxide nanowires[J]. Appl. Phys. Lett. 2003, 83(9): 1845-1847.
    [23] Winter, R.; Scharnagl, K.; Fuchs, A.; Doll, T.; Eisele, I. Molecular beam evaporation-grown indium oxide and indium aluminium films for low-temoerature gas sensors[J]. Sens. Actuators B 2000, 66(1): 85-87.
    [24] Li, C.; Zhang, D.; Lei, B.; Han, S.; Liu, X.; Zhou, C. Surface Treatment and Doping Dependence of In_2O_3 Nanowires as Ammonia Sensors[J]. J. Phys. Chem. B 2003, 107(45): 12451-12455.
    [25] Li, C.; Zhang, D.; Liu, X.; Han, S.; Tang, T.; Han, J.; Zhou, C. In_2O_3 nanowires as chemical sensors[J]. Appl. Phys. Lett. 2003, 82(10): 1613-1615
    [26] Liu, H.; Kameoka, J.; Czaplewski, D. A.; Craighead, H. G. Polymeric Nanowire Chemical Sensor[J]. Nano Lett. 2004,4(4): 671-675.
    [27] Kolmakov, A.; Klenov, D. O.; Lilach, Y.; Stemmer, S.; Moskovits, M. Enhanced Gas Sensing by Individual SnO_2 Nanowires and Nanobelts Functionalized with Pd Catalyst Particles[J]. Nano Lett. 2005, 5(4): 667-673.
    [28] Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z.; Wang, Z. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts[J]. Appl. Phys. Lett. 2002, 81(10): 1869-1871.
    [29] Law, M.; Kind, H.; Messer, B.; Kim, F.; Yang, P. Photochemical Sensing of NO_2 with SnO_2 Nanoribbon Nanosensors at Room Temperature[J]. Angew. Chem. Int. Ed. 2002, 41(13): 2405-2408
    [30] Zhang, D.; Li, C.; Liu, X.; Han, S.; Tang, T.; Zhou, C. Doping dependent NH3 sensing of indium oxide nanowires[J]. Appl. Phys.Lett. 2003, 83(9): 1845-1847.
    [31] Zhang, D.; Liu, Z.; Li, C.; Tang, T.; Liu, X.; Han, S; Lei, B.; Zhou, C. Detection of NO_2 down to ppb Levels Using Individual and Multiple In_2O_3 Nanowire Devices[J]. Nano Lett. 2004,4(10): 1919-1924.
    [32] Lee, H. J.; Song, J. H.; Yoon, Y S.; Kim, T. S.; Kim, K. J.; Choi, W. K. Enhancement of CO sensitivity of indium oxide-based semiconductor gas sensor through ultra-thin cobalt adsorption[J]. Sens. Actuators B 2001, 79(2): 200-205.
    [33] Gagaoudakis, E;Bender, M.; Douloufakis, E.; Katsarakis, N.; Natsakou, E.; Cimalla, V; Kiriakidis, G. The influence of deposition parameters on room temperature ozone sensing properties of In_2O_3 films[J]. Sens. Actuators B 2001, 80(2): 155-161.
    [34] Chung, W. Y; Sakai, G.; Shimanoe, K.; Miura, N.; Lee, D. D.; Yamazoe, N. Preparation of indium oxide thin film by spin-coating method and its gas-sensing properties[J]. Sens. Actuators B 1998,46(2): 139-145.
    [35] Comini, E.; Cristalli, A.; Faglia, G.; Sberveglieri, G. Light enhanced gas sensing properties of indium oxide and tin dioxide sensors[J]. Sens, Actuators B 2000, 6(3): 260-263.
    [36] Lehmann, M. S.; Larsen, F. K.; Poulsen, F. R.; Christensen, A. N.; Rasmussen, S. E. Neutron and X-Ray Crystallographic Studies on Indium Oxide Hydroxide[J]. Acta Chem. Scand. 1970, 24(5): 1662-1670.
    [37] Zemb, T.; Dubois, M.; Deme, B.; Gulik-Krzwicki, T. Self-Assembly of Flat Nanodiscs in Salt-Free Catanionic Surfactant Solutions[J]. Science 1999,283(5403): 816-819.
    [38] Dubois, M.; Deme, B.; Gulik-Krzwicki, T.; Dedieu, J. C.; Vautrin ,C.; Perez, E.; Zemb, T. Self-assembly of regular hollow icosahedra in salt-free catanionic solutions[J]. Nature 2001,411: 672-675.
    [39] Song, A.; Dong, S.; Jia, X.; Hao, J.; Liu, W.; Liu, T. An Onion Phase in Salt-Free Zero-Charged Catanionic Surfactant Solutions[J]. Angew. Chem. Int. Ed. 2005, 44(26): 4018-4021.
    [40] Benitez, F.; Beltran-Heredia, J.; Acero, J. L.; Javier Rubio,F. Contribution of free radicals to chlorophenols decomposition by several advanced oxidation processes [J]. Chemosphere 2000, 41(8): 1271-1277.
    
    [41] Hamdaoui, O.; Naffrechoux, E. Sonochemical and photosonochemical d egradation of 4-chlorophenol in aqueous media[J]. Ultrasonics Sonochemistry 2008, 15(6): 981-987.
    [42] Jing, Z. H.; Zhan, J. H. Fabrication and Gas-Sensing Properties of Porous ZnO Nanoplates[J]. Adv. Mater. 2008, 20(23): 4547-4551.
    
    [43] Liu, L. F.; Wang, X.; Peng, Q.; Li, Y. D. Vanadium Pentoxide Nanobelts: Highly Selective and Stable Ethanol Sensor Materials[J]. Adv. Mater. 2005,17(6), 764-797.
    
    [44] Gong, H.; Hu, J. Q.; Wang, J. H.; Ong, C. H.; Zhu, F. R. Nano-crystalline Cu-doped ZnO thin film gas sensor for CO[J]. Sens. Actuators B 2006, 115(1): 247-251.
    
    [45] Neri, G.; Bonavita, A.; Micali, G.; Rizzo, G.; Callone, E.; Carturan, G. Resistive CO gas sensors based on In_2O_3 and InSnO_x nanopowders synthesized via starch-aided sol-gel process for automotive applications [J]. Sensors and Actuators B 2008, 132(1): 224-233.
    [46] Tiemann, M. Porous Metal Oxides as Gas Sensors[J]. Chem. Eur. J. 2007, 13(30): 8376-8388.
    [47] Xu, J.; Wang, X.; Shen, J. Hydrothermal synthesis of In_2O_3 for detecting H_2S in air[J]. Sensors and Actuators B 2006, 115(2): 642-646.
    [48] Li, B.; Xie, Y.; Jing, M.; Rong, G.; Tang, Y.; Zhang, G. In_2O_3 Hollow Microspheres: Synthesis from Designed In(OH)_3 Precursors and Applications in Gas Sensors and Photocatalysis[J]. Langmuir 2006, 22(22): 9380-9385.
    [1] El-Sayed, M. A. Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes[J]. Acc. Chem. Res., 2001, 34(4): 257-264.
    
    [2] Ozbay, E. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions[J]. Science, 2006, 311(5758): 189-193.
    
    [3] Lee, J.; Hernandez, P.; Lee, J.; Govorov, A. O.; Kotov, N. A. Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection[J]. Nat. Mater., 2007, 6,291-295.
    
    [4] Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Review of Some Interesting Surface Plasmon Resonance-enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems[J]. Plasmonics, 2007, 2: 107-118.
    [5] Dubertret, B.; Calame, M.; Liebchaber, A. J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides[J]. Nat. Biotech., 2001,19: 365-370.
    [6] Slocik, J. M.; Tarn, F.; Halas, N. J.; Naik, R. R. Peptide-Assembled Optically Responsive Nanoparticle Complexes[J]. Nano Lett., 2007, 7(4): 1054-1058.
    [7] Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated Absorption andScattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine[J]. J. Phys. Chem. B, 2006,110(14): 7238-7248.
    [8] Link, S.; El-Sayed, M. A. Optical Properties and Ultrafast Dynamics of Metallic Nanocrystals[J]. Annu. Rev. Phys. Chem., 2003, 54, 331-366.
    
    [9] SOnnichsen, C.; Reinhard, B. M.; Liphardt, J.; Alivisatos, A. P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles [J]. Nat. Biotechnol., 2005, 23: 741-745.
    
    [10] Malm, O. Gold Mining as a Source of Mercury Exposure in the Brazilian Amazon[J]. Environ. Res., 1998, 77(2): 73-78.
    
    [11] Harris, H. H.; Pickering, I.; George, G. N. The Chemical Form of Mercury in Fish[J]. Science, 2003, 301: 1203.
    
    [12] Grandjean, P.; Weihe, P.; White, R. F.; Debes, F. Cognitive Performance of Children Prenatally Exposed to "Safe" Levels of Methylmercury[J]. Environ. Res., 1998, 77(2): 165-172.
    
    [13] Yoon, S.; Albers, A. E.; Wong, A. P.; Chang, C. J. Screening Mercury Levels in Fish with a Selective Fluorescent Chemosensor[J]. J. Am. Chem. Soc., 2005, 127(46): 16030-16031.
    [14]Wang,J.;Liu,B.Highly sensitive and selective detection of Hg~(2+) in aqueous solution with mercury-specific DNA and Sybr Green[J].Chem.Commun.,2008,39:4759-4761.
    [15]Zhu,X.J.;Fu,S.T.;Wong,W.K.;Guo,J.P.;Wong,W.Y.A Near-Infrared-Fluorescent Chemodosimeter for Mercuric Ion Based on an Expanded Porphyrin[J].Angew.Chem.Int.Ed.,2006,45(19):3150-3154.
    [16]Ros-Lis,J.V.;Marcos,M.D.;Manez,R.M.;Rurack,K.Soto,J.A Regenerative Chemodosimeter Based on Metal-Induced Dye Formation for the Highly Selective and Sensitive Optical Determination of Hg~(2+) Ions[J].Angew.Chem.Int.Ed.,2005,44(28):4405-4407.
    [17]Yang,Y.K.;Yook,K.J.;Tae,J.A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg~(2+) Ions in Aqueous Media[J].J.Am.Chem.Soc.,2005,127(48):16760-16761.
    [18]Ros-Lis,J.V.;Marcos,M.D.;Martinez-Manez,R.;Rurack,K.;Soto,J.Ein regeneratives Chemodosimeter f(u|¨)r die hoch selektive und empfindliche optische Bestimmung von Hg~(2+),basierend auf der metallinduzierten Bildung eines Farbstoffes[J].Angew.Chem.,2005,117(28):4479-4482.
    [19]Zhu,X.J.;Fu,S.T.;Wong,W.-K.;Guo,J.P.;Wong,W.Y.A Near-Infrared-Fluorescent Chemodosimeter for Mercuric Ion Based on an Expanded Porphyrin[J].Angew.Chem.,2006,118(19):3222-3226.
    [20]Guo,X.;Qian,X.;Jia,L.A Highly Selective and Sensitive Fluorescent Chemosensor for Hg~(2+) in Neutral Buffer Aqueous Solution[J].J.Am.Chem.Soc.,2004,126(8):2272-2273.
    [21]Caballero,A.;Martinez,R.;Lloveras,V.;Ratera,I.Vidal-Gancedo,J.Wurst,K.;Tarraga,A.;Molina,P.;Veciana,J.Highly Selective Chromogenic and Redox or Fluorescent Sensors of Hg~(2+) in Aqueous Environment Based on 1,4-Disubstituted Azines[J].J.Am.Chem.Soc.,2005,127(45):15666-15667.
    [22]Yoon,S.;Miller,E.W.;He,Q.Do,P.H.;Chang,C.J.A Bright and Specific Fluorescent Sensor for Mercury in Water,Cells,and Tissue[J].Angew.Chem.Int.Ed.,2007,46(35):6658-6661.
    [23]Coronado,E.;Galan-Mascaros,J.R.;Marti-Gastaldo,C.Palomares,E.;Durrant,J.R.;Vilar,R.;Gratzel,M.;Nazeeruddin,M.K.Reversible Colorimetric Probes for Mercury Sensing[J].J.Am.Chem.Soc.,2005,127(35):12351-12356.
    [24] Nazeeruddin, M. K.; Censo, D. D.; Humphry-Baker, R.; Gratzel, M. Highly Selective and Reversible Optical, Colorimetric, and Electrochemical Detection of Mercury(II) by Amphiphilic Ruthenium Complexes Anchored onto Mesoporous Oxide Films[J]. Adv Funct Mater., 2006, 16(2): 189.
    [25] Tatay, S.; Gavina, P.; Coronado, E.; Palomares, E. Optical Mercury Sensing Using a Benzothiazolium Hemicyanine Dye[J]. Org. Lett., 2006, 8(17): 3857-3860.
    [26] Liu, B.; Tian, H. A selective fluorescent ratiometric chemodosimeter for mercury ion[J]. Chem. Commun., 2005,25: 3156-3158.
    [27] Zhao, Y.; Zhong, Z. Tuning the Sensitivity of a Foldamer-Based Mercury Sensor by Its Folding Energy[J]. J. Am. Chem. Soc, 2006, 128(31): 9988-9989.
    [28] Lee, J. S.; Han, M. S.; Mirkin, C. A. Colorimetric Detection of Mercuric Ion (Hg~(2+)) in Aqueous Media using DNA-Functionalized Gold Nanoparticles[J]. Angew. Chem. Int. Ed. 2007,46(22): 4093-4096.
    
    [29] Darbha, G. K.; Singh, A. K.; Rai, U. S.; Yu, E.; Yu, H.; Ray, P. C. Selective Detection of Mercury (II) Ion Using Nonlinear Optical Properties of Gold Nanoparticles[J]. J. Am. Chem. Soc., 2008,130(25): 8038-8043.
    [30] Li, D.; Wieckowska, A.; Willner, I. Optical Analysis of Hg~(2+) Ions by Oligonucleotide-Gold-Nanoparticle Hybrids and DNA-Based Machines [J]. Angew. Chem. Int. Ed., 2008, 47(21): 3927-3931.
    [31] Huang, C. C.; Yang, Z.; Lee, K. H.; Chang, H. T. Synthesis of Highly Fluorescent Gold Nanoparticles for Sensing Mercury(II)[J]. Angew. Chem. Int. Ed., 2007, 46(36): 6824-6828.
    [32] Huang, C. C; Chang, H. T. Selective Gold-Nanoparticle-Based "Turn-On" Fluorescent Sensors for Detection of Mercury(II) in Aqueous Solution[J]. Anal. Chem., 2006, 78(24): 8332-8338.
    [33] Xue, X.; Wang, F. Liu, X. One-Step, Room Temperature, Colorimetric Detection of Mercury (Hg~(2+)) Using DNA/Nanoparticle Conjugates [J]. J. Am. Chem. Soc, 2008, 130(11): 3244-3245.
    [34] Susha, A. S.; Javier, A. M.; Parak, W. J.; Rogach, A. L. Luminescent CdTe nanocrystals as ion probes and pH sensors in aqueous solutions [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006, 281(1): 40-43.
    
    [35] Rex, M.; Hernandez, F. E.; Campiglia, A. D. Pushing the Limits of Mercury Sensors with Gold Nanorods[J]. Anal. Chem., 2006, 78(2): 445-451.
    [36] Kim, Y.; Johnson, R. C.; Hupp, J. T. Gold Nanoparticle-Based Sensing of "Spectroscopically Silent" Heavy Metal Ions[J].Nano Lett.,2001,1(4):165-167.
    [37]Gopala Krishna Darbha;Ray,A.;Ray,P.C.Gold Nanoparticle-Based Miniaturized Nanomaterial Surface Energy Transfer Probe for Rapid and Ultrasensitive Detection of Mercury in Soil,Water,and Fish[J].ACS Nano,2007,1(3):208-214.
    [38]Raveendran,P.;Fu,J.Wallen,L.Completely "Green" Synthesis and Stabilization of Metal Nanoparticles[J].J.Am.Chem.Soc.,2003,125(46):13940-13941.
    [39]Raveendran,P.;Fua,J.;Wallen.S.L.A simple and "green" method for the synthesis of Au,Ag,and Au-Ag alloy nanoparticles[J].Green Chem.,2006,8(1):34-38.
    [40]Bard,A.J.;Parsons,R.;Jordan,J.Standard Potentials in Aqueous Solution [M].International Union of Pure and Applied Chemistry Marcel Dekker,Inc.,New York and Basel,1985.
    [41]Atoji.Crystal Structure of β-Hg[J].J.Chem.Phys.,1959,31(6):1628-1628.
    [42]Zhu,J.;Wang,Y.C.;Huang,L.Q.;Lu,Y.M.Resonance light scattering characters of core-shell structure of Au-Ag nanoparticles[J].Physics Letters A.,2004,323(5):455-459.
    [43]Zhu,J.Theoretical study of the optical absorption properties of Au-Ag bimetallic nanospheres[J].Physica E,2005,27(1):296-301.
    [44]Gaudry,M.;Lerme,J.;Cottancin,E.;Pellarin,M.;Vialle,J.-L.;Broyer,Prevel,M.B.;Treilleux,M.;Melinon,P.Optical properties of(Au_xAg_(1-x))_n clusters embedded in alumina:Evolution with size and stoichiometry[J].Phys.Rev.B,2001,64(8):085407.
    [45]Lee,K.S.;El-Sayed,M.A.Gold and Silver Nanoparticles in Sensing and Imaging:Sensitivity of Plasmon Response to Size,Shape,and Metal Composition[J].J.Phys.Chem.B,2006,110(39):19220-19225.
    [46]阎仕农;王永昌;朱键;温庭敦.金-银复合纳米颗粒的光学吸收特性[J].中国有色金属学报.2006,16(2):284-288.
    [47]Henglein,A.Colloidal Silver Nanoparticles:Photochemical Preparation and Interaction with O_2,CCl_4,and Some Metal Ions[J].Chem.Mater.,1998,10(1):444-450.
    [48]Jiang,X.C.;Yu,A.B.Silver Nanoplates:A Highly Sensitive Material toward Inorganic Anions[J].Langmuir 2008,24(8):4300-4309.
    [1] Zhang, Q.; Ge, J.; Pham, T.; Goebl, J.; Lu, Y. H. Z.; Yin, Y. Reconstruction of Silver Nanoplates by UV Irradiation: Tailored Optical Properties and Enhanced Stability [J]. Angew. Chem. 2009,121(19):3568-3571.
    
    [2] Haes, A. J.; Van Duyne R. P. A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles[J]. J. Am. Chem. Soc. 2002, 124(35): 10596-10604.
    
    [3] Shen, C.; Hui, C.; Yang, T.; Xiao, C.; Tian, J.; Bao, L.; Chen, S.; Ding, H.; Gao, H. Monodisperse Noble-Metal Nanoparticles and Their Surface Enhanced Raman Scattering Properties[J]. Chem. Mater. 2008, 20(22): 6939-6944.
    
    [4] Duval Malinsky, M.; Kelly, L.; Schatz, G. C.; Van Duyne, R. P. Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers[J]. J. Am. Chem. Soc, 2001,123(7): 1471-1482.
    
    [5] Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,238(5358): 35-37.
    
    [6] Wang, R.; Hashimoto, K.; Fujishima, A.; Chikumi, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-induced amphiphilic surfaces [J]. Nature 1997,388(6641): 431-432.
    
    [7] Okamoto, K.; Yamamoto, Y.; Tanaka, H.; Itaya., A. Heterogeneous Photocatalytic Decomposition of Phenol over TiO_2 Powder[J]. Chem. Soc. Jpn. 1985, 58(7):2015-2022.
    
    [8] Choi, W. Y.; Termin, A. Hoffinann, M. R. The Role of metal ion dopants in quantum-sized TiO_2: correlation between photoreactivity and charge carrier recombination dynamics[J]. J. Phys. Chem., 1994, 98(51): 13669-13679.
    [9] Karakitsou, K. E.; Verykios, X. E. Effects of altervalent cation doping of TiO_2 on its performance as photocatalyst for water cleavage[J]. J. Phys. Chem., 1993, 97(6): 1184-1189.
    
    [10] Yuan, Z. H.; Jia, J. H.; Zhang, L. D. Influence of co-doping of Zn(I)+Fe(III) on the photocatalytic activity of TiO_2 for phenol degradation[J]. Mater. Chem. Phys. 2002, 73(2): 323-326.
    [11] Serpone, N.; Lawless, D.; Disdier, J. Spectroscopic, photoconductivity, and photocatalytic studies of TiO_2 colloids: Naked and with the lattice doped with Cr~(3+),Fe~(3+), and V~(5+) cations[J]. Langmuir, 1994,10(3): 643-652.
    
    [12] Yamashita, H.; Harada, M.; Anpo, M. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO_2 catalysts: Fe ion-implanted TiO_2[J]. Catal. Today, 2003, 84(3): 191-196.
    
    [13] Anpo, M.; Takeuchi, M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation[J]. J. Catal., 2003, 216(1):505-516.
    [14] Asahi, R.; Morikawa, T.; Ohwaki, T. Visible-light photocatalysis in nitrogen doped titanium oxides[J]. Science, 2001,293(5528): 269-271.
    [15] Khan, S.; Al-Shahry, M.; Ingler, J. W. B. Efficient photochemical water splitting by a chemically modified n-TiO_2[J]. Science, 2002, 297(5590): 2243-2245.
    [16] Sakthivel, S.; Janczarek, M.; Kisch, H. Visible light activity and photoelectrochemical properties of nitrogen-doped TiO_2[J]. J. Phys. Chem. B, 2004, 108(50): 19384-19387.
    
    [17] Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Photocatalysis on TiO_2 surfaces: principles, mechanisms, and selected results[J]. Chem. Rev., 1995, 95(3): 735-758.
    [18] Ho, W.; Yu, J. C.; Lin, J. Preparation and photocatalytic behavior of MoS_2 and WS_2 nanocluster sensitized TiO_2[J]. Langmuir, 2004,20(14): 5865-5869.
    [19] Hirakawa, T.; Kamat, P. V. Charge Separation and Catalytic Activity of Ag@TiO_2 Core-Shell Composite Clusters under UV-Irradiation[J]. J. Am. Chem. Soc. 2005, 127(11): 3928-3934.
    [20] Tom, R. T.; Nair, A. S.; Singh, N.; Aslam, M.; Nagendra, C. L.; Pradeep, T. Freely dispersible Au@TiO_2, Au@ZrO_2, Ag@TiO_2 and Ag@ZrO_2 core-shell nanoparticles: one-step synthesis, characterization, spectroscopy and optical limiting properties [J]. Langmuir, 2003,19(8): 3439-3445.
    [21] Yogi, C.; Kojima, K.; Wada, N.; Tokumoto, H.; Takai, T.; Mizoguchi, T.; Tamiaki, H. Photocatalytic degradation of methylene blue by TiO_2 film and Au particles-TiO_2 composite film[J]. Thin Solid Films, 2008, 516(17): 5881-5884.
    [22] Sun, X.; Li Y. Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles[J]. Angew. Chem. Int. Ed. 2004, 43(5): 597-601.
    [23] Sun, X. M.; Liu, J. F.; Li Y. D.Use of carbonsceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres[J]. Chemistry - A European Journal, 2006, 12(7): 2039-2047.
    [24]沈星灿,郭为民,梁宏,张来军,胡瑞祥,王卓渊.微波载银对纳米二氧化钛相变及光催化性能的增效作用[J].化学学报,2008,66(1):49-55.
    [25]汪瑾徽,赵宗彬,李蓓蓓,邱介山.载银TiO_2空心微球的制备及光催化性能研究[J].化工科技市场,2009,32(7):17-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700